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A particular least-squares method is presented for the calculation of inelastic scattering wave
functions by an expansion technique. The variational procedure is based on a convenient error func-
tional. The test-function space is spanned by a finite set of square-integrable (Hilbert-space) basis
functions. The open-channel orbitals include the Kohn-Hulthen —type oscillatory terms of nonvan-

ishing asymptotic amplitudes. The error functional involves only bound-bound and bound-free ma-
trix elements. Criteria are given to select acceptable approximations. Two-channel calculations
show that the zero-order results of this method have an accuracy comparable to the first-order re-
sults of earlier calculations. No anomalies are encountered.

I. INTRODUCTION

The calculation of the scattering of a particle by a
quantum-mechanical system is inherently a complex prob-
lem which covers the whole realm of atomic, nuclear, and
strong-interaction physics. Important progress has been
made by using variational methods along the lines sug-
gested by Hulthen, ' Kohn, and Schwinger. Various al-
ternative procedures have been proposed to avoid the
anomalies' or spurious singularities which are encoun-
tered in calculations with the Kohn and Hulthen methods.
(For reviews of variational procedures and calculations in

scattering theory see, e.g. , Refs. 6—17.) In particular,
several least-squares methods have been suggested and ap-
plied both to the calculation of Regle trajectories's and to
the solution of scattering problems. '

In the present paper we shall discuss how the least-
squares method suggested in Ref. 20 can be extended to
the multichannel scattering. Our test-function space will

be spanned by a finite set of square-integrable (Hilbert-
space) basis functions which can also be applied to the ex-
pansion of the closed-channel orbital wave functions. On
the other hand, we shall prescribe the correct asymptotic
form for the expansion of the channel orbitals. Therefore,
the expansion of the open-channel orbitals will include the
well-known Kohn-Hulthen —type oscillatory terms of non-
vanishing asymptotic amplitudes which cannot be
represented as finite superpositions of square-integrable
basis functions. Because of our choice of the test-function
space, the least-squares method presented here involves
only bound-bound and bound-free matrix elements. (All
free-free integrals are eliminated. ) This method will be re-
ferred to as the least-squares variational method involving
only square-integrable test functions (LVM-ST).

As a first step of the multichannel LVM-ST, we shall
define the measure of the error of the approximate chan-
nel orbitals. This error functional must be normalized in
order to exclude the trivial solution of the variational
problem. By using a convenient normalization and carry-

ing out the variation, we derive the coupled set of inho-

mogeneous equations which determines al1 the linear vari-

ational parameters including the matrix elements of the
reactance matrix K. In addition, we obtain a relatively

simple equation for the measure of the error of the dth
independent solution. If the number of the test functions
is sufficiently large, then the results of the multichannel
LVM-ST are "almost free" of anomalies according to the
careful analysis presented by Abdel-Raouf. '

Most of the variational techniques involve the calcula-
tion of free-free matrix elements which are absent from
our method. This property of the multichannel LVM-ST
has many obvious theoretical and technical advantages.
We are therefore motivated to consider some instructive
applications. As a test case, we shall treat electron-atom
scattering within the framework of the close-coupling for-
malism. Illustrative numerical calculations have been car-
ried out for the low-energy electron —hydrogen-atom
scattering. We shall consider the static exchange approxi-
mation and the ls-2s close-coupling approximation (in-

cluding exchange). Both the stability and the convergence
of the results will be carefully analyzed and, in addition,
we shall investigate the ineasure of the error of the ap-
proximate orbitals.

The results of this paper indicate that the inultichannel
LVM-ST can be successfully applied to the calculation of
scattering processes if the basis functions are chosen ac-
cording to the following requirements. (i) There must ex-

ist a region of the nonlinear scale parameter a (character-
izing the basis functions) where a set of the calculated E-
matrix elements K,~ is stable [i.e., in that region one has

K~(a)- const]. (ii) An apparent convergence of these
X-matrix elements should be observed as the number of
the basis functions is increased. (iii) The measure of the
error of the approximate channel orbitals must be suffi-
ciently small. Similar requirements have been already ap-
plied to isolate the spurious solutions which may appear
in the application of the finite basis-set expansion
methods to the Dirac eigenvalue problem. '
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The organization of this paper is as follows. The next
section includes a review of the formalism and notation.
Section III is devoted to the multichannel LVM-ST. Our
analysis of the numerical results is presented in Sec. IV.
Some comments and remarks are left for Sec. V.

U (be) y(bc)(r )+ gr (be)

gr(bc)f(cd) rpr(be)(r ri) y(et)( i)d
0

(2.8)

II. REVIE%' OF FORMALISM AND NOTATION

C=1

where the operator M antisymmetrizes the total wave
function )p(+. The n-electron target-state wave functions
cp(c) should be carefully selected in order to obtain conver-
gent results at increasing values of P. The expansion (2.1)
involves the coefficients f" ' which will be referred to as
the one electron c-hannel orbital wave functions. These or-
bitals are of the form

((1'" '(q, ) =r( 'f '"'(rt) ~i~(et, q)()ri, (i },
with

(2.2)

A. Close-coupling procedure

We consider the scattering of an electron by an n-
electron atom. This process is described by an (n+1)-
electron wave function which will be denoted by
q)( '(q), . . . , q„+)}, where the index d specifies a particu-
lar degenerate solution of the Schrodinger equation at to-
tal energy E. (The symbol q; indicates the coordinates x;
and the spin of the ith electron. ) In the nonrelativistic
limit, the stationary scattering state of the (n+1)-electron
system can be characterized by the quantum numbers L,
S, and parity H.

Let us consider the expansion of (p( ' in terms of a
(complete) set of n-electron wave functions 4(c). The
truncated version of this expansion is given by'

(q), . . . ,q„+))(d)

1 7„

eke =ac . (2.12)

Here E~ is a matrix element of the symmetric reactance
matrix E. The transition matrix T is expressed in terms
of the reactance matrix by

In these equations E is the total energy of the (n+1)-
electron system, the energy of the tar et state 4" is
denoted by E„ the matrix elements V' '(r) contain all
the contributions of the direct potential terms, and the
nonlocal exchange terms are indicated by 8"+).

In a nonrelativistic theory, the short-distance behavior
of the solution f(~) is governed by the angular momen-
tum term 1,(1,+1)lr Thu. s, we have

f( ctc)(
)

c (2.10)
r~0

We next turn to a discussion of the large-distance proper-
ties of the solutions. In the subsequent part of this paper,
we restrict ourselves to the case where all the channels of
Eqs. (2.4)—(2.5) are open (e, & 0 for c = 1, . . . , P). More-
over, we shall consider only short-range interaction terms
U(+). In this case, the canonical asymptotic form of the
radial channel orbital wave functions f" ' is the follow-
ing:

f" '(r)~k, ' (5,d sin(k, r ——,
'

l, m)

+E,~ cos(k, r —,
'

l,—m)] as r-+ce),

(2.11)

with

l =l„rn =m„and s =s, (s, =+ —, ) . (2.3)
T=E(I iX)— (2.13)

P

y D (bc)f(cd) 0 b 1 P (2.4)

By using atomic units (a.u. ) and the notation 5' '=5b„
the standard form of the operator D (~' becomes'

D (bC) ~(bC) ~ g(bc)
C f

where

(2.5)

Here Y') is a spherical harmonic, and the radial channel
orbital wave function f'"' is characterized by the angular
momentum quantum number l, . (The spin factor is
denoted by ri, . )

The close-coupling procedure leads to a coupled system
of integro-differential equations for the radial functionsf' '(r) (so:, e.g., Refs. 13—15}. These equations can be
written as

4m
g I Ta

I
~ (2.14)

In the static exchange approximation (P =1), we have

E(( ——tan5, (2.15)

where 5 is the phase shift.
By using the L,S coupling, the E matrix is diagonal in

the total quantum numbers l., S, II, and independent of
total ML and Ms. Therefore, we shall use the notations

[LSH]
+CCRC

[LEIS]
Cd =CCt

(2.16)

(2.17)

and the partial cross section for scattering from channel c
to channel d is'

(2.6) 5[L,sn} (2.18}

H(b) l d + « ~(a )+U(bc'l (l -+1)
2 dl)' 2p

(2.7) The parity assignment II will be omitted in the applica-
tions presented in this paper.
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Within the framework of the sim le close-couphng ap-
proximation, the wave functions 4" are identified with

the eigenfunctions of the target Hamiltonian. (Instead of
this procedure, one may use convenient semiempirical ap-
proximations of the operator H' '. ) In the next part of
this section, we shall illustrate the structure of the interac-

tion terms U (+) by using the ls-2s close-coupling approx-
imation of the low-energy electron —hydrogen-atom

scattering.

8. Two-state close-coupling
approximation of the e -H scattering

III. MULTICHANNEL LVM-ST

We now consider the expansion of the radial channel
orbital wave functions f(~)(r) in terms of a complete set
of basis functions (p;'". The truncated version of this ex-
pansion can be written as

f(cd)'( ) y (cd) (c)( ) (3.1)
i= —1

where the approximate radial functions f ' ' (r ) must
satisfy the boundary conditions {2.10) and (2.11). Accord-
ing to these conditions, we shall use

4")(x)=4)(r) =%i,(r), (2.19)

Let us denote the spatial part of the target state wave
functions by (I)'c)(x ). In the 1s-2s close-coupling approxi-
mation we choose

q&''I(r)=k, ' rj((k, r),
u (cd) g(cd)u0 1

= 0

yo (r) =k, (1—e ' }' cos(k, r , l, rr—),—{c& —in -&&«&+1

(3.2)

(3.3)

(3.4)

4( '(x ) =(p (r ) =ql (r ), (2.20)

V(bc)(r ) = J @(b)(x~) 1 1 4(c)(X')diX' .
fx —x'f r

where 4(, and %2, are, respectively, the normalized ls
and 2s bound-state eigenfunctions of the hydrogen atom.

The contributions of the direct potential terms can be
written as

(3.5)

Here the coefficients a i and a;" ' (i =0, . . . , N) are
linear variational parameters, and the nonlinear scale pa-
rameters are denoted by ac and P, . {A;"' is a normaliza-
tion factor. )

By substituting the truncated expansion (3.1) into the
coupled set of integro-differential equations {2.4), we may
write

(2.21)
P

g D (bc)f(cd)' ll (bd)(r) b 1 P (3.6)

Straightforward calculation yields"
where the deviation LL' ' is related to the error of the ap-
proximate radial wave functions f"d', . . . ,f'Pd'. Of
course, the deviations LL' ' depend on the linear parame-
ters. Thus, we have

V (r)= — —+1 exp( —2r),(ll) (2.22)

V(l2)(r) V(2))(r)
g(bd)(r) l( (bd)(r. u u()d) g(&d)) (3.7)=2'~2 —,', (1+—', r ) exp( ——,

' r ), (2.23)
We now introduce a complete set of square-integrable
(Hilbert-space) test functions Xb '(r). According to the
boundary condition (2.10), we choose

Xb '{r)=8b 'r e b (li =12, . . . ), (3.8)
(2.24)

1 3 PV' '(r) = — —+—+—+—exp( r) . —
r 4 4 8

We now turn to the nonlocal exchange terms of the in-
teraction. One obtains

IV +((r),r') =(—1)s4)r@c(r) E E, Eb — —C)b(r—') .
f~

(2.25)

Here we have S=O for singlet scattering processes, and
the triplet scattering states are characterized by 5=1.
(The symbol r & indicates the greater of r, r'. )

The 1s-2s close-coupling approximation can be ob-
tained by substituting Eqs. (2.22)—(2.25) (and I' =2,
l i

——l2 ——0) into the coupled system of integro-differential
equations (2.4)—(2.9). (At P= 1, we are led to the static
exchange approximation. ) These equations can be suc-
cessfully solved by using the multichannel LVM-ST. Our
numerical results are contained in Sec. IV.

l„(d)[f(ld)' f(Pd)')

P M
(b)

(
(X(b)

(

g(bd) } )

2

b=1 A=1
(3.10}

where the mI', 's are positive weighting factors. %e shall
use a sufficiently large set of test functions by imposing
the requirement

where yb is a convenient scalegarameter, and the normal-
ization factor is denoted by 8)t

As a first step, we consider the components of the devi-
ation vector ht ~ as given by

(Xb '~ &' '}=J X' '(r)l(' '(r)dr

A measure of the error of the approximate radial wave
functions f"d', . . . ,f' "' will be defined as follows:
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(3.11) M=X+@, p ~2 (3.20)

By variation of the expression (3.10) with respect to the
linear parameters a ) and a ' (i=0, . . . , N), we obtain
a simple eigenvalue problem. As a next step, we normal-

ize the eigenvector by setting

Q 1=1. (3.12)

c=1 i ~O (3.13)

The final result is the system of inhomogeneous linear

equations which determines the coefficients a
(d =1, . . . ,P). These equations can be written in the fol-
lowing form:

P N

y L (bc) (cd) I (bd)

where the value of p will be fixed. Consequently, we ean
apply a relatively small set of test functions in the lowest
approximations. On account of the prescription (3.20),
the matrix elements of I. are not absolutely independent
of & rcf. Eq. (3.15)]. Therefore, in general, we should not
expect that the sequence of the approximate eigenvalues

monoronically approaches to the true eigenvalue
A,

' '=0. In spite of this fact, the computed eigenvalue
A,

( )(N) may be regarded as a reasonable measure of the er-
ror of the approximate radial wave functionsf( id)' r(Pd Y

~ ~ ~ p J
We now proceed to some remarks. Let us fix the first

l(l + 1 components of the deviation vector b.(~) at zero:

b=l, . . . ,P, h=0, . . . , l(i (X'b'I4' ')=0, h=l, . . . ,%+1 (3.21)

P N

L (dd) + ~ ~ I- (dc) (cd)—1 —1+ ~ ~ —limni

c=1 i ~O

All the matrix elements of I. are given by

P M
I (bc) g y (b')(X(b')

ID
(b'b)

I

(b) )c
b'~1 h'=1

(3.14)

In addition, we obtain a simple equation for the eigen-
value A.(d'. where b=1, . . . ,P. By substituting Eqs. (3.1}—(3.6} and

(3.12) into Eq. (3.21), we obtain a system of homogeneous
linear equations for the coefficients a .

'"' (d =1, . . . , P).
Thus, Eq. (3.21) implies

P N
) ID(bc)

I

( )~ ( d)

c=1 i=0

(b')I+ ) (3.15) b=l, . . . ,P, h=l, . . . ,%+1. (3.22)

(Xb ID
' IgI' )= I Xb '(r)D' "(p,'"(r)dr . (3.16}

According to Eqs. (2.11) and (3.1)—(3.4), the normaliza-
tion (3.12) implies

E~——aO' ' . (3.17)

In other words, the approximate K-matrix elements are
solutions of Eq. (3.13). However, the solutions ao'"' are
not exactly symmetric. Therefore, we shall apply the
symmetrization suggested by Nesbet and Oberoi:

Kcd=T«O +uO{cd) {d(:) (3.18)

The matrix L is Hermitian and positive semidefinite,
and the exact eigenvalue A,

( ' is zero. One can compute a
sequence of the approximate eigenvalues A,

' )(X) (and the
corresponding linear variational parameters) by choosing
finite and increasing values of l)l (N= 1, . . . ,M —3). If
the value of M is fixed, then we obtain a sequence of
monotonically decreasing approximate eigenvalues A,

( )(N)
as the number of the basis functions goI" increases. How-
ever, this procedure involves a large subspace of test func-
tions if we consider practical applications (N «M). In
order to simphfy the calculations, we shall choose

In order to control the numerical results, we shall also cal-
culate the values of ddt, d as defined by

(3.19)

This system of equations can be regarded as an applica-
tion of the method of moments to multichannel scatter-
ing. In the bound-state region, the method of moments
provides an efficient theoretical tool to calculate the ener-

gies and eigenfunctions of many-particle systems. '
Moreover, one ean frequently get fairly useful approxi-
mate solutions of scattering problems by using the simple
equations (3.22). (Numerical results are presented in Refs.
20 and 21.) However, like the Hulthen and Kohn
methods, the method of moments is not necessarily fro: of
anomalies in the scattering region.

We next compare the method of moments with the
multichannel LVM-ST. The method of moments ro-
vides a set of approximate radial wave functions f" (r)
by using Eqs. (3.1)—(3.5)„(3.12), and (3.22). We observe
that, at M =l(l+ I, the measure of the error (3.10) is zero
for the approximate radial wave functions f"d'(r) calcu-
lated by the method of moments. Let us notice, that Eq.
(3.21) can also be satisfied for h = I, . . . , l(i+2, if the to-
tal energy E is a solution of this (artificial} eigenvalue
problem. Therefore, in order to have a useful definition
of the error A,

' ), we identify it by the error functional
(3.10} which involves the components of the deviation
vector 6(~) in a sufficiently large M-dimensional sub-
space of the test functions Xb '(M & %+2).

In Sec. IV, we shall apply the multichannel I.VM-ST to
the simple two-state close-coupling approximation of the
low-energy e -H scattering. The details of this approxi-
mation can be found in the second part of Sec. II. As a
first step, we shall also investigate the results of the static
exchange approximation. Our calculations have been per-
formed by choosing p =10 in Eq. (3.20). For simplicity
we shall use the weighting factors
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Np~ =1(b') (3.23}

In addition, the choice of the nonlinear scale parameters
will be restricted by

etc =~c = Ys '= tz . (3.24)

The restrictions (3.23) and (3.24) are valid for all possible
values of the indices b', h', c, and b

IV. CALCULATIONS AND RESULTS

7.87— 20$ &

A. Static exchange approximation

The system of inhomogeneous linear equations (3.13)
has been solved at many values of the nonlinear scale pa-
rameter a. We first want to illustrate the behavior of the
approximate phase shifts 51 }(¹a)at increasing values
of N, where N refers to the size of the basis set. (Accord-
ing to the notations of this paper, 5(~l and 5(o') are the
L =0 singlet and triplet phase shifts, respectively. } Figure
1 shows our computed results at ki ——0.2 (a.u.). One can
observe a convincing stability of the higher approx-
imations in the region 1.1 &a &4, where the curves
5( )(20;a) and 51 '}(10;u) are almost constant. The con-
vergence of the approximate phase shifts is not necessarily
monotonic at increasing values of N. For example, the
curve 5( 'l(3;a) oscillates around the plateau of the phase
shifts 5( ')(10;a). However, the amplitude of these oscil-
lations is relatively small. (We have obtained similar os-
cillations in the region 0 & a & 1.1 which is not included in
Fig. 1.) Note, that the convergence of the phase shifts
5( '1(¹a ) is much faster than that of the series
5( )(N;a).

Let us consider the singlet phase shifts 5( )(N;a) at
several basis sizes N. Within the region 2.4&a&4 we
find secondary plateaus which disappear in higher ap-
proximations. Since a narrow plateau does not necessarily
imply an optimal convergence of the higher approxima-
tions, it will be instructive to analyze both the conver-
gence of the approximate phase shifts 5( l(N;a) and the
corresponding measures of the error A.'"(¹n)as given by
Eqs. (3.14)—(3.16) and (3.23).

Table I contains the computed values of 5( (N;a) and
A,")(N;a) at ki ——0.2 a.u. A series of calculations has

2.6792

P 26791 —~

(6)
Z6790—

2, 6789—

FIG. 1. Computed phase shifts 5~ ~ vs a for k~ ——0.2 a.u.
The curves are numbered to identify the size of the basis set
denoted by N in Eq. (3.1). (a) and (b) show the phase shifts
5 ~ (¹a)and 5~ 'j(N;a), respectively.

been carried out by setting u= l. 1, 2, and 3. Let us first
consider the approximate phase shift 5( )(N;a) at %=4
and a=3. [Figure 1 shows a secondary plateau of the
curve 5( )(4;a) in the region 2.4&a&3.6.] The compar-
ison of the measures of the error A,")(4;a=3)=2 X 10
and A,

' "(4;a= l. 1)=3.4 X 10 clearly shows the secon-
dary character of the approximation 5( (4;a=3). [At
J(i=4 we accept the approximation 5 )(4;a= l. 1).] A
nice convergence of the singlet phase shifts 5( )(N;a) is
seen at a =2. Moreover, we observe a significant
minimum of the error A,"'(20;a) at a =2.

Similar calculations have been carried out for the triplet
scattering. In this case, the convergence of our results is
excellent in a large region of a. At a =2, for example, the

TABLE I. Computed values of 5 ~(N;a) and A."'(N;a) at several basis sizes N and several values of a. The value of the wave
number ki is fixed at k~ ——0.2 a.u.

2

6
8

10
12
14
16
18
20

5~~~(N;1. 1)

1.860 668 05
1.869 883 03
1.870 16446
1,870 15808
1.870 156 10
1.870 156 12
1.870 15705
1.870 157 65
1.870 157 82
1.870 157 82

k"'(N; 1.1)

1.6~ 10-'
3.4~10-'
3.4X 10-"
8.5~ 10-"
2.0X 10-"
2.8X 10-"
2.3 x10-"

3)( 10—19

5.5 ~ 10-22

2.0g 10-'4

5fl(N'2. 0}

1.999 381 03
1.887 087 92
1.873 608 82
1.870 729 80
1.870 236 16
1.870 16668
1.870 158 58
1.870 157 82
1.870 157 78
1.870 157 78

A,"'(N;2.0)

5.5X 10
4.8X10 '
1.5 X10-'
2.4X10 '
2.4X10-"
1.8X 10-'4
1.1X10 "
5.7Z 10-"
2.4~10-"
8.1~ 10-"

5~~~(N;3.0)

2.674 534 77
1.902 360 88
1.889 833 51
1.880 878 62
1.874 643 06
1.871 761 75
1.870 670 69
1.870 307 53
1.870 19800
1.870 167 68

A,
"'(N' 3.0)

2.7
2.0~ 10-'
2.5~10-'
2.0g 10-'
1.1)& 10
4.3 ~ 10-"
1.4x 10-"
3.7~10-"
8.9g 10-"
1.9~ 10-"
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TABLE II. Computed phase shifts 5~ ~ and 5 '& for k~ ——0.2, 0.5„and 1.0 a.u. Comparison of phase shifts relevant to this work
(LVM-ST). J is Ref. 48, M is Ref. 43, and HS is Ref. 49.

kl ——0.2 a.u.
g[ol j

k l =0.5 a.u. kl ——1.0 a.u.

J
M
HS
LVM-ST

1.870 158
1.870 1578

2.679 15
2.679 148 733 82

1.031
1.030

1.031 498 28

2.070
2.069

2.070066 636

0.543
0.541
0.542 894 6
0.542 89464

1.391
1.389
1.390 52
1.390 519779

computed phase shifts 5{ ')(6;fz) and 5{ ' (20;a) are the
same up to eight digits.

In Table II we present the computed phase shifts
5{ )(S=0,1) for ki —0.2, 0.5, and 1.0 a.u. Our calcula-
tions have been carried out by using the LVM-ST
(%=20). In addition, we show the results calculated by
alternative methods. These calculations have been
presented by John (J), s Moiseiwitsch (M}, s and by
Horacek and Sasakawa (HS).

8. T~o-state close-coupling calculations
mthout exchange

We next turn to the is-2s close-coupling calculations
without exchange, where the direct potential terms
V' '(r) are given by Eqs. (2.22)—(2.24). Since the nonlo-

cal exchange terms IV( ' [see Eqs. (2.9) and (2.25)] are

0.38-

1.16

1.12 -
(g

omitted, me have E~ =K ' =K in this model. By solvaw

ing Eq. (3.13) at P=2, we obtain the approximate reac-
tance matrix elements E,~(N;a) as defined by Eq. (3.18).

In Fig. 2 we present the functions Ei2(¹fz),K»(¹a),
and Ez2(¹a)for several basis sizes N. These functions
have been computed at k i ——1.0 a.u. We observe the con-
vincing stability of the approximate matrix elements
E~(15;fz ) in the region 1. 1 & a & 4. At N =2, . . . , 5, on
the other hand, the curves show some typical oscillations
and secondary plateaus rvhich disappear in higher approx-
imations.

Table III contains the computed values of E,~(N;fz=2}
and A,

( '(N;fz=2) for several basis sizes dV. The wave
number ki is fixed at ki ——1.0 a.u. As a control of the re-
suits, we also present the computed values of the matrix
element dd'tt as defined in . (3.19). Let us mention,
that the measure of the error l ( ff;o) is not directly re-
lated to the approximate reactance matrix element
E~(¹a).[The eigenvalue A( '(N;a) may be regarded as
a measure of the error of the 1th radial wave functionsf' ' (r). ] The contents of Table III show the convincing
convergence properties of the computed matrix elements
E~(N;a=2). The reliability of our zero-order results is
also indicated by the rapid decrease of DE&2(¹fz=2) if
the basis size N increases,

In Table IV we show the computed values of the
is~2s Partial cross sections frIz (mao) for ki ——1.0, 1.2,
1.5, and 2.0 a.u. Our results have been calculated by the
multichannel LVM-ST (%=20). We also show the re-
sults of Smith, Miller, and Mumford (SMM) (Ref. 50) and
Moiseiwitsch (M). 3 The variational linear algebraic pro-
cedures VLA' and VLA of Ref. 43 are indicated by Ml
and M2, respectively.

031 (c )

-0.33

I+ 0/5

FIG. 2. Computed values of the reactance matrix elements
K~{¹a)vs a for k& ——1.0 a.u. The curves are numbered to
identify the size of the basis set denoted by N in Eq. (3.1). {a),
(b), and (c) show, respectively, X)3(X;a), Xf i (X;a), and
Z2q(X;a).

C. Two-state close-coupling calculations
mth exchange

%e now present illustrative 1s-2s close-coupling calcu-
lations arit exchange. In this case, the interaction matrix
U(+' is given by Eqs. (2.8), (2.9), and Eqs. (2.22)—(2.25).
%e shall only consider the I.=0 scattering in the singlet
spin state {$=0). By solving Eq. (3.13) at P=2, we ob-
tain the reactance matrix elements E,d (dV} as defined by
Eq. (3.17). [The symmetric reactance matrix E is defined
by Eq. (3.18).] For simplicity, we next omit the quantum
numbers L. =0, S=O characterizing the matrix elements
Ed(~ )(N). The numerical results have been analyzed along
the lines discussed in the previous part of this section.
Taking into account the requirements (i}, (ii), and (iii) (see
the last part of Sec. I},we next show our results at fz = 1.1.
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TABLE III. Computed values of K~~(¹a),A,'"(¹a),K~2(X;a), MC~~(K;a), K&~(N;a), and k'"(N;a) at several basis sizes X
and a =2. The value of the wave number k ~ is fixed at hi ——1.0 a.u.

2

6

10
12
14
16
18
20

Z»(N;2. 0)

1.105 841 9
1.149060 1

1 ~ 152 503 1

1.152 788 2
1.153001 9
1.1530122
1.153013 8
1.153014 8
1.1530147
1.1530147

A,"'(X;2.0)

2.0x10-'
4.5X 10-'
1.6y 10-'
7 5X10-"
4.5X10-"
9.6x10-"
2.2x10-"
1.1X10 "
1.8x10-"
4.3X 10-"

Zi2(¹2.0)

0.449 167 8

0.382 025 6
0.388 801 9
0.387 371 8
0.3S7 1720
0.387 206 7
0.387 1972
0.387 1968
0.387 1970
0.387 1970

~i2{¹2.0)

5.6X 10-'
3.1~10-'
2.7g10-'

—7.4X10-'
—3.0x 10-'
—7.9g 10-'
—1.7X 10-'
—3.1X10-'
—5.3X 10-
—8.3y10-'

TCp2(N;2. 0)

—0.400 8107
—0.343 261 5
—0.327 970 2
—0.319205 4
—0.318945 0
—0.3188105
—0.318768 5
—0.318769 7
—0.318769 2
—0.3187691

A.
' '(¹2.0)

4.9x 10-'
4.1~ 10-'
4.0X10 '
2.9X 10-'
1.0X 10-"
2.8X 10-"
2.5 y10-I9
3.3 @10-20

8.7g10-"
7.9g10-"

TA&&& IV. Computed partial cross sections a'Iz )(mao) for kl ——1.0, 1.2, 1.5, and 2.0 a.u. Compar-
ison of partial cross sections relevant to this work (LVM-ST). SMM is Ref. 50 and MB (8=1,2) is
Ref. 43.

SMM
M1
M2
LVM-ST

ki ——1.0 a.u.

0.200
0.1997
0.2001
0.1999839

nt", )(~a,')
k, =1.2 a.u.

0.102
0.1018
0.1020
0.102087 3

k) —1.5 a.u.

0.0450
0.044 5

0.0449
0.045 032

k~ ——2.0 a.u.

0.0154
0,0147
0.015 2
0.01545

TABLE V, Computed values of the matrix elements K~(N) at several basis sizes E. The value of the wave number ki is fixed by
k& ——1.21 a,u. Comparison of K-matrix elements relevant to this work (LVM-ST). The results of Ref. 31 are indicated by KA,
MNA, and VLS A (A =0, 1}. A =0 and A =1 refer to zero-order and first-order results, respectively.

K))(5)
Ki2(5)
K2)(5)
K2g(5)
Ki i(10)
K»(1O)
K„(10)
K22(10)
K»(15)
K)~(15)
Kg)(15)
K2g(15)
Kg g(20)
K)p(20)
Kg)(20)
K22{20)

0.7706
0.6130
0.6758

—1.7581
0.3602
0.5391
0.6069

—1.2621
0.4452
0.5492
0.5668

—1.0426

0.3463
0.5377
0.5377

—1.2058
0.4386
0.5632
0.5632

—1.1449
0.4365
0.5631
0.5631

—1.1214

MNO

0.8364
0.7006
0.6154

—0.9920
0.4453
0.5598
0.5727

—1.2350
0.4488
0.5540
0.5441

—1.0725

MN1

0.3412
0.5461
0.5461

—1.1175
0.4369
0.5636
0.5636

1AAA

0.4365
0.5632
0.5632

—1.1224

VLSO

0.62S6
0.6044
0.5159

—1.1491
0.4347
0.5564
0.5628

—1.1361
0.4363
0.5642
0.5638

—1.1258

VLS1

0.4881
0.6240
0.6240

—1.0795
0.4382
0.5636
0.5636

—1.1313
0.4366
0.5632
0.5632

—1.1225

LVM-ST

0.4128
0.5834
0.5672

—1.1195
0.4360
0.5642
0.5644

—1.1244
0.4365
0.5636
0.5637

—1.1235
0.4365
0.5636
0.5636

—1.1235
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TABLE VI. Computed values of the matrix elements E~(N) at several basis sizes ¹ The value of the ~ave number k
&

is fixed by
k& ——2.25 a.u. Comparison of K-matrix elements relevant to this vvork {LVM-ST). The results of Ref. 31 are indicated by KA,
MNA, and VLSA (A =0, 1). A =0 and A =1 refer to zero-order and first-order results, respectively.

K0 MNO LVM-ST

I( I )(5)
I:12{5)
Eg)(5)
Egg(5)
X)({10)
Eq2(10)
E2){10)
EC22(10)

j:»(15)
E)g{15)
X»(15)
Eg2(15)
Z»(20)
E)2(20)
j:2)(20)
E22(20)

0.6255
1.2506
1.2631

—4.3952
0.3088
1.1692
i.1885

—4.1034
0.2928
1.4821
1.0957

—5.1025

0.2045
1.1058
1.1058

—3.8049
0.1758
1.3056
1.3056

—4.5650
0.2125
1.1963
1.1963

—4.1766

0.4705
1.2345
1.1700

—4.2980
0.1735
1.6942
1.5782

—5.5358
0.1101
1.6210
1.5462

—5,4116

0.1884
1.0988
1.0988

—3.8058
0.2272
1.1642
1.1642

—4.1783
0.2253
1.1673
1.1673

—4.1131

0.3202
1.1595
1.0363

—4.0496
0.1864
1.2472
1.2557

—4.3479
0.1956
1.2522
1.2472

—4.3407

0.1562
1.1593
1.1593

—3.1718
0.2275
1.2414
1.2414

—4.4093
0.2014
1.2365
1.2365

—4.3033

0.1518
1.4344
1.4532

—4.8747
0.1969
1.2397
1.2475

—4.3163
0.1988
1.2410
1.2411

—4,3122
0.1986
1.2417
1.2417

—4.3144

Table V contains the computed values of the matrix ele-
ments E~(iV) for several basis sizes N. The wave number
ki is fixed by k i =1.21 a.u. In addition, we show the re-
sults of Abdallah and Truhlar. i' These calculations have
been carried out by using the Kohn method, the
minimum norm method, s' and a modified least-squares
method ' which are denoted by KA, MNA, and VLSA,
respectively (A =0,1). Here A =0 refers to the zero-order
results, and A =1 indicates the first-order results which
have been calculated by using the Kohn variational ex-
pression. ' (The results of the Rubinow method are omit-
ted. ) In Table VI we present similar results at ki =2.25
a.u.

Of course, the multichannel LVM-ST and the VLS
methods are closely related. The essential difference is the
choice of the test-function space. The VLS methods
include the oscillatory functions of nonvanishing asymp-
totic amplitudes [see Eq. (3.4)] into the space of the test
functions X~'. Therefore, both the zero-order and the
first-order VLS calculations involve free-free matrix ele-
ments too. On the other hand, the test-function space of
the multichannel LVM-ST is spanned by a set of square-
integrable (Hilbert-space) basis functions Xi, '. Conse-
quently, our method involves only bound-bound and
bound-free matrix elements (Xi,

'
~

D ' '
~ p ).

property of the functional (3.10} is attractive from a
theoretical point of view.

The contents of Tables V and VI show a remarkable
convergence of the zero-order E-matrix elements calculat-
ed by the multichannel LVM-ST. Note that our zero-
order matrix elements J,z(20} and E2i(20) are the same
up to four or five digits. Thus, we are motivated to define
the approximations of the symmetric reactance matrix X
by the simple equation (3.18). No anomalies have been
encountered in our calculations.

Let us mention that Abdallah and Truhlar ' employ an
exponential basis set in the subspace of the square-
integrable basis functions. The good convergence of our

results may be (partly) connected with the use of Slater-
type basis functions as given by Eqs. (3.5), (3.8), and
(3.24).

V. COMMENTS

The results of this paper indicate that the multichannel
LVM-ST offers an efficient theoretical tool to solve
scattering problems. Of course, the general theoretical
framework of the calculation must be carefully selected.
Some principal difficulties of the naive close-coupling
procedure may be avoided by using powerful alternative
expansions. (For reviews and references, see, e.g., Refs.
13—15.)

The calculations of the present work have been carried

out by using the standard form of the operator D' ' as
given by Eq. (2.5). One may consider other choices

D '+'~D 7+v& which correspond to various kinds of tradi-
tional variational methods (TVM) along the lines dis-

cussed in Ref. 17, p. 158. All these operators D TvM can
be inserted in the error functional which is defined by Eq.
(3.10). By carrying out the variation, we obtain the sys-
tem of inhomogeneous linear equations corresponding to
the choice of the operator D TvM [see Eqs. (3.13)—(3.16)].
The calculation of the matrix elements

( X'i~D Tv~My,") can be greatly simplified by using
convenient square-integrable (Hilbert-space) test functions
g(b)

In summary, ~e suggest the variational method of Sec.
III with a judicious choice of the operator D TvM. The re-
sults must satisfy the requirements (i), (ii), and (iii) which
are imposed in the last part of Sec. I. To demonstrate the
«i»ty of our method, we calculated the solutions of some
simple scattering problems. In these cases, impressive re-
sults have been obtained by using the standard form of the
operator D '+' as given by Eqs. (2.5)—(2.9).
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