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A nonlinear response theory of a quantum-mechanical system undergoing arbitrary relaxation and
interacting with fields, some of which may be strong enough to saturate optical transitions, is

developed. Explicit expressions for second-order and third-order susceptibilities are obtained. If the
fields are weak, then these expressions show the existence of additional resonant contributions to g'"'
which arise due to inelastic collisions. Various applications of these g'"'s to modulation spectros-

copy, four-wave mixing, and pump-probe experiments are discussed. The general structure suggests
how the additional resonances can be used to determine inelastic rates in a Doppler-broadened medi-

um. For saturating fields, P'"'s become dependent on the intensity of such fields and can be formal-

ly obtained from weak-field 7'"'s, provided proper identification of unperturbed eigenfunctions,
eigenvalues, and relaxation times is made. Such intensity-dependent g'"'s have resonant denomina-

tors which lead to resonances at Rabi frequencies and submultiples of these frequencies, the widths

of which are also dependent on the strength of the field. In the special cases intensity-dependent P"'
agrees with the work of Cohen-Tannoudji and co-workers.

I. INTRODUCTION

The third-order nonlinear susceptibility X' '(tot, co2 to3)
is the key for the understanding of a very wide class of
nonlinear phenomena' 3 such as four-wave mixing, two-
photon absorption, Raman scattering, etc. Expressions
for X'3' in various special cases are well known. Some
years back, Bloembergen et al. discussed the unusual re-
sults that one can get in four-wave mixing if the relaxa-
tion effects are properly taken into account in the calcula-
tion of third-order susceptibility. The general expres-
sions ' presented by Bloembergen et al. and by Flytzanis
include the relaxation effects arising from phase-changing
collisions. However, they ignore the effect of state-
changing or inelastic collisions. Inelastic collisions are
known to be important in many cases such as in ruby.
For example, the coherence between any two levels can be
significantly affected by such collisions. It is desirable to
have the general structure of g' ' and other nonlinear sus-
ceptibilities which would be valid for a system undergoing
both elastic and inelastic collisions.

It is also of considerable interest to find the structure of
the intensity-dependent susceptibilities for cases when
some of the optical transitions are strongly pumped. The
susceptibilities will then probe the structure of a strongly
pumped system. Such intensity-dependent susceptibilities
can be used for studying saturation effects in a variety of
situations such as in four-wave mixing.

The purpose of this paper is twofold: (a) to develop the

nonlinear-response theory assuming a general relaxation
model so that population-changing collisions can be ac-
counted for and (b) to obtain intensity-dependent non-
linear susceptibilities. We will in fact show that the ex-
pressions for susceptibilities obtained for the general re-
laxation model can be used to obtain intensity-dependent
susceptibilities if the dressed-atom approximations is
made and if proper identification of various frequencies
and eigenfunctions is made.

The population-changing collisions lead to additional
terms in the susceptibilities which become resonant when
certain combinations of applied frequencies vanish. The
width of these additional resonances is determined by the
inelastic collisions. The organization of this paper is as
follows. In Sec. II, we present a I.iouville operator formu-
lation of the nonlinear-response theory for a system un-
dergoing arbitrary relaxation. Such a formulation is appl-
icable to classical and quantum, as well as to stochastic
systems. A compact form for the nth-order susceptibility
is given. In Sec. III, we show how the intensity-dependent
susceptibilities for a strongly pumped system are to be
computed and how the formulation and results of Sec. II
can be used to get such susceptibilities. Subsequent sec-
tions examine 7' ",7' ', and X' '.

We present complete symmetrized results for g' ' and
X' '. The structure of the additional terms in X' ' and X' '

is discussed. Such terms are important in the determina-
tion of inelastic collisional parameters. Explicit results
for X' ' and X' ' for two-level and three-level systems are
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given. Characteristics of the intensity-dependent suscepti-
bilities are also presented. Various applications of the

general form of X's are discussed.

tors in the original Hilbert space) in the Liouville space of
the operator Lo. Another set of eigenfunctions of Lo can
be constructed using the projectors pkk

——
~

k & (k
~

. Since

II. LIOUVILLE OPERATOR FORMULATION
OF THE NONLINEAR-RESPONSE THEORY

FOR A SYSTEM UNDERGOING
ARBITRARY RELAXATION

Lot4k =g rtk(hatt A—k)
1~k

and hence we write the eigenvalue problem as

(2.7)

Consider a quantum-mechanical system undergoing re-
laxation and interacting with external fields. The
density-matrix equation for such a system can be written
as

p =Lop i [Hf—(t),p], (2.1)

where Hf(t) describes the effect of external fields which
in general are time dependent. Before the application of
the fields, the system is in an equilibrium state p'o' which
is an eigenstate of Lo,

Lokk ~k0k &

'4 QPklflt& All g vtkkk .
I k

(2.8)

(2.9)

Skt =)Mtk, (S ')kt ——vtk . (2.10)

If g'" are the left eigenfunctions (row vector) of R, then

The eigenvalues A,k and the expansion coefficients p, v can
be obtained from the solution of the eigenvalue problem

S 'RS =A, Rkt 1kt(——k~l), Rkk = —Q Yik &

1~k

I.op' =O&p) (2.2) I
+kl ~k ~ (2.11)

The Liouville operator Lp has a simple structure
—i [Ho ] if the system is initially in thermal equihbrium.
Here we incorporate the effect of relaxation in a very gen-
eral manner and hence we use the following structure for
Lp.

(Lop);i=( ito,jp—;, I,)pj)(—1 6;J)—
+&;, g r;kPkk rk;P— (2.3)

k

Here the frequencies to;t are in general shifted due to the
relaxation effects. The quantities y;i give the inelastic
rates for making a transition from the state

~ j & to
~

i &.

Off-diagonal elements of the density matrix decay at the
rate I';~. These decay rates also include contributions I f~"

from phase-changing collisions,

(2 4)

This model of relaxation is different from the most
popularly used model ' with puniping terms I,;,

( Lop )tj =—t 8ttptj —I
&tpit +A t5' V/& J (2.5)

Lofkt = i AktAt-
4kt= Ik&&ll, Akt=~kt tI'kt, k&l .—

(2.6)

It must be borne in mind that spontaneous emission, in
general, corresponds to the model (2.3) with y;J=0 if
E~ &EJ. The general formulation presented below also al-
lows the possibility of treating the nonlinear response of
systems in general nonequilibrium steady states, since the
eigenstate of Lo corresponding to zero eigenvalue need
not be the thermal equilibrium state.

In the usual calculations of the nonlinear susceptibilities
the eigenfunctions and eigenvalues of the Hamiltonian of
the system are quite useful. Similarly, for the present
problem eigenfunctions of Lo will be quite important.
Hence we give a brief discussion of the eigenfunctions of
Lo. From (2.3) it is clear that

QRkr =o
k

(2.13)

Having gotten the eigenfunctions of Lo, it is possible to
obtain the structure off(Lo)Q where f denotes a function
of Lo and Q is any arbitrary operator. It is clear that

f(Lo)Q= g Qktf(Lo) I
k & &i

I +Q Qkkf(Lo) I
k &&k

I

k~1 k

which on using (2.6) and (2.9) reduces to

f(Lo )Q =g Qktf( —i Akt )
l

k & ( l
I +g Qkkvktf(Lo )(()t

k~l k, 1

=g Qktf( iAkt) —
f
k &(l

f +QQkkvktf(&t)pt .
k~l k, l

(2.14)

The contribution of the zero eigenvalue to (2.14) will be

g Qkk+k 'f(0)4'o=&'" g Qkkf(0)(t'0 &

k k

where (2.12) has been used. Thus the zero eigenvalue will
lead to a contribution proportional to TrQ. Thus if Q is
an operator whose trace is zero, then we get the result

f(Lo)Q =+ Qktf( —iAkt)
I
k & &i

I + g Qkkvklf(4)kt .

(2.15)

This result will be important in the evaluation of the non-
linear response which we will new calculate. On writing

p= g p'"'(t), Lf(t)= —i[Hf(t), ]
n=0

(2.16)

where Xk denotes the kth component of the eigenfunction
Xt. The eigenfunction X' ' corresponding to zero eigen-
value has the simple structure

(2.12)

This follows from the property of the R matrix

Thus gkt are the eigenfunctions (which are in fact opera- in Eq. (2.1), standard perturbative methods show that
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L,o[' —'i) Lo(t) —t~) ~o~ ~n —1 fn ) ~o~n (0)p'"'(t)= dk) dri. e ' 'Lf(r))e ' ' 'Lf(t, ) . e ' " ' "Lf(t„)e '"p' '

which can be further reduced to
S —fl

p(n)(t) dr dt . . . 0 (L (t r )
0 ) 2 . . . 0 n —) n L (r )

On (0)
0 00 00

Equation (2.18) can be further simplified by writing

Hf(t) = f dcoe '"'Hf(co),

+on
Lf(t)= f dcoe ' 'Lf(co)

(2.17)

(2.18)

(2.19)

and by using (2.2) (e ' p' '=0). We then find the result

p(n){r)
+ CO —lf(oli+N2+ ' +N+ )

dco dco e1 ll

X g co; —iLo 'Lf(co)) g co; iL0—Lf (cog) (co„iLp) —'Lf (con )p (2.20)

In deriving (2.20) we have used the fact that eigenvalues of Lc have a negative real part. The only complication which
can arise is from the zero eigenvalue. However, we show that the zero eigenvalue of L0 does not contribute to (2.20).
The structure of the eigenvalues of the Liouville operator Lc has already been examined. Note that the operator LfB
has the form i[HI, B—] and hence TrLfB =0. Thus the condition for the validity of (2.15) is satisfied and it then fol-
lows from the structure of (2.20) that the zero eigenvalue of Lo will not contribute to (2.20).

Using (2.20) the nth-order nonlinear response for the physical variable Q becomes

Q(n)(r) Tr(p(n)Q)

2K f d I co„ I exp i t g co;— Tr Q g co; —iL0

XLf(co)) g co; iL0-
f=2

Lf{coi) Lf (co„)p' {2.21)

If Hf is linear in external fields, i.e.,

Hf(co)= g f (co)A— (2.22)

then
5

Q(n)(i) y f2K f d(co„]exp it +co; —XI) (co, , . . . , „)f (,) . f (co„), (2.23)

where

Ln g co; iLo—
l =2

Xg, (coi, . . . ,co„)=, sym Tr Q g co; iL0-(n) ( —&)"

i=1

—1

I o ~ 0 L p[
a& a„

L = —i[A', ] . (2.24)

(2.25)

Here "sym" has the usual meaning, namely that the sum on the right-hand side has to be symmetrized over all the per-
mutations of the indices (co;,cz; ).

For the dipole Hamiltonian P'n=d(~), fan=En, where d' ' is the ath component of the dipole moment operator and
E is the external electric field. Choosing for Q the dipole moment operator, the induced polarization becomes

lg

1 + Oo

P ( )=g . . dIco„Iexp it +co; X'"', —(coi, . . . , co„)E,(co)) . . E (co„)
I~

+ cef dcoP (co)e (2.26)
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which implies that the Fourier component of the induced polarization is
'n —1

P~(co) =g 1

2m. J deco„I5 co —+cot X~~, ~ (cubi, . . . , co„)E~,(coi) . . F. (c0„) . (2.27)

X«, ~ ( co~, . . . , co„)=X sym Tr d g co; iL—
O

i=1 l =2

The nonlinear susceptibility X~ (coi, . . . , co„) is given by

—1 n

L~ g ctii —iL p L, . . . a)„—iLo

(2.28)

where we have introduced the density of atoms to get the
polarization per unit volume. The above expression can
be simplified by using the explicit forms (2.6) and (2.8) of
the eigenfunctions and eigenvalues of the I.iouville opera-
tor Lo. In subsequent sections we consider the explicit
form of (2.28) for various values of n The. form (2.28) is
quite useful in deriving sum rules ' for the nonlinear op-
tical susceptibilities which can be obtained by writing

i [Ho, p—] i [ V—(t)+F(t),p]+Ltt p, (3.4)

where Ltt is the relaxation part of Lo=Ltt —i [—Ho, ], and
using the canonical transformation, (3.4) transforms into

The weak-fields part F(t) now will have different frequen-
cy dependence than that of F(t). Rewriting (2.1) as

gc0; iLO —' —g (iLO)". . . (2.29)
c0; n+1

where

= —i [h,p] i [F(t),p]—+Ltt p, (3.5)

III. NONLINEAR-RESPONSE THEORY
WITH SATURATING FIELDS

h =Ho+contribution from the terms (U„U, ') .

(3.6)

Our analysis of Sec. II was based on perturbation
theory in powers of the applied fields. Such a perturba-
tive analysis is generally valid if the typical detunings
from atomic resonances are far bigger than the typical
Rabi frequencies (-d E/irt) for the optical transitions. If
the fields are tuned close to resonance and if the Rabi fre-
quencies are comparable to the relaxation rates, then one
has to go beyond the simple perturbative approach. The
fields which are strong are to be treated to all orders.
Remaining fields can still be considered perturbatively.
Thus nth order means order with respect to the weak
fields. In this section we develop nonlinear-response
theory when some of the applied fields are strong. We
will work in the dressed-state basis and make use of the
dressed-atom approximation.

We write the total Hamiltonian of the system interact-
ing with external fields as

H =Ho+ V(t)+F(t), (3.1)

U„'(t)[H, + V(t)]U, (t)=H, , (3.2)

where Ho is static. The choice of U, depends on the
structure of the energy levels and the external strong
fields. Under the canonical transformation the part F(t)
transforms to

F(t)=U, (t)F(t)U, (t) . (3.3)

where V(t) [F(t)] represents the interaction with strong
[weak] fields. Since the strong fields are used generally in
resonant situations, one can make a rotating-wave approx-
imation as far as V(t) is concerned. It is then possible to
make a canonical transformation such that

We will now work in a representation in which h is diago-
nal,

S 'hS=P, h IP;)=P; IP;) . (3.7)

The eigenstates
I p;) and the eigenvalues p; depend on

the strong external fields. These are essentially the
dressed states of the system. Note that the conventional
dressed-state description uses the quantized version of
the external fields whereas we have treated the fields clas-
sicaBy." The eigenstates

I p; ) are the superposition of
the eigenstates of Ho with expansion coefficients that de-
pend on the strength of the strong field. We now
transform (3.5) to the basis in which h is diagonal. On
defining

e=S iPS, F(t) =S 'F(t)S,

Eq. (3.5) leads to

c)

Bt
= —i[P,e]—i [F(t),p]+S '[L„(SeS ')]S .

(3.8)

(3.9)

=(LD )~j . (3.10)

Her e Qlj and p;J' are the new relaxation parameters which
are field dependent. Thus in the dressed-atom approxima-
tion (3.9) reduces to

The relaxation terms now acquire a much more cornpli-
cated form. The dressed-atom approximation " consists
of using

«P IS '[Ljc(SeS ')]S'IPj&

cAj e j(1 b'j )+8j'yP kp kk Pke"''
k
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i—[P e] i—[F(t»e]+L e . (3.11)
Thus nth-order nonlinear response of the observable Q
will be given by (2.21) with Q~Q(t), Lo~LD —i[P, ],
and

We have thus proved that if we work in the dressed-state
basis and if we use the dressed-atom approximation, then
the basic dynamical equation (3.11) has the same structure
as (2.1) which was used in perturbative calculations. Thus
the density matrix p to nth order in terms of F(t) can be
obtained from (2.20). The response of the observable Q
can be written as

l +co—i[F(t), ]= f defoe '"'Lf(co) . (3.13)

It should be borne in mind that the matrix elements of Lf
depend on the strength of the strong external fields. Note
that if we write

Q( t) =Tr[p(t}Q]=Tr[ U„(t)p(t) U, '(t)Q]

=Tr[p(t)Q(t)] =Tr[S 'p(t)Q(t)S]
Q(t)=+Q, e ', F(to)= g f—(oi)P' (3.14)

=Tr[to(t)Q(t)] . (3.12)
I

then the nonlinear response follows from (2.23) and (2.24):

Q( )(t)
21r

n XP —it COa + ~i a& 1 ' '
u n +a al '''+n (3.15)

where

(coi, . . . , Co~ ) =(—I) syin Tr Qg +cot —ILo
' —1 8

L ~ g ci)t —/L o
l =2

L~ L~ po, L~ = i[A~, —] .

(3.16)

The nth-order susceptibility (3.16) is intensity dependent
because the new Liouville operators Lo and L [Eq.
(3.13)] depend on the strength of the saturating fields.
Thus we have this remarkable result: Intensity-dependent
susceptibilities can be obtained from those derived for
weak fields if the (1} unperturbed eigenstates and eigen-
values are replaced by the dressed states and dressed ener-

gies, (2) relaxation parameters I'kt, ykt are replaced by
field-dependent parameters q,j,p,j, and (3) transformation
(3.14) is kept in view. It should be remembered that the
frequencies coi,co2, . . . in (3.15) are not the frequencies of
the weak external field but that these involve the com-
binations of the weak-field and strong-field frequencies
because of the transformation (3.3).

In order to understand the abstract formulation given
above consider the interaction of a two-level system with
two external fields of frequencies oii and co2 and wave vec-
tors ki and k2. We assume that the field t'ai is strong and
that co2 is weak. Then various parts of the Hamiltonian
are

&o=

Q2
P + +G2

4

' 1/2

—= +Po ~=oio —~i

N pN
S

L

IA&=
N pN

X (1+p, }=1, p= ——Po
2

Using (3.18) we see that

[F(t)] tt=gS i'S2tte

—],
—i[co)—cu2)t —ik2 r

+gSa2 S&Pe 0

The induced polarization P(t) will be

P(t)=dTr[p(
I

1 )(2
I
+

I
2)(1

I )]

l

The matrix h is easily diagonalized with the results

(3.19)

(3.20)

(3.21)

V(t)=G(
I
1)(2le ' '+c.c.),

F(t)=g(
I
1)(2 le

' '+c.c. ) .

(3.17)

The phase factor k~.r can be absorbed in the definition of
the state

I
1) with the understanding that k2 will now

stand for k2 —k&. The canonical transformation leads to

(
I

1 && 1
I

—12&&21)+«
I

1 &&21+12&&1
I »

(3.18)
F(t)=g(

I
1)(2le ' ' ' +C.C. ) .

which on restoring phase factors and using the canonical
transformations, etc., becomes

P(t}=de ' ' g S~&'S2tt[e(t)]tt +cc.
a,P

(3.22)

=&'(r ~'+r +2I'"I '»
p, =N (y, +y, 2p +2I ~ p ) .

(3.23)

The relaxation terms (3.10) can-be calculated by using
(3.19) and these are found to be (cf. Ref. 6)

qi2 ——X [—,'(y, 2+y2, )(1+4P +P )+I "(1+@,)],
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(p)/4=+(U„S)i (/o) (S 'U, ) 4, (3.24)

where we have used the fact ((o) //
——0 if a&P. The popu-

lation distribution in the dressed-state basis depends on

p// s which in turn depend on the intensities of the various
fields. Note that various energy offset factors like
co,/

—co are contained in p;/'s and the matrix S.

Multilevel systems can be dealt with in an analogous
manner. The equations for p for optical double resonance
and Raman scattering can be found in Ref. 11.

Finally, note that the zeroth-order solution itself can be
used to describe nonlinear phenomena in saturating fields.
For example, consider the case of triple resonance where
the system can go froin the state

~

1 & to
~

4& via the suc-
cessive absorption of resonant photons of frequencies

m~,co2,m3, j..e.,
et)

~ 6)2 AP3

I2& I3& 14&

Each of these fields may be strong. The induced polariza-
tion at co, +co&+ co& (d /4&0) will be related to the
density-matrix element p]4. Thus generation' at
coi +cog +co3 in presence of strong fields can be described

by pi4 which in terms of the dressed-state elements will be

where pk's are the energies of the dressed states, qk/ is the
intensity-dependent relaxation coefficient of the off-
diagonal element of p in the dressed-state basis. For the
special case of a two-level system driven by a strong field
and by a weak field, the induced polarization can be ob-
tained from (3.22). On combining (3.20) and (3.22) we
find induced polarization to have contributions at coi and
at 2coi —co&. The latter is just the four-wave-mixing con-
tribution with saturation accounted for. We write polari-
zation as

P(t) =de ' '
p(co&)

—i(2'& —cd)t+i(2k& —k2) r
+de p (2coi —co2) +C.C.

(4.5)

p(co2) = gS/i "SikgSk i S2/[ —(p )kk+((o' ')0]
k~l

+ [(co2 col)+/qk/ Pk+0/1 (4.6)

p(2col co2) g S/1 SikgSk2 Sl/[ (Q )kk +(p }//]
k~1

Explicit expressions for p(co/) and p(2coi —co2) are found
to be (cf. Refs. 6 and 13)

IV. FIRST-ORDER RESPONSE—EFFECTS
OF DRESSING THE ATOMIC STATES

X [(co/ co2)+/qk/ Pk+P/] (4.7)

We use the general structure (2.28) to examine the ef-
fect of damping on the linear-response function

X"//'(co)= —Trjd'(co —iLO) '[d~ p'0']] . (4.1)

X"//(co) =y d/kdgj(p'kk p// ')( +—/ I k/
— k/)

k~1

(4.2)

Expression (4.1) can be simplified by using (2.15) and the
property pk/'=pkk'5k/. Calculations show that

These have resonances at coi —co2 ——+2PO [Po defined by
(3.19)] with a width q/2. Note that the resonance at Rabi
frequency in nondegenerate four-wave mixing are now un-

derstood. The contribution (4.7) can also be used for
studying the transfer of modulation' from a probe beam
to a saturating beam. For this purpose assume that the
probe beam has components co2,~2+0. The total induced
polarization will be obtained by summing over the contri-
butions obtained from each probe frequency. For the spe-
cial case coi ——co2, the modulation transfer will be peaked'
at 0=+2po.

The first-order response function has the usual form but
the frequency cok/ is replaced by the complex frequency

k&~uk& —i Fk (4.3}

Expression (4.2) also holds for systems with permanent di-

pole moments, although such terms do not contribute to
the linear-response function. X'" is thus essentially in-
dependent of the model of relaxation as it is determined
from the relaxation of off-diagonal elements of the densi-

ty matrix. Inelastic collisional rates are included in I k~.
We next comment on the intensity-dependent X for the

case when some of the energy levels of the system are
dressed by a strong external field. The linear response
with respect to another weak field will probe the dressing
of the states of the system. In place of (4.2) we will get
from (3.16) the result

X,'"(co/) =Q(Q, )/k(S )k/[(Lo"')kk —((o"')//]
k~1

V. SECOND-ORDER RESPONSE

X~p„(co„co2)=—sym Tr(d (co, +cop —iLO)
2

l(~2 —/Lo) '[d', po]]])

which on using (2.15) reduces to

X~~(co/, co2)
(2)

syiil g (co2 —Ak/) dto[(p )// (p )kk]
k~l

(5.1)

We calculate the explicit form of the second-order
response function X' '. Here the model for relaxation can
make substantial difference in the structure. From (2.28),
the second-order response function X' ' is

X (coi+/'qk/ Pk+P/)—(4.4} &&Trl(d (~/+~2 /Lo} '[d~
I

& & &i
I
]—]
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We will now work out (5.2} in detail so that the procedure
becomes clear. The commutator in (5.2) can be written as

[d~, ~k)&l []=gd~k [m)&l
~

—gdI' ~k)&m [ (5.3)

which has both diagonal and off-diagonal elements. The
action of (co~+co2 iLo) ' is rather simple. On separat-
ing out the diagonal and off-diagonal elements in (5.3) we
can simphfy (5.2) to

& py(~1 ~2) = sym y(~2 A—kl } 4I[(P }ll (p—}kk]
k~1

y dlllkdlill(~1+~2 Ainl } y drmdnlk(~1+~2 Aklll }
l~m m~k

+dPkTr[d (1+~2 iLo) '{
I

1 &&11 —
I
k &&k

I }1 (5.4)

The remaining terms in {5.4) can be simplified using (2.15}. One can write

(co iLo) —'
~

1 ) &1
~

=g ~ q ) & q ~
Bk (~),

Bg(co)—= g v(p(co —lAp ) ppq
P

A, ~0

(5.5)

where p's and v's are defined by (2.9). For the decay model which assumes that a population from each level leaks out of
the system at the rate I'kk, we will have a much simpler result

(co iLo) '[1—)&1[ =(a)+iI g) '(l)&1[

which amounts to using the replacement

Blq()~~lq(~+idyll } ~l= I II .

In view of this it is useful to introduce an auxiliary function

Cq~(co) Bq~(co) 5qI(co+i 1 0)

(5.6)

(5.7)

(5.8}

so that Cq1~0 for the simple relaxation model (2.5). We next simplify (5.4) by adding and subtracting terms like
d kd (ro~+coq —A )

' so that the awkward restrictions on summations can be removed. Then on using (5.8), we get
the result

&"p (~i ~2) = sym g—(~2 Aki) '4—i[(p"'bi (p"')kk]—
k, l

Xd~k"~~(~~+~2 A~~} "~~d~k(~~+~~

+dgd [ I (~1+~2) Ck (~1+~2)l {5.9)

1~P +
( AJ, e))(Ak; ——a)p ) (A,J cop )(A;k ri) 2}——

(2) N [p]
X&« 'd~ kdkidj, . '

i,j,k

~VP 131 ~
{Ajk —cop)(AJ, —co2) (Ajk —cop)(Ag —coz)

We now give the complete symmetrized form of X'~'. We adopt the notation of Bloetnbergen et al. for writing the
product of dipole matrix elements: pap will stand for dtk dkj dj~. The symmetrized form is

+dtk dg djj.
ik ~1

[Ckj(a)p) —CJ(cop)]
I

&ki —~2

GP& =CO~+A)2,
N2

(5.10)



1824 M. SANJAY KUMAR AND G. S. AGARWAL 33

where ( }~( ) indicates a permutation, interchanging the specified indices. Our expression (5.10) includes contributions
from both elastic and inelastic collisions. The terms involving C's are new. If we let C~O, then we recover the result of
Bloembergen et al. %'e next look at some applications.

In the special case of a two-level system, the eigenvalues A, can be calculated explicitly and we can get the following re-
sult for X(2':

(21 (ol (ol At a a d, zdz, d 12d21
P p P

+1 p(oil (oz}=(P» Pzz }
2

'(dzz —dli } +
A 1 2 c—op A

1 2
—coz A 2 1

—oi A 2 1
—olz

d22 d 11+.i(r lz+)'zl }+~p
dadP

A~2 —co& A2, —az
+ ~, 2 (5.11)

which is obviously nonzero if d»&dzz&0. In addition to
various resonances at co~2 ——~~, co2, co~, etc., the second-
order susceptibility also has a resonance at col+oiz ——0.
This resonance has a width which is determined by the in-
elastic collisions in the system. Thus information on the
inelastic rates can be obtained from the structure of the
resonance at o31+o32——0. Our X' ' will be useful, for ex-
ample, in studying the parametric fluorescence in a medi-
um when collisional relaxation effects are important.

Application of second-order response
to laser-excited fluorescence

The second-order response of other system variables is
also of great interest. For example, fiuorescence studies
under laser excitation essentially require the knowledge of
the populations of various excited states to second order
in the external field. Using the formulation of Sec. II, the
population N~ of the ith level in steady state will be

N~ =g e M py(oj1, o32)Ep(o31 )Ey(o32), (5.12)

where Mp'y(col, oiz) can be obtained from (5.9) if we re-
place d by the operator

~

i ) (i
~

. Thus the second-order
susceptibilities give not only the coherent polarization but
also can be used to get populations and hence the fluores-
cence. In particular one can use these to get the results
for the modulation spo:troscopy. For example, the modu-
lated fiuorescence at Q will be determined by

Mp'„(oi+Q, —oi) Mp'„( —(oi —Q) co) .

From (5.10}or (5.11) it is clear that the inelastic collision
terms resonate at 0=0 with a width that is determined by
inelastic collisions. Other terms resonate when co+0
equals the atomic frequencies oikj. Thus for the off-

I

resonant case, the peak at Q=O can be used to determine
the inelastic collisional rates. In particular if the system is
Doppler broadened, then in the Doppler limit, the reso-
nance at Q=O will dominate as it is unaffected by
Doppler broadening whereas other resonances o3+Q =tiki
will lead to background contributions and hence the in-
elastic rates can be obtained from the resonance at zero
modulation frequency. This general result is in agreement
with the earlier calculations'5 that showed that Tl can be
determined for a Doppler-broadened two-level system by
doing modulation spectroscopy.

The second-order response for the case when some of
the energy levels are dressed by a strong radiation field
can be obtained from (5.10) or from (5.11) by using the
general principle of Sec. III.

UI. EFFECTS OF ELASTIC
AND INELASTIC COLLISICQCS

ON THIRD-ORDER NONLINEAR RESPONSE

In this section we consider the general structure of
third-order nonlinear susceptibilities which describe a very
large number of physical phenomena such as Raman
scattering and four-wave mixing. The effects of inelastic
collisions are expected to be quite significant here. The
third-order susceptibility can be obtained from (2.28) by
the repeated application of (2.15) and (5.5}. The calcula-
tions are quite lengthy and we quote the final result in the
symmetrized form:

(3)
XinnPy(O31, O32, Ctji )

(3)

6 [B(naPy(Oil~2&O33 }+~paPy(O31&~2~~3}

+Di py(o3»o3»o33}1

Here B„' 'p (col, o32,o33) is given by

(3)Bpapy(oil&o12~a13}

(0)= g Pii dindnkdkjdji''
l, s, k,J

~13}'j
( cop +Aij )(A;„——

col�

)(A;k —co( —(02)

~j I3}'

Akn ~p (Aki ~2 ~3}(Aji ~3} (Ajn ~1 ~3}(Aji ~3} (Ajn ~1 ~3}(Ain ~1}
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A 'k 6) ( A ' CD i CD3 )(A —iDi ) ( Aik —iDi —iD2 )(A;„—co i ) ( A,„i—Di i—D3 )(Aji iD3 )

+terms obtained by using permutations

P P i2 y P y i2 y ~ P y P
~1 2 3 1 3 2 2 1 3 2 3 1 ~3 0 1 2 3 2 1 (6 2)

Other contributions C' ' and D' ' are given by

(3)
Ciinpy (CD i iiD2iC03 }

(0)g pii kn nk ij ji
l, N, k,J

A (CD2+i'D3)

Ask —p
1 1

j a&y +A" —N2 A" —N3IJ Jl
NN2 603

+
N1 C02

r t

P
(6.3)

A (iD) =Cjk+ C;„—Cj„—C;k,
(3)D~nor ( i'D i & cDP, cD3 )

(0)
Pmm diiin diik diim dii

i, m, n, k

Cm; —(Cijp ) +C„;(iDp ) Cmi —(iDp ) +Ck; (iDp )

( Anm iD2 3)(Akm 3 ) it ( Amk iD1 2)( Amn i }

—Cni'(cop ) +Cki (cilp )

~km —1 —3
+

add res ~mn 1 ~km 3

+five permutations

u P y
N1 N2 N3

P P ix y P y ~ y ir P y P
1 3 2 2 1 3 2 ~3 1 3 1 2 03 2 1 (6.4)

This is the most general form of I' ' for a system un-
dergoing relaxation described by the Eq. (2.3). All the
terms involving C )3(iD) are new and these arise as a result
of population changes in the system due to collisions and
sPontaneous emission. If we Put C ji(iD}=0, then the
above expression reduces to 8' ' which is just the result of
Bloembergen et al. If the system has no permanent di-
pole moment, then the contribution D' ' vanishes. Thus
the contribution C' ' is essentially due to inelastic col-
lisions. In contrast to the contribution 8, C has reso-
nances whenever F1+~2——0, the width of such Rayleigh-
like terms being determined from the inelastic collisions;
moreover, such Rayleigh-like terms also have the possibil-
ity of two intermediate states resonating with one of the
applied frequencies. Terms like

(Ajn —a) i —CD2) '[(Ain —
iDi ) '+ (Aj, —cD2) ']

in 8' ' lead to the pressure-induced extra resonances
as discussed by Bloembergen et al. Note that such addi-

tional resonances also occur in D'3' (see, for example, the
term with the "add res" subscript in D' '). Thus some
type of extra resonance can arise due to inelastic col-
lisions. Note also the Raman-like contributions in D' '—
one such contribution is marked with a subscript R. %e
next consider some applications of the general expression
(6.1).

A. Susceptibilities for modes and phase conjugation
in two-photon media

In the special cases where only the transitions among
few levels are important, above expressions simplify con-
siderably. We give a few examples. We first consider the
problem of phase conjugation in two-level systems when
the system has a permanent dipole moment and when the
two levels are connected by a two-photon transition (cf.
Ref. 17). Calculations using (6.1) show that the relevant
susceptibilities are
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(3] (P]1 P22 )(d]1 22)d12

(d ll d22)d21 (d ll d22)d21
X + ~+1(y]2+r») '

(6.5)

(,1
(Pll —P22 )(d]1 —d22)d]2

These susceptibilities appear as coefficients in propagation
equations for the probe and conjugate waves. These sus-
ceptibilities will also be needed for the description of the
basic modes of the two-photon media. ' '

8. Pump-probe experiments in ruby

x
A &2

—QP

(d ii —d22)dt]+ ~+1(r 12+y21)
(0) (0)

pi I Tzi =3'i22 (6.6)
I

%e consider another example where inelastic collisions
are important. Consider optical transitions in ruby,
which is essentially a three-level system. Expression (6.1)
specialized to the case of a three-level system with d]2&0,
d]3 ——d23 ——0, and on making the rotating-wave approxi-
mation, leads to the following expressions for the suscep-
tibilities describing absorption from a probe in the pres-
ence of a pump beam and four-wave mixing:

(0) (0)

~pa]3r(1& M 1&&2) ~ d ]212]d 12d 2] C(0)(3) p11 p22 / p p 1

A)p —a)2 A)2 —co)
+ 1

A2~+ co]
1+C (co2 —(o 1 )

A )2
—6)2

1

A21+ 1
(6.7)

2 (~]—~2)(P11 P22 )d]2d ]2d lid 2] 1

A)2 —N) A2)+N2

1(r3i+2r23)+ 2ro
C(ro)=

(iA, ]—co)(iA2 —ro)
(6.8)

where the I,'s are the roots of the quadratic equation

+ ( y]2+ y21+ r3]+r 23)~

+ ( y23y]2+ y23y31+ y]2y31+ r23r21)

and thus A, 's are determined by the transition rates y&J.
The equilibrium populations also depend on y's:

(0) (0)
P» —P22

y23(y]2 Y21 y31)~ll 12Y31+Y23(y]2+r21+r3])1

(6.10)

The transfer of the population from the ground state
~
2)

to the excited state
~
1) is expected to be negligible and

thus if we let y]2~0, then

2
C(co)~ +~+i(r21+3 31) l(o+i(r21+r31)1(ol+iy23)

(6.1 1)

Thus pump-probe experiments will show a resonant struc-
ture at M2=N~ with widths determined by y21+y3& and
by y23, i.e., by the total decay rate of the excited state

~
1)

and of the state
~
3) to which the system can decay from

~
1) by inelastic collisions. Note that in a system like

ruby one will have a very narrow resonance at u& ——co2

with width @23.

Here the phase-changing collisions enter through A]2 and
the inelastic collisions enter through C((o),

C. Resonances at submultiples of Rabi frequency
in strong-field experiments

Using the general scheme outlined in Sec. III, we can
also look at the susceptibilities which are of third order in
weak fields but which hold to all orders in some strong
resonant field. Some general features of such susceptibili-
ties can be easily seen. For example, consider a system
driven by a strong field at co] and a weak field at (o2.
Then X' '(ro2, —(o2, (o2) will describe energy absorption,
from A@2, to fourth order in the weak field. Let the strong
field saturate the optical transition

~
1)~~2). Then in

(6.1), we have to replace o]2 by (o2 —(o] and A3„by the
dressed-state energies PJ„. It is clear from the structure of
(6.1) that such an intensity-dependent susceptibility will

not only have resonant structure when co2 —co& is equal to
the Rabi frequency but also at the subharmonic of the
Rabi frequency. For example, resonances like

Aj —co] +603 will lead to p&„——2((o2 —col ) and thus to a
structure at half of the Rabi frequency. Such subharmon-
ic resonances in the intensity-dependent susceptibilities
have been extensively studied ' recently.

Thus in conclusion we have derived general expressions
for the nonlinear susceptibilities that completely take into
account population-changing relaxations and the optical
saturation effects. The structure of the resonances in
these susceptibilities is discussed. Multiphoton resonances
in the usual susceptibilities imply the existence of reso-
nances at various submultiples of Rabi frequencies. Other
applications of the results of this paper will be considered
elsewhere.
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