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A Floquet-Liouville supermatrix {FLSM) approach is presented for nonperturbative treatment of
the time development of the density-matrix operator of atoms and molecules exposed to intense po-
lychromatic fields. By extending the many-mode Floquet theory (MMFT) recently developed, the
time-dependent Liouville equation for the density matrix of quantum systems undergoing relaxa-
tions (due to radiative decays and collisional dampings, etc.) can be transformed into an equivalent
time-independent non-Hermitian FLSM eigenvalue problem. This yields a numerically stable and
computationally efficient approach for the unified treatment of nonresonant and resonant, one- and

multiple-photon, steady-state and transient phenomena in nonlinear optical processes, much beyond
the conventional rotating-wave-approximation (RWA) method. Connections of the FLSM approach
to the MMFT in the limit of zero relaxations are also made, providing the understanding of the

physical significance of FLSM supereigenvalues and eigenvectors. In addition to the exact FLSM
formalism, we have also presented higher-order perturbative results, based on the extension of the
generalized Van Vleck {GVV) nearly degenerate perturbation theory, appropriate for somewhat

weaker fields and near-resonant processes, but beyond the R%A limit. The implementation of the
GVV method in the time-independent Floquet-Liouvillian allows the reduction of the infinite-

dimensional FLSM into a finite-dimensional GVV-Liouville matrix, from which essential analytical
results are readily obtained. As an illustration of the usefulness of the new formalism, we extend
both the FLSM and the GVV methods to a formal study of the multiphoton-induced resonance
fluorescence spectra of two-level systems subject to purely radiation relaxations. Both the time-

averaged power spectrum and the time-dependent physical spectrum are exploited in details, and
novel new features in intense fields are pointed out.

I. INTRODUCTION

The investigation of nonlinear optical processes induced
by intense laser fields such as multiphoton ionization and
dissociation of atoms and molecules, resonance fiuores-
cence, Raman scatterings, and wave mixings, etc., is a to-
pic of much current interest' both theoretically and ex-
perimentally. At lower fields, perturbative and diagram-
matic methods are often used for nonresonant phenome-
na, whereas the rotating-wave approximation (RWA) is
most commonly adopted for near-resonant processes.
The semiclassical Floquet approaches based on the
Schrodinger equation, while providing nonperturbative
techniques for the studies of multiphoton ionization, exci-
tation, and dissociation processes at high fields, cannot
be applied to processes undergoing relaxations due to radi-
ative decays and collision dmnpings, etc. In this paper we
present a general nonperturbative semiclassical treatment
of the Liouville equation (allowing for relaxation mecha-
nisms} for the density-matrix operator of atomic or
molecular systems exposed to intense monochromatic or
polychromatic fields. By extending the many-mode Flo-
quet theory (MMi l') recently developed, the time-
dependent Liouville equation can be transformed into an

equivalent time-independent Floquet-Liouville superms-
trix (FLSM} eigenproblem. In addition to being numeri-

cally stable and computationally efficient, the FLSM
method is capable of treating nonresonant and resonant,
one-photon and multiphoton, steady-state and transient
phenomena on an equal footing.

As an illustration of the usefulness of the FLSM
method, we shall study one- and multiple-photon-induced
resonance transitions and light scatterings of an ensemble
of two-level atoms or molecules illuminated by a strong
monochromatic field. While one-photon resonance light
scatterings, fluorescence in particular, have been widely
discussed, ' especially since the work of Mollow, the
multiphoton-induced light scatterings have received little
attention. ' With the advent of powerful intense lasers,
we expect the experiment on these multiphoton-induced,
via virtual levels, resonance effects can be accomplished in
the near future. One of the major purposes of this paper
is to exploit new nonlinear dynamical features in
multiphoton-induced resonance fluorescence spectra.

In addition to the exact FLSM formalism, we shall
present some higher-order perturbative results, appropri-
ate for somewhat weaker fields, and near-resonant pro-
cesses, but beyond the R%'A limit. The most expedient
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way to accomplish this is to extend the generalized Van
Vleck (GVV) nearly degenerate perturbation
theory ' '5"20' ' to the time-independent Floquet-
Liouvillian. This has the effect of reducing the infinite-
dimensional FLSM into a finite-dimensional GVV-
Liouville inatrix, from which essential analytical results
for the solutions of the density matrix as well as for the
fluorescence spectrum (in both one- and multiple-photon
resonance cases) ean be readily obtained.

In Sec. II we present the general theory of the FLSM.
This is followed by a discussion in Sec. III on the connec-
tions of the FLSM approach to the MMFT approach in
the limit of zero relaxation, thus providing an understand-
ing of the physical significance of FLSM supereigenvalues
and eigenvectors. In Sec. IV the GVV nearly degenerate
procedure is extended to an analytical treatment of multi-
photon resonance transitions for two-level atoms or mole-
cules in the presence of a strong laser field. In Sec. V we
introduce a new scheme of the so-called time-averaged
power spectrum and also derive the formula for the time-
dependent physical spectrum for the multiphoton
resonance fluorescence by two-level systems. Results and
discussions for a case study are presented in Sec. VI. This
is followed by a conclusion in Sec. VII. Atomic units are
used throughout unless otherwise specified.

and

r.p=-,' (I ..+I pp)+ I .'p

In the following, we shall only consider the case of closed
systems in the development of our approach, although it
is straightforward to extend it to the case of open systems.

To facilitate the evaluation of the reduced density-
matrix operator P(t) in Eq. (1), we reformulate the equa-
tion in an operator (a tetradic, or Liou ville) space
spanned by the basis {{aP&=—la&&Pl; a and P=O,
1, . . . , N —1 j as an inhomogeneous superoperator equa-
tion, namely,

iB,p(t)=L(t)p(t) +if .

Here p(t) is the supervector defined by

I ap=I p

with the factor I"
p usually called pure dephasing. The

feeding term y p is generally not symmetrical, i.e.,
y ~yp, but ean be related to I in the case of closed
systems, namely,

=Jr p.

II. MANY-MODE FLOQUET-LIOUVILLE
SUPERMATRIX APPROACH

p(t) = g p p I a&&& I

a,P
(10)

where p is the atomic dipole moment, and e;, co;, and P;
are, respectively, the field amplitude, frequency, and

phase of the ith field. The relaxation term [R p(t)] con-
sists of Ti (population damping) and Tz (coherent damp-
ing) mechanisms which are due to the coupling of the
atomic system to the thermal bath by radiative decays and
collisions, etc. More explicitly, it can be written as

(Rp) = —I ~ + g y~pp (T, process),
P (+a)

(R p) p —— I'
pp p, a~P (T2—process) .

(4)

The relaxation constants appearing in Eqs. (4} and (5) are
connected by the relations

The time evolution of a set of N-level quantum sys-
tems, interacting with an M-mode linearly polarized po-
lychromatic field, undergoing relaxations by Markovian
processes is described by the Liouville equation '

iB,P(t) =[H(t),P(t), ]+i[R P(t)] .

Here p is the density matrix of the system, reduced by an
averaging over all irrelevant degrees of freedom action as
a thermal bath, and H(t)=Ho+ V(t). Ho is the unper-
turbed atomic Hamiltonian with eigenvalues {E~I and
eigenvectors { la & J, namely,

Ho ltz&=E~ l
a&, a=0, 1,2, . . . , N —1,

and V(t) is the electric dipole interaction Hamiltonian be-
tween the system and the M-mode classical fields,

M
V(t) = —g It, e; cos(to; t +P; ), (3)

+ g (1-5@,)ypo5„.(1-5„o)

L~p&„(t)= &aP
l
L(t)

l
pv&

=H ~(t)5p„H„p(t)5~—
i ( I'qg~q—5p„yqp5~p5~—v)

(a&0 and/or P&0); (12)

and finally, f is the source supervector, defined by

fpv Y(PpO vo ~ (13)

~here yo =—gp oypo, assuming
l
0& is the ground level.

Note that in deriving Eqs. (9) and (11}—(13), use has been
made of the relationship Trp(t) = 1 (appropriate for closed
systems) and the following basic properties of the Liou
ville space: (i) inner product,

li&& lI

and (ii) matrix elements of superoperator 0,

(14)

L(t), the superoperator or Liouvillian, in matrix form, is
given by

La)~v(t)= &00
l
L(t)

l pv&

=Ho„(t)5o„H~(t)5o—,
—i (I oo+}'o»„o4)
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The superoperator L(t) defined by Eqs. (11) and (12) is
nonsingular, which possesses distinct advantages as will

be shown below.
The inhomogeneous equation (9) now can be solved by

using the method developed to solve the Schrodinger
equation. By invoking the MMPi', ' we can transform
the time-dependent superoperator equation (9) into an
equivalent time-independent infinite-dimensional su-

pereigenvalue problem, nan1ely,

gg (aP;[m I I
LF I or;[k] )(or;[k]

I Q„(„j)
cr, r Ikj

=Q„ I„j(aP;[mI I Q„(„j), (16)

where LF is the time in-dependent many-mode Floquet-
Liouvillian defined in terms of the generalized tetradic-
Fourier basis

I aP; [m I ) =
I
a ) (P I I [ m J ), with [ m [

=m1, m2, . . . , nM. More explicitly, LF can be written,
in matrix form, as

[m) I LF Ivv [~l &

M
L ap;pv + y mi~i~tgk~pP(mj;(nj i

Im —n I

with

ImIL ap;p, v

HI(i, jso —&~(j{~oi—i (Coo+1'o@oi&o + g (1 &p—i, )1'po&i, (1—{~io) {i( I;(oj if ix=0 and p=0
~0

0 ap 5pv + vp (iap i ( pvbpa{)pv ) ppbapfipv)5(m I (oj otherwise,Im I Im )

M
Im) (i) ip, —ip,H ap =~a~a/ (mj;(Oj+ g Vap('4;, ie +5m, , —ie N(mI;(Oj ~ (19)

~ "p'= —
2 &~ lv a IP& (20)

M

(mI;(nj = g 5m, , n,. ~ (21)

and

M
(i)

~( I;( I= II~,.;i=1
J+f

(22)
LF=

A+2cu2 I
8%

8 0
A+a2 I 8

8" A

0 8"
0 0

0 0
8 0

A-cu2 I 8
8" A-2ai2 I

M

Qpv;(n+kj =tv;(nj+ g ki~i (23)

where 5 „ is the Kronecker delta function. The structure

of the Floquet-Liouville supermatrix LF, which is non-

Hermitian, is illustrated in Fig. 1 for the two-level two-

mode case. The multiply periodic structure of LF renders
the following important periodic relationships for its su-

pereigenvalues Q„(„jand supereigenvectors
I Q„(„j):

WHERE ~,

A=

C t aij I
X

Y 0 0 0 0
0 Y 0 0 0

8= 0 0 Y 0 0
0 0 0 Y 0
0 0 0 0 Y

AND

x"

»ab

C-aij I
x"

~ba

ba 'Ibo

ba 'I bo

& Qor; (k I I Qpv; (n I &
=~crp~vv (k I; (n I

where
I Qa~ Ik I

) are eigenvectors of L z, namely,

L F I
Q.~(kj & =Qa.;Ik) I Qa.;Ikj &

and

(25)

(26)

4k IkI =XI (27)

(aP;[m+kI
I Q„(„+„I)=(aP;[mj

I Q„(„j). (24)

Owing to the non-Hermitian nature of LF, there exists
biorthogonal relationships,

V{I)ob

y( I)
ba

y (I)
ab

y (I)
ba

( I)
ybo y (I)

ab

v'I' -v"'
ba ; ob

0
Y-

y(2)
ab

y(2)
bo

y(2)
ob

y(2)
bo

- V{2)
bo

y(2)
bo

y(2)

y(2)
ab

FIG. 1. Structure of the Floquet-Liouville supermatrix LF
for the case of two-level systems {arith level spacing co~) in
linearly polarized bichromatic fields. m~ and co~ are the two ra-
diation frequencies, V,'b'

C,
'i=1,2) are the electric dipole cou-

plings, and y,b, y~, and I ~ ——(y~+y~)/2 are relaxation pa-
rameters.
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Furthermore, the negativity of the imaginary part of all of
the diagonal elements of Lr guarantees that

Floquet-Liouvillian L~, the reduced density supervector
p(t) of Eq. (9) can be expressed as

Im(Q„~(„j)(0 . (28)
p(t) =U(t to')p(to) (29)

In terms of the supereigenvalues and eigenvectors of the
I

where U is the non-Hermitian superevolution operator
given by, in matrix form,

U.p;„.«;to)= g &a0 {m j I
exp[ —tLF(t —to)] Ii »{Oj &

Im)

+7'o5&„gg (ap;{m j ~

Q (kj)(Q (kj ~00;{oj)
n, ~ Ik I

M

X {1—exp[ iQ —~(kj(t —t o)]j/iQ (kj exp i g mjoi/t (30)

and p(to) denotes the initial state of the system at time to Fu. rthermore, since ImQ(0 for all Q, the reduced density
matrix has a simple asymptotic form at large times t~ 0o,

M

p gt)~yO g gg (ap;{m j I Qaw( k)j(Q a~( kjIOO {oj&«Q. j„j eXp i g mjtOJt aS taboo,
Im I o, r Ik I

j=l
(31)

which is independent of the initial state p(to) and is oscil
latory in the course of the time, dictated by the Fourier
terms exp(i g. i mfcoj t), rather than completely station-

ary, as would be the case in the RWA limit. For the
single-mode case, i.e., M=1, pagt) as taco behaves
periodically in time with the period 2n. /co, co being the
single-mode laser frequency. For an ensemble of N-level

systems, we allow for the random interaction durations
for each member of the systems with the laser fields and,
therefore, can average the quantity p gt) over a suffi-
ciently long period T &&max{2'/to; j, i =1,2, . . . ,M.
This average results in the long time-averaged reduced
density-matrix elements

p p
——young(iQ (kj) '(ap;{Oj

~

Q (kj)

tions are quenched. Here, the density-matrix operator P(t)
can be formed by the state wave function

~

%(t)) of the
system, namely,

p(t) =
~

qi(t) ) ( qi(t) ~, (33)

where the state wave function
~

%(t) ) is governed by the
time-dependent Schrodinger equation

i 8,
~
%(t) ) =H(t)

~

%(t) &, (34)

and the total Hamiltonian H(t) has been defined in the
beginning of Sec. II. By invoking the many-mode Floquet
theory, we can transform Eq. (34) into an eqivalent time-
independent eigenvalue equation '

Xg &a'{m j I HF I P;{kj &&P; {kj I ~~(.j &

P IkI

x(Q.'.,„jioo;{oj& . (32) =A.„.(„j(a;{mj ~

A,„.(„j), (35)

We note that because of the parity considerations, via the
electric dipole approximation, the unperturbed tetradic-
Floquet states

~
aa; {m j ) corresponding to the diagonal

density-matrix elements p~(t) are only coupled to states
[PP;{n j ) with g,. , { ~

n; [ +
~
m;

~ j even integers and
to states

( iuv; {k j ) with p&v and g, , { ) k; ( + ) m; ) j
odd integers. This selection rule implies that the long
time-averaged coherences, i.e., p is, a&P, are always zero
in the observational (laboratory) frame, while the long
time-averaged population p~ s are, in general, nonvanish-
ing. The time-dependent coherence p ts(t), a&P, is frame
dependent.

III. CONNECTION TO THE MANY-MODE
FLOQUET HAMILTONIAN APPROACH

To identify the physical meanings of the supereigen-
value Q's and supereigenvectors

~

Q)'s of the Lr in Sec.
II, we shall now consider the case where all the relaxa-

=H aii + g miCOi~aijbjm), jkj
Im —k I

where H(tt has been defined in Eq. (19). The (real)
quasienergies A,&. I „I

and quasienergy eigenvectors

~

A.„.j„j) possess the following periodic properties:
M

~p (n+k) =~@;(n)+ g kicoi (37)

and

(a; {m +k j ~
A,„.(„+kj ) = (a; {m j ~

A.„.(„j) . (38)

By directly comparing Eq. (16) with (35) and (17) with
(36) and making use of relations (18), (19), (23), (24), (37),

where HF is the time-independent Hermitian Floquet
Hamiltonian. In terms of the generalized Floquet basis

~
a; {m j ) =—

~
a)

~ {m j ), Hr can be expressed as

(a;{m j ~
Hp

~ P;{kj )
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and (38), we arrive at the following relations:

=&ct;Im j IH Ip;(n)&5.p
—&v;$ni J IHi; IP;[nf)5 „
+ g micoi5ap5vtt5(m);jn) & (39)

which is simply what we have derived previously using
the Floquet Hamiltonian method based on the
Schrodinger equation. ' *

IV. GENERALIZED VAN VLECK
NEARLY DEGENERATE PERTURBATIVE

TREATMENT OF THE FLOQUET-LIOUVILLIAN

~ ~P,v'
f n ) ~P.

( 0) ~y. ( 0) + ~ &II (40)

N —1

P ti= g & aP; [0j I
n„"„',(o) & & n~)o), (o) I

00; (0j &, (42)

which is to be compared with Eq. (32) where relaxation
terms are nonvanishing. Furthermore, making use of re-
lations Eqs. (40) and (41), the long time-averaged popula-
tion at level P becomes

N —1

Ptttt= X 2 g I &&'j~1
I ~~;(.)

& &~i;(.)
Io'(01 & I'

p, =0 (n) (m)

(43)
I

&aP;(m~ III„".'(o) &

= g & a; [ n J I
A,„.(o) ) & A, (o) I P; [ n —in J ), (41)

)nj

where the superscript (0) appearing in the superoperator
(0)L F ', supereigenvalues 0' ', and supereigenvectors

I

0' ')
indicates that all relaxations in Eqs. (4) and (5} have been
set to zero. Equation (40) suggests that (i) there exists N
zero supereigenvalues 0„'„'.Io) =0, p=0, 1,2, . . . , N —1,
for the Floquet Liouvillian L i, " defined in Eq. (39), and
(ii) the supereigenvalues 0„'~(o) for )u+v are the differ-
ences between two quasienergies A,„.(o) and A~(o) and thus
characterize the "difference spectrum" of the multiphoton
process. Equation (41) shows how the supereigenvectors

I
0„''(o)) are related to the dissipationless quasienergy

eigenvectors
I ~p;(o) & and

I ~~(o) &

Other quantities of interest are the long time-averaged
density-matrix elements in the limit of no relaxations.
Assuming the initial condition p tt(to) =5~p5pp aiid
averaging p{t)=p(t —to'to) over first the random initial
times to and then all possible elapsed times t to, we—ob-
tain

The general theory outlined in Secs. II and III enables
us to explore nonlinear optical processes in intense po-
lychromatic fields much beyond the limit of the often-
used RWA. To exploit the analytical properties of multi-

photon processes undergoing relaxations, we shall now ex-
tend the generalized Van Vleck nearly degenerate pertur-
bation theory 's's"' ' ' to the Floquet-Liouvillian. This
reduces the infinite-dimensional Floquet-Liouville super-

matrix LF into an effective non-Hermitian finite-

dimensional GVV-Liouvillian Lovv, from which essential
multiphoton dynamics can be readily obtained either
analytically or numerically.

In a proper rotating frame ' ' (not the RWA} [see Eq.
(51} below for an example], the density-matrix operator
p(t) satisfies approximately the GVV-Liouville equation,
namely,

i c},p(t) =Lovvp(t)+i fovv

where fovv is the GVV-source supervector. Without loss
of generality, we shall consider the specific case of a sys-
tem of dipole-allowed two-level atoms undergoing
(2n +1)-photon resonance transition in the presence of a
single monochromatic linearly polarized laser field
characterized by the frequency coL, and amplitude aL . The
two-level

I
a ) and

I
b ) (E, (Et, ) are of opposite parity

and the phase of the laser field is assumed zero, i.e.,

When the resonance condition cob,
—=Eb —E,

=—(2n +1)coL, with positive integers n, is satisfied, the un-

perturbed tetradic-Floquet states
I
aa;m ), I

bb;ni ),
I
ab;nt+(2n+I)), and

I ba;m —(2n+1}), with arbi-
trary integer m, form a four-dimensional nearly degen-
erate set and span the GVV "model space. " In terms of
this model space, the effective GVV-Liouvillian Lovv has
the following matrix form:

t(r~+xt —)

&'Vab
1

Q2

(45)

(6+5)—iI b,

where y~ and y~ are feeding rates and I b, is the coher-
ence damping rate discussed previously due to spontane-
ous emission, collisions, etc. In the pure radiative case,
yah

——0 and I ~ ———,y~, with y~ the spontaneous decay 6 =cot —(2n + 1)coL, (46)

rate from the upper level
I
b) to the ground level

I
a).

The detuning 6 is defined as
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and the resonance shift 5, corrected to second order in b
(=——,

' (a
~ p aL,

~
b)), and the effective Rabi frequency

u, corrected to (2n +1)th order (in b), are given, respec-
tively, by

2b n=0
~a +~I.
4b a)~

b —L,

(47)

—,'u =(—1)" b
for all n .

(n!)'
(48)

4b CDLzQ�- =n�,
(ass —L, } (~s +~t. }

(50)

etc.
There are several important points here concerning the

GVV-Liouvillian LGvv of Eq. (45). First, in the case of
one-photon resonance transition, i.e., n=0, the GVV-
Liouvillian LGvv reduces to the commonly used RWA-
Liouvillian when neglecting the resonance shift 5 and
terms higher than first order in b in the effective Rabi

We should mention that the quantity u can be expressed
more accurately for each (2n +1)-photon resonance pro-
cess at the expense of a general form such as Eq. (48},e.g.,

3

zQ ——b n=0
(~a +t. )

R(t)=— l(2m+1)co~t0 e
(51)

the density-matrix operator p(t) obeys Eq. (44) with the
GVV-Liouvillian Lovv defined by Eq. (45), and the
source supervector fovv becomes

Xba

0
fovv —

0 (52)

in the two-level one-mode case. The GVV-Liouville equa-
tion can be solved most expediently by first making the
Laplace transforms of Eq. (44), yielding an algebraic
equation

frequency u, i.e., —,
'

u =b . Second, in the case of
(2 n + 1)-photon resonance transition with n &0, the
GVV-I.iouvillian LGvv resembles a single quasiparticle
process carried by an effective coupling term u, which, of
course, has a leading term in the (2n +1)th order in b
Finally, in the one-photon case, the shift 5, of the second
order in b, is one order of magnitude smaller than the
Rabi frequency b, whereas in the (2n+1)-photon case,
n ) 1, the resonance shift 5, always of the second order in
b, is orders of magnitude greater than the corresponding
effo:tive Rabi frequency u, which is of the (2n + 1)th or-
der in b. This last point plays an important role in
achieving the saturation of the population distribution
among various levels through multiphoton resonance
transition, or pumping, which, in turn, determines the in-
tensity of the lights scattered by the atoms.

In the rotating frame defined by the transformation

&+(rob+ra }

lab
l

Q
2

l
Q

2

l
Q

2

P (s}
Pbb(&)

P,b(a)

p (0)+(rb, l~)
Pbb(0)

P,b(0) (53)

l
Q

2
l

Q
2

&+I b, +i (6+5)

where the Laplace transform P(a }of the density-matrix operator p(t) is defined by

P(&)= I p(t)e "dt (54)

and p(0) describes the state of the system at the initial time to =0 Equatio. n (53) can be easily solved algebraically, and
we present only the solution for the case where the system is initially in the ground level

~

a ):

and

r,b[a+I b, i (5~5}][a+—I b, +i(6+5)]+—,
'

u (&+I b, )
Pbb(a) =

a&(a)
l
2u(& r.b+—rb )[&—+I'a +&(~+&)]

&&(s)

Pb (s)=P,'g(s),

(55}

(56)

(57}
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P~(&)= — &—bb(&),
1

(58)

where

N(y) =—(y+y,b+y»)[&+ I » i—(6 +5)][&+I +i (6+5)]+u (&+ I ) . (59)

In general, the inverse Laplace transform on P(a) is not easy to evaluate, but at the exact "shifted" resonance condition
6+5=0 one can readily carry it out and arrive at the following analytical expressions for the density-matrix elements:

and

7ab~bu+ 2 ~ y»(&++I's. )+ &
u'

Pbb(t) =
z 2,&2

exp(s+t)
(y.,+y„)l „+ ' Z, [(y„+y„—r„)'—4 ']'"

yah(~ —+ ~ha ) + 2 u

2 2,&2
exp(a t},

[(y-»+ye I"a—} —4u ]

2
u(y. b y»—) 2—u [~++ (y» y.—b )]

(Y b+yba)l ba+u ~+f(3 b+yba I ba) 4u ]
I

2
u [& +(y-» y.b—)]

exp(~ t),
[(y.b-+y» I s )——4u ]

p»(t) =p»(t),

p (t)=1 pbb(t)—,

(60}

(61)

(62}

(63)

where

&+ —=
g [ —(y»+yb + I » )+[(y»+y» —I"» ) —4u ]'

We note that both a+ and a possess negative real parts which are responsible for the damping of the oscillation of the
density-matrix operator p(t) when evolving in time and driven by the laser field. The steady-state solution of Eq. (44),
not restricted to the resonance condition 5+5=0, also can be easily obtained,

and

y.b[(~+&)'+I b. ]+ ,
' u'I »—

(y»+y.b)[(&+5)'+1»2]+u'I »
'

i u (y» y.b) [—(~+&) ~ I »]
(yb +y»»)[(~+~}'+I b. ]+u'I'» '

Pbe=Pab ~

(64)

(65}

(66)

Paa —1 Pbb ~ (67)

which are independent of 1mtid cond tions and b one time independent in the appropnate rotating frame defin~ in

Eq. (51).

V. MULTIPHOTON RESONANCE FLUORESCENCE SPECTRUM OF T%'0-LEVEL SYSTEMS

To elucidate the usefulness of the current approach, we present the first study of the multiphoton resonance fluores-
cence spectrum of an ensemble of two-level systems driven by polychromatic fields in a thermal bath undergoing purely
radiative relaxation. The relevant quantity is the autocorre1ation function ' of the transition dipole operators
d —= ~b)(a

~

and d—:~a)(b ~, namely, g(t;t')=id (t'}d(t)), t &t', in normal order The two-tim. e average g(t;t')
can be evaluated by the use of the quantum regression theorem' ' '* and expressed as

g (t;t') = U» (t;t')p.b(t')+ U» ». (t;t')pbb(t'), .

where U(t;t') has been given in Eq. (30) and p(t) in Eq. (29). Explicitly, Eq. (68) can be written as

g(t;t')= y y(6$62+G364),
Ima (n)

(69)
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where

6) ——g g (ba; I0j I Q„»(k» & (Q„'»(k) I
«; Im j &

p,,v (kI

X exp[ i Q—„(k»(t —t')]

+
~pv; Ik —m)

M M

exp i—g mzcoj(t t—') e—xp[ iQ—„»(k»(t —t')] exp i—g mzcozt'

62= g g (ttb;In j I Q&»(k» &(Q&»(k» I «;|0j&

p„v IkI

X exp( i Q—„(k»t')+ .
pv; IkI

M

[1 ex—p( —iQ„(k»t')] exp i g nIcoj. t'

G3= g g (btt; IOj I Q„»(k» &(Q&»(k» I
ba; Im j &exp[ i Q„—»(k»(t —t')]exp i g—mjco&t'

p, v (kI j=l

G4 g g ~bb In j I Qp»(k» &(Q„'»(k» I «; I0j &

p, » (k)

M
X exp( iQ&»k»—t')+ . [1—exp( —iQ„(k»t')] exp i g njco~t'

l Qpv Ik I j=l

assuming the two-level system is initially in its ground level
I
a &, i.e., p tt(0) =5~5tk, . The important feature here is the

nonstationary nature of the correlation function g(t;t') even at some large time t', i.e., g (t;t') depends upon both the
correlation time r=t t' and the sta—rting time t'. [Note that in the GVV, or RWA, limit, g (t;t')~g (~), to be shown
later, independent of t .] Thus it is a natural step here to bring up the notion of the time-dependent physical spec-
trum which takes into account the true environment in which the detection of the scattering lights is performed.
However, it is also possible to introduce a meaningful time-averaged scheme on the correlation function g (t;t ) based on
the fact that different two-level systems may have entered the laser fields at different times, e.g., in the atomic beam ex-
periment, therefore rendering a meaningful power spectrum as in the exactly stationary case.

A. Power spectrum -xact nonperturbative treatment

We define the time-averaged correlation function as

T.
g(r)= lim J Ct'g(t;t') (t'~~),

Ts
(70)

involving integrating g(t;t ) over all possible times t, while keeping the correlation time r= t t const—ant. T—he power
spectrum I(co) corresponding to the time-averaged correlation function g(r) can then be evaluated via the Fourier
transform:

M
5 co —~ m co.

I(co)=Re Cre+—' 'g(r)
0

I(m) can be decomposed into a coherent part I h(co) and an incoherent part I;„,(co), namely,

I~h(~)= ~rt Re g gg &b~;t0j IQp»(k»&(Qp»(k» I«{mj&
Q(mI p, ,v (kI pv; Ik —m I

(71)

X gX& b, I jIQ..(.»&«..».»I-, I0j&„
, p, v IkI pv; Ikj

I;„,(co)= —yk, Re g (AS+CD)
fmI

where

A = y y (ba; Ioj I Qp (k» &(Q„' (k» I
ba; Im j &

pa, v I kI

X ( Qp» ( k»
—co )
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a = g g (bb; [m I ~ Q„.{„))
p, v (kj

X (Qp~(k) ~

aa g [OJ ) /Qp~ (k)

C= gg (ha'{OI ~Q {k))(Q& (g} ~aa jniI)
p, v Ik)

x [I+iyi (Q„(k )
) '](-Q„{k)—~)

where U(t t—'), the GVV-superevolution operator, is to
be derived from Eq. (44}, and the steady-state quantities

p,b and ps' have been given in Eqs. (64) and (65). Instead
of obtaining an expression directly for the correlation
function g(t t—') in Eq. (74), we can first carry out the
Laplace transform of g (t t')—, namely,

G(&)= I g(r)e "d~, (75)

which gives the relation

L)=gg(ab;[m] ~Q„,„))
pc, v Ik)

X (Q& {k) ~

aa, [0I )/Q&

«&)=+a', (&)P.s++s;I (&)pbbs

+s, ,„(a)= Ui {r)e. 'dr

(76)

Equation (72} shows that the coherently scattered light
comprises not only the elastic components (Rayleigh
scattering) at co=aii, roz, . . . , ~~, but also various har-
monic components at co= g, , m;co;, where g,. m; must

be odd integers. Equation (73) shows that the incoherent-
ly scattered light contains frequency components at the
positions defined by the denominator {Q& {k)

—co}
where g(k» = g, k; is an odd integer if p, =v and an even

integer if p&v. Thus there exists in principle an infinite
number of components, with the intensity of each com-
ponent depending upon the degree of mixing of the two
levels by the fields. In particular, for a one-mode laser
field (with the frequency aiz ), the coherently scattered
light (of infinitesimal narrow width) can be detected at
frequencies co=aiL, 3coz, 5cor, . . . , and the incoherently
scattered light (appearing generally in triplet) will appear
also at co=-coL, , 3coL, , 5coL, , . . . . We emphasize that the ex-
pressions Eqs. (72) and (73) are general results applicable
to arbitrary numbers and strengths of the fields.

B. Power spectrum —QrUU perturbative treatment

In the one-mode case, when the resonance condition
eis, =-(2n +1)cur, with n =0, 1,2, . . . , and the laser field
is not very intense, we can make use of the GVV-
Liouvillian presented in Sec. IV to derive a completely
stationary correlation function g(t;t'} at some large t'
and thus the corresponding power spectrum. We again
employ the expression Eq. (68) to evaluate the required
correlation function, but at the moment we assume the
atom is in equilibrium with the laser field, i.e.,

(79)

+s;s (&)=

Q(~+y~+y~)[~+ r„i(a+s—)]+
2

(80)

where &(s) has been given in Eq. (59}. The power spec-
trum corresponding to the correlation function given in
Eq. (74) can thus be written as

T

I(m) =Re J g (~)e' "+ "dz, (81)

which contains a coherent part

I „(~)=~~P., ~'5(a~))

and an incoherent part

(82)

I;„,(a)) =Re[ ki„,s, ( iv(co))pub+—&( i v(co))—],
(83)

k~.~(s): U—u m(s)e ."d~ . (78)

U»ng Eq. (53), Eqs. (77) and (78) can be recast into
analytical forms,

i (&—+ye —y.s)[&+I b
—

& (~+~)]. Q

g (r i ) Uba; (r r )p 6+ Ubo;ba(r r )pbb (74) where
]

2

y ( —jv)= (ys —y )sIz ( iv+z)(
(
z—

(
k +u I ~)

+{yh, —y i, )[—)z (
( —iv+z){ iv+k+z—)+u (z I b„—)z ) )]I

&&[&( iv)( [z [
k—+u I b, )i] (84)

v(co) =co (2n + 1)col,—

k =ZaS+X~

and

z =I s, i(&+&) —.
In the one-photon, i.e., n =0, R%A limit, the power spec-



33 FLOQUET-LIOUVILLE SUPERMATRIX APPROACH:

trum given in Eqs. (82) and (83) has been analyzed in
great detail by Mollow. In the multiphoton, i.e., n&0,
resonance case, because of the close resemblance of the
multiphoton GVV-Liouvillian I.ovv in Eq. (45) to the
R%A-Liouvillian, similar conclusions to those in the
RWA limit ' hold, namely, (i) the coherent scattered
light occurs at to=(2n+l)coL, and (ii) the incoherently
scattered light spectrum consists of either one peak cen-
tered at to= (2n +1)tpL when the effective Rabi frequency

~
u

~
&&yb, or three peaks centered at cp = (2n + 1 )apt and

separated by distance
~

u
~

when
(

u j &&pb, . In the pure
radiative case, i.e., y,b ——0 and I b,

———,yb, the three
peaks are symmetrical and approach integrated strengths
of —,', —,', and —,

' and radiative linewidths of —', yb„yb„and
—', yb„respectively, when

~

u
~ &&yb .

C. Time-dependent physical spectrum

It has been shown ' that the time-dependent physical
spectrum of any signal can be expressed as a twofold con-
volution integral over the time and frequency of a filter
function and a time-dependent quasispectrum that de-
pends on the signal only. We follow closely, apart from
an overall constant, the procedure introduced by
Nienhuis s of defining the time-dependent physical spec-
trum, namely,

1(~,t;I )= f d~p f drs(cop, r,'I )1(co cop, t r)—, —
0

I(tp, t; I')

where

and

Qi ——yb, l CiC28i(Ai —A2),

Q2 yta~(C3C2+C4C5)82(A1 A i )

Qi —yb I—CiC68i(A4 —A2),

Q, = r(C3C6+ C4C'7)84(A4 —A3),

with

M

Ai —— exp i —(m —m' )cuitJ J

—exp( —I' t) l

M
I —i g (mj —mj )tpj

j=1

M

Ai —— exp — t ex—p i co —g mitpj t
2 j 1

=Re X X XX X X (Q +Q +Q +Q»
Im ) Im'I p, ,v f k I p', p Ik'I

(89)

(85)

where the filter smoothing function S(top T I) take's tlie
form

—exp( —I t)
M

+i tp——gmtp
j=1

S(top, r', I )= I [(—,I ) +top] 'exp( —I r),
2m

(86) I
A 3 — exp — t ex—p[i (to —Q& (k j )t]

with I denoting the filter width, and the quasispectrum
(the Page-Lampard spectnun) I(v, t) is defined as —exp( —I t)

I + t (CO Qp» (k j )

1(v t) Re dt&elgl t )8 (t.t&—)' (87)
A4 ——IexP[ —i(Qt ~ (k+m m j)t].

with the correlation function given in Eq. (69). Assuming
the laser fields are turned on abruptly at time t=0, com-
bination of Eqs. (85)—(87) yields the integral

I(p), t;1)=I Re f dtiexp[ —I (t ti)]—

—exp( —«) j~[1 —i(Q„'v;(k+m m j)]
M

8, = ——i a) —& m'coj J
j=1

I
82 = —i (co Q„—(k

—+ j )

r
83 — i (pi+ QpV; (k' —m'j )

2

1
X exp(i tpti )exp — t, —

2

fi
dt, exp( i~t, )

I84= i (pi Qp»jk —m)+Qp'v' jk' —m'j )
2

r
Xexp —ti g(ti', tq)

which can be carried out analytically. The result is

(88)

Ci ——(ba; IOj j Qq»jkj)

X(Q (kj ~aa;Imj) j(iQ (k j),
C (2b, aI jmj Q&y (k j)

X (Q' y. (k j ~
aa, I 0j ) l(tQ& y. (k j ),
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Cs=&bu'{OI
l

f11 ~(kj&

X (0„' jkj l
aa;{m I ) 1 — 7 ™

pv; Ik —mj

C4 (bu {0{l+p, jkj)(Impy, jkj lb~;{mJ&

C5 = ( bb; {m '
I l 0& y. j k j )

x&ng~. j„jlaa;{OI &l(in„'~ j„j),
Cs=(ab, {m I l Q&y jp j)

Cp ——(bb;{m'I
l Aug jk j).

X&A y. j) j laa, {OI & 1

We note the following. (i) For the single- mode case,
when the laser frequency roL is close to cus, Eb —E„E—q.
(89) reduces to that of Eberly et al. (' in the RWA limit.
This can be easily seen first using Eq. (44) via (48) by
neglecting antirotating terms, i.e., 5=0 and —,

'
u =b, and

then invoking Eqs. (68) and (88). (ii) In the limit t~ ee

and I ~(}, I(ru, t;I } reduces to the time-averaged power
spectrum I(ro) given by Eqs. (72) and (73).

plicitly speaking, the truncated matrix Lz is a 44X44 ma-

trix [the Floquet-Liouvillian LF diagonalized has been
transformed to a one-photon rotating frame, cf. Eq. (51),
and only the parts coupled together are retained; there-
fore, each photon block is a 4X4 submatrix], while the
truncated H~ is a 22X22 matrix (a 2X2 submatrix for
each photon block in ordinary Floquet basis [cf. Ref.
29(a)]}. The relationships between A, and 0 are given by
Eq. (40): the pattern of avoided crossings, the periodic
structures when varying from one photon block to another
(cf. the indices on the right-hand sides of the figures}, and
distances between avoided crossing levels. Furthermore,
the dashed squares shown in Fig. 2(b) show the strong
mixed regions of the two levels caused by one-, three-, and
five-photon resonance transitions, respectively. The split-
tings and stretches of the avoided crossing regions indi-
cate the widths of the corresponding line shapes of the
long time-averaged excitation spectrum psi„as a function
of roL, depicted in Fig. 3(a). Another important feature of
the 1(, and 0 figures is that they display the shift of the
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300
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b, l

VI. CASE STUDY OF MULTIPHOTON RESONANCE
FLUORESCENCP~RESULTS AND DISCUSSION

We consider a closed system of an ensemble of two-
level atoms driven by a strong linearly polarized mono-
chromatic field of frequency roL, . The two levels are of
opposite parity with separation res, Eb —E,=——100.0 (ar-
bitrary units}. Only radiative damping is considered. The
spontaneous decay rate from the upper level

l
b ) to the

ground level
l
a ) is ys, and the (half —)Rabi frequency

characterizing the interaction strength of the atom with
the field is V,b ———,

l (a
l Is z

l
b ) l

. Both strong field and
medium field results will be presented.

A. Strong-field-case (exact) results:

y,b ——1.0 and Vq ——25.0 (arbitrary units)
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In order to demonstrate the strong field effects, here we
have assumed a rather large spontaneous decay rate and a
very strong strength when compared with the magnitude
of the energy level difference of the two levels.

100
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ob, I

{bb, 0
ba, -l

ob; —
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1. Quasienergies, supereigenualues,
and long time-averaged populations and coherences

There are intimate relationships between quasienergies
, supereigenvalues fL~~. , and the long time-averaged

density-matrix operator p. In Figs. 2(a} and 2(b), A,~ and
0 ii.~ are shown as functions of the laser frequency ruI .
These eigenvalues are obtained by numerically diagonaliz-
ing truncated, but converged, up to the five-photon ma-
trices I.z in Eq. (17) and H~ in Eq. (36), respectively. Ex-

-400
Ibb;-2
bo; -3

—500
20 30 40 50 60 70 80 90 100 110 120 130 140 150

FREQUENCY cuL

FIG. 2. (a) Quasienergies (A, 's) and (1) supereigenvalues
(ReQ's), for a closed system of two-level atoms driven by a
monochromatic field of frequency ~L. Parameters used are
co~ =100.0, yi =1.0, y~ ——0.0,

l
V,'s'

l
=25.0, and P"'=0.0 (ar-

bitrary units). Note that Q .q and Qqb. q are almost degenerate
and cannot be distinguished in the graph.
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FIG. 3. (a) Long time-averaged population pqq of the level

~

b ) and (b) coherence p,b between the two levels for a closed
system of two-level atoms driven by a monochromatic field of'

frequency coL, . Parameters used are the same as those in Fig. 2.
The one-, three-, and five-photon resonances (solid curves) occur
at ~L ——106.335, 41.295, and 24.525, respectively. Also shown
are results for the nondamping (y~ ——0.0) case (dotted curves).

resonance transitions away from the natural frequency

orb„ i.e., strong resonances occur at frequencies other than
those given by the equality gib, ——(2n + 1)coL, with
n =0, 1,2, . . . . This is most clearly stx:n in Figs. 3(a) and
3(b), the long time-averaged population pbb and coherence

p,b In. this case the one-, three-, and five-photon reso-
nances have been shifted, respectively, from 100.0, 33.333,
and 20.0 to 106.335, 41.295, and 24.525 [cf. Eq. (47)].
The width of the individual resonance line shape is ap-
proximately proportional to I V~ +'/[(2coL ) "(n!)2]j
given by Eq. (48). Also shown in Figs. 3(a) and 3(b) are
the counterparts of pbb and p~ in the limit of 1 b,

——0, in-
dicating that the degree of the excitation caused by the
external field may be substantially suppressed by the ex-
istence of the spontaneous decay from the upper level.
This suppression is more pronounced for the higher-order
photon resonance due to the decreasing effective coupling
[cf. Eq. (48)]. We note that in this very strong field case,
the GVV perturbative results (not shown) do not give
good agreement when compared with the numerically ex-
act results reported above.

Z. Time euolution of the density matrix operator

Temporal distribution of the populations and coher-
ences of an ensemble of systems reveals details of dressed
atomic structure in the presence of strong fields, e.g., via
the study of free-induction decay, and also dictates the
character of the light waves generated during the scatter-
ing by atoms. In Figs. 4—6 we report the time-dependent
behavior of both the populationp bb(t) and the coherence

p,b(t) at the shifted one-, three-, and five-photon reso-
nances, i.e., at col ——106.335, 41.295, and 24.525, respec-
tively. There is a 1:1 correspondence between the charac-
teristic periods of the oscillation of pbb(t) and p,b(t) and
the quasienergy structure A,(coL) in Fig. 2(a) or the su-

pereigenvalues Q(oiL ) in Fig. 2(b). The dominant charac-
teristic period in the one-photon resonance case is caused

by the oscillation between the two adjacent quasienergy
levels indicated by the Floquet indices ( a, m ) and
(b, m —1), appearing on the right-hand side of Fig. 2(a).
The separation between these two levels approaches the
Rabi frequency 2V,b at the weak field limit. The secon-

dary characteristic period is dictated by the quasienergy
differences (X» —A,,p), (kb, —k, i), . . . which intro-
duce small wiggles on the predominant structure. The
large spontaneous decay rate from level

~
b) to level

~
a)

quickly suppresses the oscillation of p(t), centered at its
time-averaged values, cf. Fig. 3(a), after the system flip-
flops between the two levels about 30 times. We note that
the coherence p,b(t) for each of the one-, three-, and five-

photon cases has been transformed into an individual ap-
propriate rotating reference frame according to Eq. (51).

The three-photon resonances pbb(t) and p,b(t) are
shown in Figs. 5(a)—5(c). The time dependence of these
two quantities is now predominantly determined by the
vallles (Azp —Ab 3), (A,,2

—A,b i), . . . and modified by the
differences (I» —A,,p), (A,,z

—Ab 3), . . . . Because in this
case it takes longer, cf. the big hump in Fig. 5, to pump
the system going up and down between levels b and a
than in the one-photon case, the oscillations of pbb(t) and

p,b(t) are not quite overpowered by the spontaneous decay
damping, as in the one-photon case (cf. Fig. 4).

In Figs. 6(a)—6(c) we depict the time dependence of
pbb(t) and p,b(t) at the shifted five-photon resonance. In
this case the dominant oscillation is dictated by the
quasienergy differences (X,p

—Ab s), (1,,2
—Ab 3), . . . .

Corresponding to a large flip-flopping period (beyond the
figure) of the two levels, while less important oscillations
due to differences (A.,p

—Ab s), (A,,2
—Ab 5), . . . survive

almost completely from the damping caused by the spon-
taneous decay. It is striking to note that even though the
system has reached its steady state, it still oscillates vi-
gorously with large amplitude.

3. Time-averaged mgltiphoton resonance fluorescenc:
I'ouster spectrum

Resonance fluorescence scattering by atoms in the pres-
ence of strong laser fields is a delicate nonlinear process at
least in two aspects: (i) It is a cascade process via an in-
finite number of dressed atomic states and (ii) it requires
strong resonance mixings, either by one photon or by
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FIG. 4. (a) Time-dependent population pbb(t) and (b) and (c)
coherence p~(t) at the one-photon resonance frequency
ul ——106.335 (cf. Fig. 3). Parameters used are the same as in
Fig. 2. The results are calculated in the one-photon rotating
frame, see Eq. (51), n=O, assuming each atom is initially in its
ground level

f

a }.

FIG. 5. (a) Time-dependent population pbb(t) and (b) and (c)
coherence p,b(t) at the three-photon resonance frequency
~I ——41.295 (cf. Fig. 3). Parameters used are the same as in Fig.
2. The results are calculated in the three-photon rotating frame,
see Eq. (511, n = 1, assuming each atom is initially in its ground
level

f
a}.
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several photons, between unperturbed atomic levels. The
strong mixings of levels produce sidebands, due to the ac
Stark effect, in addition to those corresponding to the

natural transition frequencies. The resonance fluorescence

processes are schematically depicted in Fig. 7, where each
doublet is characterized by a splitting u between a pair of
nearly degenerate quasienergy levels, and arrows indicate
fluorescence cascade patterns. At each resonance condi-
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FiG. 7. Schematic cascade fluorescence processes of two-

level atoms driven by a monochromatic field of frequency ~L.
The splitting u of the doublets in each column is the splitting of
the adjacent quasienergy levels in fig. 2{a) and is caused by the
ac Stark effect and possible detuning 5:—cob, —(2n+1)ruL at
nearly resonant conditions. Each column is a collection of
quasienergy levels of like parity; quasiepergy levels belonging to
different columns are of opposite parity. Arrows indicate parts
of cascade fluorescence down the infinite number of quasienergy
levels.
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schnnatic cascade diagram (not to scale) {cf.Fig. 7).
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laser field is intense enough to induce multiphoton reso-
nances [say cob, =-(2n +1)toL ], the dominant fluorescence
component always occurs at to = (2n + 1koL . Components
in the lower-frequency side of the predominant one can
have comparable intensities and often exhibit large asym-
metry in the three-peak structure, while components in
the higher-frequency side usually decrease rapidly in in-

tensity as the harmonic order increases.

three-peak structures, both at co=coL and 3coL, gradually
grow from zero and converge to the steady-state line
shapes, very close to the ones shown in Figs. 9(a) and 9(b),
except that each peak now is further broadened by an
amount I"/2 [cf. constant 8's in Eq. (89)] and is some-
what lowered down.

B. Medium field cases

4. Time-dependent physical spectrum

Eberly et al. +" + ' have presented careful examina-
tions on tine-dependent physical spectra at the one-

photon resonance of two-level systems by assuming sud-
den switch-on and switch-off of the external field. Here
we shall concentrate on the time-dependent physical spec-
tra at the three-photon resonance of two-level systems by
suddenly switching on the laser field. Making use of Eq.
(89) and assuming the filter width I'=0.1, we show the
time-dependent physical spectrum I(~,t; I =0 1) at.
coL ——41.295 and at t=2.5, 5.0, 10.0, and 30.0 in Figs.
11(a) and 11(b). By increasing the time t, we see that the
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FIG. 11. Time-dependent physical spectra I(co, t;I ), Eq.
(89), near (a) ca mL, and (b) ~ 3coL for a system of two-level
atoms driven by a monochromatic field, coq tuned at the shifted
three-photon resonance coL ——41.295. The filter width is I =0.1,
assuming the field is abruptly turned on at the time t=0. Pa-
rameters given in Fig. 2.

In the first case (Sec. VIA), we have discussed results
for a very strong field situation where nonperturbative
calculations must be employed. In the following we shall
present somewhat weaker field cases where the perturba-
tive procedure, namely, GVV nearly degenerate perturba-
tion theory, provides accurate results. The first medium
field case will compare the GVV and RWA calculations
at one-photon resonance, whereas the second medium
field case is devoted to the GVV results at three-photon
resonance. In both cases we are especially interested in
the fluorescence power spectrum, i.e., Eq. (83).

l. One-photon resonance case:
yb, ——1.0 and [ V,b )

=100(ar.bitrary units)

In Fig. 12(a) we present the GVV and RWA results for
the long time-averaged population pbb as a function of
laser frequency coL. While the RWA results peak at the
natural frequency cob, ——100.0, the GVV ones peak at a
shifted resonance frequency co'L"

,
——100.995 which reveals

the Bloch-Siegert shift due to the antirotating terms. We
note that the RWA calculation is equivalent to a first-
order GVV perturbation calculation, i.e., dropping all
correction terms of higher than the first order in Eq. (45).
It is obvious that the width of the power-broadened one-
photon resonance peak is one order of magnitude larger
than the corresponding Bloch-Siegert shift, so that the
more accurate GVV resonance profile is slightly displaced
away from the RWA resonance profile. In Figs. 12(b),
12(c},and 12(d} we depict the fluorescence power spectra
I(to}, i.e., Eq. (83), at three different laser frequencies
coL ——100.0, 90.0, and 110.0. It is seen that nearby the res-
onance frequency, i.e., toL -100.0, the triplet spectra of
the GVV and the RWA calculations agree with each other
almost perfectly, cf. Fig. 12(b}, while away from the reso-
nance frequency, e.g., taL ——100.0+10.0, the two calcula-
tions show large differences both in the height of the indi-
vidual line shape and in the separations between the side
peaks and the central one [cf. Figs. 12(c) and 12(d)]. At
the lower laser frequency, e.g., Fig. 12(c), the GVV triple
peaks are lower and more distanced than the RWA ones
and vice versa at the higher laser frequency, e.g., Fig.
12(d). This can be attributed to the fact that the GVV
resonance spectrum pbb is shifted to the right away from
the RWA counterpart [cf. Fig. 12(a)]: At the lower
frequency side, e.g., coL ——90.0, the GVV calculations
predict a smaller long time-averaged population pbb of the
upper level b and vice versa. The difference, both inpbb
and I(co), between the GVV and the RWA results at the
one-photon resonance is expected to gradually diminish as
we further reduce the magnitude of the Rabi frequency

~
V,b ~

and as the Bloch-Siegert shift becomes increasing-
ly negligible.
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P"'=0.0 (arbitrary units). Results are obtained from the GVV
calculations.
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2. Three-photon resonance case: y~ ——1.0X10 ~

and
~

V~
~
=0.75, 1.0, attd 1.25 (arbitrary Units)

As pointed out previously, in the multiphoton reso-

nance case, i.e., cot =(2n+l)coL, , n&0, the resonance
occurs at a shifted laser frequency which is orders of mag-
nitude greater than the corresponding width of the reso-
nance spectrum p&(t(coL, ), unlike in the one-photon case.
In Fig. 13 we present the three-photon resonance spectra

pcs, as functions of laser frequency coL, at three different

~
V,s ~, i.e., 0.75, 1.0, and 1.25. We note the following.

(i) The magnitude of the resonance shift is much larger
than the corresponding width of the resonance line shape;
the width increases, of course, as

~
V~

~
increases. (ii)

The height of the resonance peak at smaller
~

V,s ~, e.g.,
0.75, is lower than that at the larger

~
V,s ~, e.g., 1.25, due

to the competition between the pumping rate from the
lower level a to the upper level b by the laser field and the
spontaneous decay rate from the level b to the level a. As
the Bloch-Siegert shifts are rather large, it is apparent that
when the laser frequency toL is exactly equal to tos, /3, the
unshifted three-photon resonance frequency, the reso-
nance transition between the two levels is completely
quenched, in contrast to the one-photon resonance case.

The three-photon resonance fluorescence power spectra
at

~
V~

~

=0.75, 1.0, and 1.25 are shown in Fig. 14 at
each individual shifted resonance frequency, munely,

coL
—33.341771, 33.348335, and 33.356775, respectively.

The familiar three-peak line shape seen at the one-photon
resonance case is observed again at the shifted three-
photon resonance case: the symmetry of the side peaks
about the central one and the relative ratio of the heights
and the widths of peaks. We should note that (i) at an
even higher multiphoton resonance case, as long as the

laser frequency coL, can be exactly tuned to the corre-
sponding shifted resonance frequency, the induced three-
peak fluorescence light spectrum can be intense enough
and become detectable, and (ii) the three-photon case dis-
cussed here has been modeled in such a way that it closely
resembles a real two-level system (such as the Na atom) as
far as the relative magnitude of the spontaneous decay
rate ys, and the energy difference tab, of the two levels is
concerned.

VII. CONCLUSIONS

In summary, we have shown that the many-mode Flo-
quet theory can be extended to treat the time-dependent
Liouville equation, and that the resulting generalization
provides a powerful time-independent nonperturbative
technique for the treatment of intense field multiphoton
processes (undergoing relaxations) in polychromatic fields.
In addition, the GVV-Liouvillian approach allows a
natural higher-order perturbative extension of the conven-
tional RWA limit, providing useful analytical results and
new physical insights regarding various nonlinear optical
phenomena. Extension of the method to the study of Ra-
man scattering, collisional redistribution of radiation, re-
normalized nonlinear susceptibility, etc., is in progress.
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