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A theory is presented to describe the propagation of a laser pulse with several frequency com-
ponents w;=wo +jwg through a Raman medium, where wo is the initial laser frequency and wg is
the frequency of the Raman transition. We consider primarily the transient regime, where the pulse
width is comparable to or less than the relaxation times of the medium. We formulate the
Maxwell-Bloch equations in terms of a two-photon Rabi frequency  and an overall phase 6. The
resulting equations are similar in form to those describing self-induced transparency, and exhibit
solutions corresponding to slowly traveling, but ultimately decaying, pulses. Numerical solutions to
the equations are presented that include pump depletion, the ac Stark shift, and finite relaxation
times. Significant frequency conversion to high-order (j ~8) anti-Stokes modes is observed in the

numerical results.

I. INTRODUCTION

The propagation of an intense laser field through a Ra-
man medium is a complicated phenomena that has been
studied since stimulated Raman scattering was first ob-
served in 1962. There has been a large amount of research
characterizing the Stokes and anti-Stokes waves under a
variety of conditions including pump depletion, transient
effects, and spatial variations. A good review of work
through 1979 is given by Penzkofer et al.' Most of the
theoretical work has considered only a limited number of
fields (usually pump, Stokes, and anti-Stokes) and as-
sumed that the molecular dynamics of the Raman medi-
um could be ignored (most atoms remain in ground state).
This approximation is usually valid for most molecular
Raman systems, and previous theoretical treatments of
the Raman process"? have had good success in describing
most of the experiments.

However, in 1978 a new Raman effect was observed®
that could not be explained with existing theories. This
was the observation of the efficient production of high-
order anti-Stokes radiation in H,. Starting with a pump
laser at 560 nm, several groups®~> reported anti-Stokes
orders up to 8 (Ag=196 nm) with efficiencies varying
from 107> to 10~2 of the initial pump laser energy. Oth-
er workers>® produced vuv radiation. Previously, experi-
mental observations had been limited to the first few
anti-Stokes (AS) orders, for which the conversion efficien-
cies could be qualitatively explained with existing theories.
This phenomenon of high-order AS production is already
the basis of a commercial product for generating uv radia-
tion, and may ultimately be useful for obtaining broadly
tunable vuv down to 130 nm.

Until recently, there were no theoretical models that
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even qualitatively predicted the observed large conversion
efficiencies to the high AS orders. In 1981, the first
theoretical treatments based on a multiwave approach
were published.”® These initial works treated the process
in the limit of small molecular excitation. Although the
analysis showed that the generation of the higher-order
AS waves was a natural result of casting the problem in a
form that included all possible Stokes and anti-Stokes
waves, the calculated conversion efficiencies remained or-
ders of magnitude lower than those observed experimen-
tally.

These considerations motivated the present theoretical
treatment. In this paper, we will give a complete account
of the multiwave theory initially presented in Ref. 7, and
generalize it to include fully molecular excitation. We
will describe the propagation of a pulse with several fre-
quency components w; =wo+jwg, where w is the initial
laser frequency, wg is the Raman transition frequency,
and the integer j is negative for Stokes orders and positive
for anti-Stokes orders. We concentrate on the transient
regime, where the pulse length is comparable to or less
than the relaxation times of the medium, and we will cal-
culate the evolution of all frequency components of the
pulse, given specific initial conditions. We treat the elec-
tric fields classically; we describe the interaction of these
fields with the medium using the two-photon Bloch equa-
tions, and we formulate the pulse propagation using the
one-dimensional Maxwell wave equation.

An essential feature of the theory is a transformation
from a description in terms of several coupled plane
waves to a description in terms of a single (complex) col-
lective variable, which may be interpreted physically as a
two-photon Rabi frequency () and an overall phase 6. A
single wave equation is obtained for this new variable.
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Then the amplitudes of each frequency component are ob-
tained by solving a subsidiary equation. We present nu-
merical solutions to the equations for realistic cases in-
cluding pump depletion, large excited state populations,
and finite relaxation times.

The results presented here demonstrate for the first
time the importance of the molecular dynamics of the Ra-
man medium. We have been able to theoretically demon-
strate that conversion efficiencies to the eighth AS order
of 1073 are possible for a fully transient system with a
specified set of input conditions. In addition, conversion
efficiencies as high as 20% have been predicted for con-
version to the first AS order. Pulse shapes at various dis-
tances of propagation in the Raman medium have been
calculated for all the AS orders, and the AS radiation has
in general a much shorter pulse width than the initial
pump fields. This result may be useful for applications
requiring pulse compression. Although a quantitative
comparison with experiment is not yet possible, the
present results will be able to direct specific experimental
investigations to test these theoretical results.

An additional important result is that the Maxwell-
Bloch equations for multiwave Raman propagation, ex-
pressed in terms of (2, are similar in form to the equations
describing self-induced transparency (SIT). However, the
present equations do not appear to have an analytic solu-
tion corresponding to the steady-state hyperbolic secant
pulse,’ or to the Lorentzian pulse' that has been found
for other two-photon processes. However, through nu-
merical calculations, we have discovered that the equa-
tions do have solutions corresponding to long-lived, slow-
ly traveling pulses. An important distinction is that these
pulses ultimately decay, even when one neglects relaxation
times.

Section II presents the theory. Section III contains the
results of numerical calculations, and a discussion. Sec-
tion IV contains concluding remarks.

II. THEORY
A. General approach
We wish to find a solution to the coupled Maxwell-
Bloch equations that describes the propagation of a set of

plane waves through a Raman medium. The Maxwell
wave equation in one dimension is

13
3z2  ¢? 3

elz,t) =—— (1)
c

and we seek a solution where the electric field € is of the
form

elz,t)= Y E;(z,t)cos[w;(t —z/c)+¢;], ()
J

and the frequencies w; are defined by
wj=wo+Jjwg , (3)

where j is an integer and wg is the Raman transition fre-
quency of the molecules in the medium. The difference
frequency of any two adjacent waves (j and j+1) can
drive the quantum transition, creating the oscillating po-
larization P in Eq. (1). The right-hand side (rhs) of Eq.
(1) then acts as a source term, coherently generating addi-
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tional waves. P must be obtained by solving the two-
photon Bloch equations.!!

We begin by analyzing the behavior of H, molecules in
a field of the form Eq. (2), where in this case wg is the
frequency of the 0-1 vibrational transition. We show that
the infinite set of coupled equations for the fields E; may
be transformed into two coupled equations for a two-
photon Rabi frequency () and a phase 6. Then the fields
may be determined in terms of ) and 6. The transformed
equations explicitly satisfy the conservation of energy and
number of photons, and reduce in the appropriate limits
to the well-known equations of stimulated Raman scatter-
ing!>~'* when only two fields are involved.

B. Two-photon Bloch equations for H,

In this section we consider the wave function of a single
H, molecule in a field of the form Eq. (2). We will write
the time-dependent wave function in terms of an expan-
sion of zero-field eigenfunctions. The coefficients of the
expansion are obtained by solving an effective
Schrodinger equation that involves a two-photon Rabi fre-
quency. We assume a dispersionless medium, and will
write all equations in terms of z and the retarded time
t=lpp—2 /c.

Let us assume that the eigenfunctions | n) and energies
#iW, of the unperturbed Hamiltonian H, are known. We
wish to obtain the solution to

(Ho+ Vp=ifi S, @
for

V=—pe, (5)

where p is the electronic dipole-moment operator. The
perturbing potential may be rewritten as

V=—3p3 I/jeimjt+c.c. , (6)
J
where
V,=E;e' . %)
We expand the solution to Eq. (4) as
Wiz,t)= il c,,(z,t)eiW"t| ny. (8)
n=

The indices n =1,2 correspond to the states of interest,
i.e., the 0 and 1 vibrational levels on the ground electronic
surface. We assume n =3,4,... refer to translational
motion on higher electronic states. Substituting Eq. (8)
into Eq. (4), we obtain a set of coupled equations for the
ca(z,t) (n=1,2,3,...),

ac ® i(@;+ W, )t
i atn =—3 2 Cn’Prm’z(Vje’ o m
J

n'=1

(wj+W

vre Oty ©)

where
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Pm=(n|p|n’") (10)
and
Wy =Wy —W, . (11)

For the case of interest, n =1 or 2 and p;, =0. We also
neglect all terms except p,, and p,,. Then Eq. (9) is
partially uncoupled. It is possible to eliminate the higher
states by invoking the adiabatic approximation to solve
for the ¢, (n=3,4,5,...) in terms of ¢; and c,. This
solution is valid when the time dependence of ¢, and c, is
small compared to that of the exponential terms. In this
limit,

Vje("wj-*-w""’)‘

C()j+W,,,,'

2 Cn'Pnn’ 2 -

n—l

—i(w,+W,_ )t
+ u . (12)
c'-)j’{"an’n

We substitute this expression for ¢, (n =3,4,...) into the
equations for ¢, and c¢, and keep only the stationary
terms. The following equations are obtained:

_ﬁa o Hy, Hy | |c .
3t |2 |T |Hu Hyu e
where
H“:—%Ea“(wj)Vij ’
j
Hp=—7 3 aple)V;Vi_y,
J
(14)
H21= TZ’
szz—%Zan(wj)VjVj‘ ,
J
and
agplw;) =—1-§pmp,,k 1 + 1 . (15)
! J ﬁ W,"'—Cl)j W,,k‘*‘&)j

When the frequencies ©; are far from resonance, the
dependence of a;; on w; is small. For the present applica-
tion to H, we assume the a; are constants. We now
rewrite the two-state Schrodinger equation in terms of the
components u,v,w of the Bloch vector. We define

EVVq, (16)
c *

The Bloch equatlons are obtained by following the stan-
dard prescription,'> and then transforming to a frame ro-
tated by the angle 6,

3
%:-:—AU—U/TZ )
av
E—=+Au—ﬂ.w—v/Tz s (18)
d
a—;”: v—(w—we)/T, ,
where
96 21T(a22——a”)1
= + P +dw . (19)

We will normally assume the detuning 8w=W,— W,
—wpg is zero. The phenomenological relaxation times T
and T, have been included in the standard way. From
the form of these equations, it is clear that () may be iden-
tified as a two-photon Rabi frequency.

The polarization induced from the potential may be ob-
tained from

(pY=(P()|p | ¥(1)) (20)

using Eqgs. (8), (12), and (15). We may write the macro-
scopic polarization P in terms of the components of the
Bloch vector as

P=te %y +iv)pa122(Vjemj_"+ Vie e e,
j

2D

where p is the number density of molecules initially in the
ground state. For an isolated rotational-vibrational Ra-
man transition, p must be multiplied by a statistical popu-
lation factor for the specific initial rotational level.

C. Equations for {2 and 6

The polarization given by Eq. (21) represents the
behavior of the quantum system H, under the influence of
the applied fields given by Eq. (2). We now substitute this
polarization into Maxwell’s equation (1). We make the
approximation that the field amplitudes V; are slowly
varying, and retain only first derivatives. We also express
the differential operator in the coordinates z and the re-
tarded time. Equating the coefficients of each frequency
component, we obtain a set of coupled equations for the
field amplitudes

a'/} _ TPA |,
oz

wjle —(y —iu)Vj+1—e“9(v +iw)V;_41.
(22)

We obtain an equation for () and 6 by using the above
equation and its complex conjugate to evaluate the rhs of

d ) a avV; oV’

—Q 19=____ ——j ‘ : J !

az( e'?) 7 ? [ 3 i-1+V; 3 (23)
The result is

a i0 1 4ma, ’ i0 .

az(Qe )= — 5 phiwg Ie"(v +iu) . (24)
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By separating the real and imaginary parts of this equa-
tion we obtain coupled equations for () and 6,
2

a( 1 4"77-(112
—=—7 Iv, 25
oz 2POR | 0 v @3
90 4ra ?
1 a2
—=—7 Tu . 26
@ dz 2PhioR hc " (26
Using similar procedures we also obtain
gi — L phiog W . 27)
We may eliminate I from these equations by noticing that
d 4ra 12 2 2
— | |—— | I*"-Q° | =0 28
oz | fic 28

Therefore the quantity in brackets depends only on ¢ and
may be evaluated from the initial conditions (z =0).
Denoting this quantity by B(t), we obtain

fic

———[Q%z,0+BX1)]2. 29)
4| ap, |

I(z,t)=

Substituting this expression into Egs. (25) and (26) yields
the final equations for Q and 6:

%le__ Lior+B)1 72y, (30)
08 = (@148, (31)

where L is a characteristic length given by

1 2mappog
—= 32
L - (32)

D. Equations for the fields E;

Equations (18), (30), and (31) describe the propagation
of the resonant pulse and allow the unrestricted evolution
of the effective two-state systems. In general, the equa-
tions for Q) and 6 must be solved numerically. Once this
has been done, the field amplitudes ¥; may be obtained in
terms of Q and 6. To show how this may be done, we
note first that the solution to Eq. (22) is

V,=E;eii . (33)

Substituting this expression into Eq. (22), expanding, and
using Eq. (30), we obtain

__'._____—_(Q2+32)—1/2(E ~1—E;j1) . (34

This equation may be solved economically by rewriting it
as

dE; LOR |9
e e S
where

@0 | Uz,0+[Q,0+B1)]'

)= 36
Q@0 or | Q0,0)+[Q%0,t)+B*1)]'/? 36
Then the formal solution is
Ejz,0= 3 E;(0,0F/(Q(z,n) . (37)
J

The functions F}’ (x) may be obtained numerically by
solving the following set of coupled equations for each
value of the parameter j' for which the initial field
E;(0,?) is nonzero:

drF’’
j __ 1 U (x)—
=2 1+J (R0 —Fh (T,
} (38)
F(0)=8

The above equations may be solved once and the solutions
stored.

We note that in the limit j(wg/wg)<<1 Eq. (38)
reduces to the recursion relation for Bessel functions, in
agreement with previous work.” Then

F(x)=d;_j(x) . (39)

E. Conservation laws

The equations presented here explicitly satisfy conser-
vation of energy and of the total number of photons. Let
us define the energy U in the pulse per unit cross sectional
area of the beam as

U= [ Izndt . (40)

Then it is easily shown, using Egs. (18) and (27), and as-
suming no relaxation (T';,T,— « ), that

dUu
dz ’—_pﬁaJR

w(oo)—w(— o)
2

(41)

The quantity in large parentheses is the fraction of atoms
that are left in the excited state, assuming that all are ini-
tially in the ground state. This equation expresses the fact
that as the pulse propagates through a volume element,
the energy lost by the fields is gained by the molecules in
the medium.

We now define N;(z) to be the number of photons of
frequency w; per unit area in the pulse at z:

NiD)=7—== [ Viznv}znde . (42)

ﬁw 87
Using Eq. (22) it is easily shown that

3
= gzv,-(z)_o : (43)

This equation expresses the fact that as the pulse propa-
gates, the total number of photons remains constant.

F. Relation to other work

The work presented here is closely related to other work
on two-photon transitions. If we specialize to the case
where only the pump (j =0) and Stokes (j = —1) field are
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present, several expressions derived here may be compared
with formulas in the literature. First, let us consider the
effective two-state Hamiltonian that describes the mole-
cules in the medium. It is easily shown that the expres-
sion for H,, [Eq. (14)] is equivalent to the corresponding
term of Eq. (35) of Grischowsky et al.!' Second, we note
that the polarization derived in the present work [Eq.
(21)] corresponds to the sum of py+py [Eqgs. (54) and
(55)] of Grischkowsky et al.!! In terms of the present no-
tation, Grischkowsky et al.!' showed that when fields at
wo and w_, are present, a polarization develops at the
driving frequencies wy and w_; (given by pp and also at
the new frequencies w_, and w; (given by pyy). The
present work shows how this result is obtained in a more
general context.

We can also recover the standard equations of stimulat-
ed Raman scattering (SRS) from our equations by making
the following approximations.

(1) Only the pump and first Stokes fields (¥ and ¥V _,)
are large.

(2) The pump is not depleted, i.e., Vo= Vy(1).

(3) Only a small excited state population is created
(w~—1).

(4) The ac Stark shift is neglected.

It then follows from Eq. (22) that

aV_l TPA W

= e —iu)V, . (44)
0z c
We now define
Q*=e~u +iv) . 45)

Then using the Bloch Egs. (18) and (19) to evaluate the
time derivative of Q*, and rewriting Eq. (44) in terms of
Q*, we obtain

av_,  TPpA 0 _ .
oz ! ¢ VoQ"
(46)
90" Q* .ap_,
9% _ £ iy,
ar T, om0V

Thus in the appropriate limits, our equations reduce to
those already in the literature!>~'* for SRS. In Refs. 13
and 14, the symbols E; and Eg are used instead of ¥V
and V_;. For completeness, we note that in the present
notation, the steady-state Raman gain coefficient g is
given by

2
_mpapo T,
== Vo (47)

III. RESULTS AND DISCUSSION

A. Computational approach

We have numerically solved the coupled Maxwell-Bloch
equations [(18), (30), and (31)] to obtain the pulse shape as
a function of the retarded time for successive values of
z/L. For computational purposes, we found it preferable
to rewrite the equations in terms of the real and imaginary

parts of the complex variable Qe®. We performed all cal-
culations for parameters corresponding to the Q (1) line of
the 0-1 vibrational transition in H,, for which wg =4155
cm~!. The values of a; have been calculated for this
transition by Huo.!® We used @,,=0.71 au. and
ay,—a;;=0.56 a.u. For most of our calculations, we set
T,=T,= 0, although we made a brief study of the ef-
fects of finite T,. We normally assumed initial condi-
tions corresponding to (possibly different) Gaussian en-
velopes for the pump and Stokes fields Eq and E_,,
respectively. The wavelength of the pump laser was 560
nm, that of the first Stokes was 730 nm. For these pa-
rameters, the wavelength of the eighth anti-Stokes field is
196 nm. As a preliminary step, we calculated and stored
the values of F, }0’ and F}_” once. These functions were
then available to evaluate the individual field envelopes
according to Eq. (37), as discussed in Sec. II.

For the case we considered, four Stokes frequencies are
possible. The model contains in principle an infinite num-
ber of anti-Stokes frequencies, but the intensity in the
higher-order waves diminishes rapidly. We achieved sa-
tisfactory convergence for fields up to the tenth anti-
Stokes by solving the set of equations (38) for j,i,=—4
and j., =20. As a test, the value of the energy U in the
pulse at each value of z/L [Eq. (40)] was monitored.
Values obtained using I from Eq. (29) agreed well (four
significant figures) with those obtained by direct summa-
tion of Eq. (17) over all fields up to the tenth anti-Stokes.

B. Pulse propagation: Analysis of steady-state case

We report the application of the theory to a situation
that illuminates the transition between two familiar limit-
ing cases that have been analyzed in the literature. We
have already discussed the conditions under which the
Stokes pulse should experience the steady-state exponen-
tial gain calculated from Eq. (47). This equation governs
the growth of the peak intensity of the Stokes waves when
the anti-Stokes (and other) waves are negligible. In con-
trast, Bloembergen'’ has concluded, using a cw plane-
wave analysis, that when both Stokes and anti-Stokes
waves are present there is no steady-state gain in the
phase-matched direction. In our one-dimensional, disper-
sionless model, phase matching occurs in the forward
direction. We have numerically obtained results that
unite these two cases.

We first remark that the analysis of Bloembergen in-
vokes the “steady-state” limit in two somewhat different
senses. First, when the relaxation times 7T, and T, are
very short compared to the pulse width, one can analyti-
cally solve the Bloch equations in the “steady-state” limit
by setting the time derivatives in Eq. (18) to zero. The re-
sult is that one can express the polarization P in terms of
nonlinear susceptibilities. Second, one may refer to the
“steady-state” propagation of plane waves, which corre-
sponds to concentrating on the situation that prevails at
times sufficiently long that all transients related to the ini-
tial conditions of the pulse have vanished. The analysis
presented in the present work relies on numerical solution
of the Maxwell-Bloch equations for specified initial condi-
tions. The propagation of the pulses is obtained regard-
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less of the relative size of the pulse width and relaxation
times. To compare our results with the analysis of
Bloembergen, it is necessary to choose initial conditions
that are consistent with the assumptions he made, and
then to examine the behavior of the numerical solutions
after the pulse has propagated for a long time.

We chose to model the behavior of Gaussian pump and
Stokes pulses subject to initial conditions where the Stokes
pulse is expected to exhibit exponential gain according to
Eq. (47). The pump laser pulse had a Gaussian shape
with an initial peak intensity of 2.6 Gw/cm? and a full
width at half maximum (FWHM) of T, =70 ns. The ini-
tial Stokes pulse had the same shape and a peak intensity
10~° as large. The initial anti-Stokes wave, and all other
waves, was zero. The initial density was p=10 amagat,
which gave T,=0.61 ns (Ref. 18) for the Q (1) transition.
The statistical population factor for the J =1 level was
arbitrarily assumed to be unity. The characteristic length
calculated from Eq. (32) is L =0.21 cm.

Under these conditions, the analysis leading to Eq. (47)
is valid, and the steady-state Raman gain coefficient is
calculated to be g =10 cm~'. This differs from the gain
obtained from recent absolute measurements'® only by the
statistical population factor. We therefore expect ex-
ponential growth of the Stokes intensity. The pulse also is
very long compared to the relaxation time T, so that
after the pulse has propagated a long time, it should ex-
hibit zero gain as predicted by Bloembergen.

The results of the calculation exhibit the transition be-
tween these two regimes, thus providing a united descrip-
tion of the physics of the Raman multiwave mixing pro-
cess. The results are shown in Fig. 1. We plot the peak
intensity of the Stokes pulse, normalized to its initial
value as it enters the medium (z=0). The dotted line
corresponds to exponential gain; the solid line is the result
actually obtained. Also shown, with the dashed line, is
the peak intensity of the anti-Stokes pulse in the same
units as the Stokes intensity. Recall that the anti-Stokes
component is automatically included in our multiwave
theory. It is seen that the anti-Stokes wave grows rapidly,
and that the growth of the Stokes wave levels off. The
pulse shapes and intensities of the Stokes and anti-Stokes
waves appear to approach a constant value, corresponding
to the situation of zero gain predicted by Bloembergen.
Note that the depletion of the pump pulse was included in
the calculation, but was insignificant in this numerical ex-
ample.

The behavior of the calculation for zg >>1 can be un-
derstood using the analysis of Bloembergen by noting that
our theory calculates the pulse propagation for all waves
phase matched in the forward direction (no dispersion)
with zero detuning from resonance. Bloembergen con-
cluded, using a cw plane-wave analysis with zero detun-
ing, that the Stokes and anti-Stokes gain in the phase-
matched direction was zero. This effect was explained by
noting that the strongest coupling between the Stokes and
anti-Stokes waves occurs in the phase-matched direction.
In this strongly coupled regime, the gain of the Stokes
component of the coupled wave system is exactly compen-
sated by the loss experienced by the anti-Stokes com-
ponent, and hence the coupled wave system experiences no

NORMALIZED PEAK INTENSITY

o1 Ll ] 1 1 |
0 2 4 6 8 10
DISTANCE IN STOKES GAIN LENGTHS (z g)

FIG. 1. Results of the steady-state calculation described in
the text. The dotted line shows the exponential gain predicted
for the Stokes intensity, for negligible anti-Stokes intensity. The
solid (dashed) line shows the Stokes (anti-Stokes) intensity ob-
tained for an initial condition of zero anti-Stokes intensity.

net gain.

Our calculation is consistent with the SRS steady-state
gain formula, Eq. (47), in the appropriate limit, and also
with Bloembergen’s analysis. However, a broader con-
clusion appears justified. We conclude that for pulse
propagation with T, >>T,, the steady-state Stokes gain in
the phase-matched direction is quickly quenched to zero,
even if the anti-Stokes wave is initially absent. It is quick-
ly generated by the system and builds up to the intensity
of the Stokes wave in a few gain lengths.

We note that a new two-dimensional steady-state
theory?® has recently been developed that includes the
coupling of the Stokes and anti-Stokes waves that allows
propagation through a focal volume. This theory has also
considered the question of detuning from exact resonance
to achieve maximum gain. Further work will be neces-
sary to include such focusing in the present theory, since
the transverse derivatives of the wave equation will have
to be included. This generalization will be needed to
model the angular distribution of high-order anti-Stokes
waves that have been observed by Brink and Proch.?!

C. Pulse propagation: Soliton solutions

The Maxwell-Bloch equations describing the propaga-
tion of the two-photon Rabi frequency  are very similar
in form to those describing self-induced transparency
(SIT).° Q is completely analogous to the single-photon
Rabi frequency in SIT. The only differences are the ac
Stark shifts and appearance of the extra factor propor-
tional to I(z,t) on the right-hand side of Egs. (30) and (31)
[cf. Egs. (25) and (26)]. When these terms are not present,
and when one neglects the relaxation terms in the Bloch
equations, the equations of SIT have solutions that retain
the form of a 27 hyperbolic secant pulse propagating in-
definitely without loss. There appears to be no such solu-
tion in the present case, even if one neglects the ac Stark
shift. However, one could argue that if I(z,t) were “al-
most” constant, that is, slowly varying on the time scale



1794

of the Q pulse, similar behavior to the SIT solution might
be observed. Initial conditions were chosen to insure this
condition, and indeed similar behavior to SIT was calcu-
lated.

We chose the following initial conditions of the pulse:
8 mJ in the pump laser and 0.8 mJ in the first Stokes are
focused to a beam area of 10~* cm?. The FWHM of the
pump is 10 ns; the FWHM of the Stokes is 1 ns, and the
Stokes pulse is displaced 5 ns from the center of the pump
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toward the leading edge of the pump. These conditions
result in a 2.327 pulse at z =0. Since the width of the ini-
tial intensity I(0,¢) is 10 times that of Q(0,7), we are in
the regime where I changes slowly compared to Q. The
ac Stark shift is included, and we neglected the relaxation
times (T2=T1=00)

Results are shown in Fig. 2. We present the envelopes
of the pump and Stokes beam (E3 and E%)), Q, the en-
velope of the eighth anti-Stokes field (E3), and the frac-

1+w
|Eg (2,012 |E_, (z, 012 Q(z,t) |Eg (2, 1) |2 2
z/L=0 + A i L H N\_'
I i [ I i
z/L=5 | - L L o ﬂ‘
- - - - r
- - - - -
z/L=10 [ - A’L L L L
Z/L=15 | - - - -
I i I I i
z/L=20 r 2 A 3 - r
2/L=25 | ~ - - -
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FIG. 2. Calculated results for several quantities are shown as a function of the retarded time for several fixed values of the dis-
tance z propagated, in units of the characteristic distance L. Column 1 shows the pump pulse | Eo(z,¢)|2 Column 2 shows the
Stokes pulse | E_;(z,¢)|2. Column 3 shows the two-photon Rabi frequency ((z,f). Column 4 shows the envelope of the eighth anti-
Stokes field | Es(z,¢) | 2. Column 5 shows the fraction of molecules in the excited state (14 w)/2, where w is the third component of

the Bloch vector. The scale on the ordinate in column 5 is from O to 1, for column 3 the scale is from O to 5 ns

=1, The scales for

|Eo|%and | E_, |?are the same; that for | E_g |2 is multiplied by 4000. Each horizontal division on the time axis is 5 ns.



tion of molecules in the excited state, as functions of the
retarded time for several values of the distance propagat-
ed. This distance is given in units of the characteristic
distance L, which is approximately 2.1 cm divided by the
density in amagats (1 amagat ~2.7 X 10'° cm~3). We no-
tice several interesting features of these solutions. First,
the pump pulse travels at velocity ¢ and retains approxi-
mately its initial shape except for localized perturbations.
Second, the pulse Q also retains approximately its initial
shape, except for some small oscillations that develop near
the base, but the pulse travels at a slower velocity than the
pump pulse. This is evident when one notes that all quan-
tities are plotted versus the retarded time, so that ) moves
from the leading edge of the pump pulse to the trailing
edge. In other words, it loses ground to the pulse: at suc-
cessively larger distances into the medium, it is detected at
relatively later times. As () falls more and more behind
the pump pulse, it finally broadens and dissipates. During
the period when the () pulse propagates as a narrow pulse,
little energy is lost to the medium because the system
achieves an equilibrium condition in which molecules are
left in their ground state after the pulse passes (as t— oo ).
For Z/L >20, some molecules remain excited, corre-
sponding to the loss of energy and dissipation of the pulse.
We also plot the envelope of the eighth anti-Stokes pulse.
Note that this pulse starts from zero and builds up.
Several oscillations in the peak height of this pulse were
observed at intermediate distances not shown on this dia-
gram. Finally, it is seen that the localized perturbations
in the pump pulse are of two types. One moves through
the pulse with (2; the other retains the memory of the ini-
tial value of . The behavior of the Q pulse is clearly
reminiscent of the hyperbolic secant pulse of SIT. It trav-
els at a speed slower than ¢, and it is long lasting. How-
ever, in the present case, ) ultimately dissipates, even
when the relaxation times are neglected.

We note that the form of the pump pulse shown in
several panels of Fig. 2, particularly the case for z/L =S5,
is similar in form to the experimental observations of
Druhl, Wenzel, and Carlsten.?? The spike for which the
pump returns approximately to its initial value was denot-
ed an anomalous reversal of pump depletion, and was at-
tributed to soliton formation. Druhl et al.?? fit their data
by solving the equations for stimulated Raman scattering,
which assume that the fraction of molecules that become
excited is small. They found it necessary to include a ran-
dom phase shift in the Stokes laser pulse. It is noteworthy
that in the present calculations, which are more general
because molecular excitation is fully included, we obtain
similar behavior for a Stokes-pulse envelope that has a
simple Gaussian shape.

D. Conversion efficiency

We have also calculated the fraction of the total initial
energy that is converted to several higher-order modes as
a function of the distance the pulse has propagated. Fig-
ure 3 shows that conversion efficiency of the same pulse
defined in Sec. IIIC. Conversion efficiencies of the order
of 1072 to the seventh and eight anti-Stokes modes are ob-
served when relaxation times are neglected.
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log,o(CONVERSION EFFICIENCY)

0 5 10 15 20 25
Z/L
FIG. 3. Conversion efficiency to several anti-Stokes waves.
The curves show the total energy in the pulse at frequency w;,
divided by the initial energy in the pump plus the Stokes pulse.
The relaxation times are neglected, that is, assumed infinite.

Figure 4 shows that somewhat higher conversion effi-
ciency may be obtained by putting more of the initial en-
ergy of the previous pulse into the Stokes wave. In this
case, 7.2 mJ were in the pump laser and 1.6 mJ were in
the first Stokes. All other characteristics of the pulses
were just as before, resulting in a 3.117 pulse.

We have also investigated the effect of finite relaxation
times on the conversion efficiency. Figures 5 and 6 show
the conversion efficiency for the same conditions as Fig.
3, except relaxation times of 7', =20 and 3.33 ns, respec-
tively, are assumed. In both of these figures, the conver-
sion efficiency for the high-order anti-Stokes waves grows
to an initial peak, and then declines. In Fig. 7, we plot the
conversion efficiency at this peak as a function of 1/T,.
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FIG. 4. Same as Fig. 3, except a higher fraction of the initial
total energy is in the Stokes pulse.
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FIG. 5. Same as Fig. 3, except that T, =20 ns.

It is clear that for large values of the relaxation time, the
conversion efficiency for small values of z/L is approxi-
mately fit by a simple exponential formula

nj=n§°)exp(~T/T2) . (48)
It is interesting that for the 2.327 pulse studied, the time 7
depends on j. For this pulse, at least, the effect of finite
relaxation times becomes more severe as j increases. For
example, for j =8, 7~25 ns. In this case, a relaxation
times several times longer than the pulse width may still
greatly diminish the conversion efficiency. We are
currently investigating other pulses; it would be desirable
to find conditions where the time 7 was on the order of
the width of the Stokes pulse.

We have also investigated pulses in which the pump
and Stokes waves have the same shape. Figure 8 shows
the conversion efficiencies for a 47 pulse, which was con-
structed as follows: 1.5152 mJ in pump, focused to 10~*
cm?, with FWHM of 4 ns. The Stokes envelope was equal
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FIG. 6. Same as Fig. 3, except that T,=3.33 ns.

)
~

]
@

107! T T T T

1072 -

1073 | R

1074

1075

PEAK CONVERSION EFFICIENCY

1078 -

| | 1 1
0 0.10 0.20 0.30 0.40 0.50

1/T, (ns—1)

FIG. 7. Conversion efficiency as a function of (reciprocal) re-
laxation time. The other pulse characteristics are the same as
for Fig. 3.

to the pump envelope. Relaxation times were assumed in-
finite. In this case the conversion efficiencies to the
high-order anti-Stokes modes are much smaller. Howev-
er, we observed the interesting phenomena that the energy
in the second and third anti-Stokes waves became greater
than that in the first anti-Stokes.

logo(CONVERSION EFFICIENCY)

-6 1

0 6 12
z/L

FIG. 8. Conversion efficiency to several anti-Stokes waves
for the case of a 47 pulse constructed from equal pump and
Stokes envelopes.
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IV. CONCLUDING REMARKS

We have presented a theory that describes the propaga-
tion of a short pulse with several frequency components
through a Raman medium. We considered the transient
regime, in which the pulse width is comparable to or
shorter than the relaxation times of the medium. By a
change of variables, we transformed the Maxwell-Bloch
equations to a compact form that contains a two-photon
Rabi frequency that is the analog of the Rabi frequency
that appears in the description of one-photon processes.
This form of the equations illustrates the relationship of
the two-photon Raman process to single-photon processes,
and suggests that the solutions behave in certain limits
like the pulses observed in self-induced transparency.

The principle assumptions invoked in the present form
of the theory are the following: (1) constant ay, (2)
neglect of dispersion, and (3) neglect of transverse deriva-
tives in the wave equation. We are investigating whether
it is possible to relax these assumptions while still retain-
ing the compact form of the Maxwell-Bloch equations.
Our work to date indicates that the frequency dependence
of the a; can be included in an approximate way, ena-
bling us to investigate the effects of dispersion within our
one-dimensional model. Fully including the effects of
transverse derivatives will require more effort, because the
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field can then no longer be modeled as plane waves propa-
gating in the z direction.

Solutions to these equations were presented that fully
included in effects of pump depletion, the ac Stark shift,
large excited-state populations, and finite relaxation times.
Significant frequency conversion to high-order anti-Stokes
modes was observed in the numerical calculations. How-
ever, care must be taken to compare the present results
with experiment. A characteristic of our classical treat-
ment of the fields is that the calculations depend on the
existence of an initial Stokes as well as pump field. Many
recent experiments start with a pump field, and depend on
the growth of the Stokes field from noise. Experimental
work is underway in our laboratory designed to produce a
well-characterized initial Stokes and pump field. A colla-
borative effort is planned that will allow a detailed com-
parison between the predictions of the present theory and
the results of experiment.
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