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Eigenvectors and eigenvalues for the Keilson-Storer collision kernel
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The Keilson-Storer collision kernel has been used extensively to model how velocity-changing col-
lisions affect spectral line shapes. None of the standard references use or refer to the eigenvectors or
eigenvalues of the collision kernel. Here the eigenvectors and eigenvalues of the Keilson-Storer col-
lision kernel are given for both one- and three-dimensional problems.

The Keilson-Storer' collision kernel has been used ex-
tensively to model how velocity-changing collisions affect
spectral line shapes, ' leading, in particular, to Dicke nar-
rowing. The same collision model has also been used for
modeling spectroscopic phenomena involving velocity-
selective optical pumping. To solve the associated kinetic
equation, iterations of the collision kernel have been used,
but, seemingly, no use of an eigenvector expansion has
been considered. In spite of an extensive literature using
the Keilson-Storer collision kernel, apparently its eigen-
values and eigenvectors are not known. It turns out that
these are well-known simple functions. Elementary prop-
erties of the Keilson-Storer collision kernel are first re-
viewed to establish notation and the constraints on the pa-
rameters. Eigenfunctions and eigenvalues for the three-
dimensional collision kernel are then presented together
with an appropriate generating function. Next, the eigen-
vectors, eigenvalues, and a generating function for the
corresponding one-dimensional kernel are given. Finally,
to exemplify the use of the eigenvector-eigenvalue expan-
sion, the time evolution of the three-dimensional velocity
distribution is discussed, whose initial state is the delta
function 5(v —vo). The eigenvector representation of the
time evolution of this state is formally very different from
that obtained by Keilson and Storer using an iterative ker-
nel method. It is shown that these two solutions are iden-
tical by making an appropriate expansion and then per-
forming two summations.

Any linear kinetic equation describing purely velocity-
changing collisions can be written in the form

t)p(v)/Bt = —I p(v)+ I f W(v' v)p(v')dv' . (1)

Here p(v) is the velocity distribution which changes
with time t due to collisions with molecules of a back-
ground (foreign) gas which is in thermal equilibrium. The
loss rate I p(v) is due to molecules changing from velocity
v to some other velocity, while the integral sums the gain
rates from velocity v' to velocity v. In general I" is also
velocity dependent, but in the model of Keilson and Stor-
er, I is taken as a constant. The integral kernel
W( v ~v) nlust satisfy tile two colldltlolls:

(i) f W(v'~v)dv= l. (2)

This is so that f t)p/Bt d v =0, i.e., molecules only
change their velocities during collisions —they are neither

p, (v)=(m/2n'kT) ~ exp( mu /2k—T).

The collision kernel W(v'~v) was modeled by Keilson
and Storer as the Gaussian

W(v'~v)=exp[ —(v —av') /o ]/(stol)l~l .

This satisfies the normalization condition (i). The equili-
brium condition (ii) necessitates that

o =(1—a )2kT/m .

This is easily proved, since the integral in Eq. (3) can be
performed by "completing the square" of the quadratic in
the exponent. One is left with a one-parameter family of
collision kernels with the constraint that

~

a
~

~ 1. That a
represents the fractional transfer of average velocity fol-
lows from

& v),t„„=f f vW(v'~v)p(v')dv'dv

V P V dU A V befpre ~

Two special cases of this collision kernel are (a) a =0,

W( v'~v) =p, (v),

which leads to the particularly simple kinetic equation
with relaxation time I

Here it is assumed that fp dv =fp, dv = l. (b) a = 1,

W(v'~v) =6(v' —v) (10)

and no relaxation occurs, i.e., Bp/8t =O.
There are several considerations that can aid in looking

for eigenvectors for any collision kernel. One of these is
the requirement that W(v'~v) is rotationally invariant.
Thus a set of eigenvectors can be found in the form of be-

created nor destroyed.

(ii) f W(v'~v)p, (v')dv'=p, (v'),

so that at equilibrium, collisions change nothing. It is as-
sumed that the appropriate equilibrium distribution is the
classical Maxwellian
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ing products of scalar functions of u and spherical har-

monics I'i~{0) of the unit vector 0. But more productive
in the present case is to recognize that the integral of a
product of two functions, each of which is the exponential

of a quadratic, is again the exponential of a quadratic.
Thus an exponential of a quadratic could be a generating
function for the Keilson-Storer kernel. This is indeed the
case. In fact, the generating function of Kumar,

i/2
1 a&2n+I

G(a, yv)=exp( —a +2a yv)= g, F&~(a)(yu)'L„'+' (y u )I'i (v),
i,~,, I'(n +I + —,

'
)

is close to being of this form. Here L„'+ are the associated Laguerre polynomials normalized according to the Bate-
man series. Multiplying this by the Gaussian exp( —y u ) does the job. It follows that

2 2 2 2

W(v'~v)exp( —y u' )G(a,yv')dv'=exp
—(y u +a a —2aa yv) =exp( —y u )G(aa, yv),

Q/2 + f2g\2

with the last equality valid if a +y cr = 1. This latter condition is equivalent to y =m /2kT.
On expanding the generating functions in Eq. (12) and equating coefficients of the functions of a, it follows that

~2U 2 y v~ &~ 2m+i xp ~2U2 ~U ll l+&I2 ~2 2 y (13)

Thus the eigenvalues of the Keilson-Storer kernel are the
powers of a with the eigenfunctions being products of
spherical harmonics and associated Laguerre polynomials
weighted with the equilibrium Maxwellian and appropri-
ate powers of yu. These are also the well-known eigen-
functions of the linearized 8oltzm ann equation for
Maxwell moleculess and also the eigenfunctions for the
three-dimensional harmonic oscillator. For the latter
problem in particular, there is a technical difference
whether all of the exponential is contained in the eigen-
vector or whether the square root of the exponential is
contained in the eigenvector. The advantage of this last
modification is that the eigenvectors can be treated as ele-
ments of a Hi)bert space (where there is a symmetry be-
tween vectors and linear functionals). As written, the col-
lision kernel is not symmetric, so it does not produce a
Hermitian operator, but it is easy to transform W(v'~v)
into a symmetric function {just multiply W by
exp[y (u' —u )/2]) which is then the kernel for a Hermi-
tian operator.

It is also noticed that the Keilson-Storer kernel does not
cause changes in direction, each of the x, y, and z veloci-
ty components are independently- affected. Equivalently,
the Keilson-Storer kernel factors into one-dimensional
kernels. Alternatively, if the velocity in only one direction
is driven out of equilibrium by kinetic processes, then the
other d1rections can be integrated over with a consequent
simplification of the problem. The one dimensional ker-
nel is

exp[ —(u —au') /2u (1—a )]W'i (u'~u) =
[2m.u (I —a )]2 2 I /2

Consistent with the fact that the eigenvectors of the
three-dimensional kernel are the same as the eigenvectors
of the three-dimensional harmonic oscillator, the eigen-
vectors of the one-dimensional kernel are the same as the
eigenvectors of the one-dimensional harmonic oscillator,
essentially Hermite polynomials times the appropriate
Gaussian.

The generating function of the Hermite polynomials is

Gi(a, yu)=exp(2ayu —a )= g a "/n!H„(yu) . (15)

It follows that the integral of the collision kernel with this
generating function has the form of being an exponential
of a quadratic. This reduces to the simple relation

I W, (u'~u)exp( —y u' )G, (a,yu')du'

=exp( yu —)G, ( aa, y )u, (16)

X exp( y'u')(yu)'L—„'+' '{y'u') I'I (v),

(18)

where the expansion coefficient al „ is determined by the
velocity distribution at time zero according to the formula

3

1(l+n+ —,
'

)

)& Fi' (v)p(v, O) . (19)

For the special case that the initial distribution is the

provided y is again chosen so that y =m/2kT. Expan-
sion of Eq. (16) in powers of a yields the eigenvector equa-
tion

8'~ U'~U exp —y v'2 H„yU' U'

=a"exp( —y u )H„(yu), (17)

which shows that the eigenvalues of the one-dimensional
Keilson-Storer kernel are the powers of a and the eigen-
vectors are essentially (up to the symmetry considerations
mentioned previously) the one-dimensional harmonic os-
cillator wave functions.

The formal expansion of the three-diinensional velocity
distribution in terms of the eigenvectors of the Keilson-
Storer kernel is given by

p(v, t)= g exp[ —I (1—a "+')t]ai „



180 R. F. SNIDER 33

three-dimensional Dirac delta function 5{v—vo), the ex-
pansion coefficient is given by

2 nt
ot „= ', {yvo)'L.'+ ' {y'vo}I't' (vo) . go)

1(l+n+ —', }

On substituting this evaluation of at „ into the eigenvec-
tor expansion, Eq. (18}, it is found that the sum over m
can be trivially performed to reduce the sum of spherical
harmonics to a Legendre polynomial Pt(v. lo). This gives
the explicit result

p(v, t)= g; exp[ —I {1—a "+')t](y uov)'L„'+' (y vo)L„'+ (y u )Pt(vo v) .
I {1+n+ , )—

(21)

Connection with the form of solution presented by Keilson and Storer' is obtained by expanding the exponential
exp(1 a "+'t) in powers of t. The first term, the coefficient of t, is recognized as the eigenvector expansion of the initial
state, the Dirac delta function 5(vo —v), so that the expanded form of the solution, Eq. {21),is

yiexp( —y v ) " (I t) (2l+1)n! 2„+I
p v, t =exp 1 t v——vo + a

271 i m. I „ I (j+n+ —)

X(y uou)'L„'+' (y'uo)L„'+' '(y v')Pi(lo. v) . (22)

The sums over n and l can now be formally accomplished. Using Eq. (20) of Sec. 10.12 of Ref. 7, the sum over the asso-
ciated Laguerre functions gives a modified Bessel function and Eq. (22) becomes

p(v, t) =exp( —I t) 5(v —vo)+, g expy exp( —y u )
" (I't)~

2~(y2u v)i/2 m! am/i(1 aim)

—a y (u +uv)

l ~2'

Xg (Zl+l)Pt(vv v)Ii+i/i
I

2p UOUCX

~2ptl
(23)

The sum over l is performed using Eq. (1) of Sec. 7.15 of Ref. 7. After combining the exponential terms, the result can
be written in the fairly simple form,

3/2

p(v, t)=exp( —I't) 5(v —vv)+ g, exp
(«) y' 2y (v —a vo)

&2m
(24)

which is the same as the result of Keilson and Storer ex-
cept for notation. It is thus seen that the eigenfunction
expansion, Eq. (21), is equivalent to the iterated kernel re-
sult of Keilson and Storer. However the form is different,
the eigenfunction expansion showing the independent
modes of decay of the velocity distribution according to
the time evolution governed by the Boltzmann equation,
while the iterated kernel solution expresses the answer in
terms of a series of Gaussian distributions.

In conclusion, relaxation of the velocity distribution
p(v) is governed by the relaxation rates I (1—a "+'),
whether three dimensional or one dimensional. I can be
interpreted as arising from the total cross section (for
velocity changing collisions) and this is always reduced by
a factor (1—a "+'), which is, for a close to one, relatively
small. The exception is for 2n +I very large, which is as-
sociated with very complicated velocity distributions. It

follows that for most initial deviations from velocity
equilibrium, the smallest relaxation rates and consequent-
ly the longest-lived deviations from equilibrium, will be
associated with the smallest values of 2n+l and the
simpler deviations from equilibrium. That is, at long
times, only the simplest deviations from equilibrium will
survive and these are governed by relaxation rates that are
small compared to that associated with th'e total cross sec-
tion.
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