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Dispersive optical bistability: Stability of the steady states
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We study the semiclassical mean-field theory of single-node dispersive optical bistability in the

limit of a fully developed hysteresis cycle (i,e., in the limit of large values of the bistability parameter

C) and when all decay rates have comparable magnitude. We locate (i) on the upper branch instabil-

ities leading to time periodic regimes, (ii) on the lower branch instabilities leading to a switching be-

fore the limit point is reached. None of these instabilities are observed in the case of purely absorp-

tive optical bistability.

I. INTRODUCTION

Since the first observation of optical bistability (OB) in

1976 (Ref. 1} a large number of investigations have ap-
peared in the literature. They were motivated either by
the potential applications of OB to optical signal process-

ing or by the large variety of new states emerging from
instabilities which can be predicted and are found experi-
mentally. This paper deals with the stability properties of
steady states in single-mode OB. We consider a homo-

geneously broadened nonlinear passive medium modeled

by two-level atom. We retain nonlinear absorptive and
dispersive processes. In the case of purely absorptive OB
three main limits have been investigated analytically:

(i} The good-cavity limit in which all atomic variables

are adiabatically eliminated and the system is governed by
a differential equation for the electric field.

(ii) The bad-cavity limit in which the field and the
atomic polarization are adiabatically eliminated and the
system is governed by a differential equation for the
atomic population.

(iii) The intermeiiate case where all decay rates are of
the same order of magnitude but the bistability parameter
is very large.

The emphasis on absorptive OB was justified because it
provided a first approach to a set of equations which can-
not be analyzed in full generality. In the single-mode lim-
it of absorptive OB, however, linear stability analyses did
not show instabilities of the steady states. Hence the
focus was mainly on temporal evolution properties. By
contrast, a wealth of instabilities have been found in
dispersive OB. In the single-mode mean-field limit, insta-
bilities to small perturbations of the steady states were
found only on the high transmission branch. For the
lower transmission branch the only reported instability
was anomalous switching ' which requires large pertur-
bations of the steady state.

The purpose of this paper is to extend to the dispersive
case our previous analysis of absorptive OR. To this end
we shall consider the asymptotic limit of large values of
the bistability parameter C, corresponding to a fully

developed hysteresis. Our analysis of the dispersive OB
equations in this limit is motivated by the numerical re-
sults which have been obtained for very large values of
C. However, in contrast to these studies, we consider ar-
bitrary O(1) quantities for the cavity and atomic relaxa-
tion constants as well as the cavity and atomic detunings.

In Sec. II, we present the mean-field equations for OB
in a ring cavity. Sections III and IV analyze the cases of
absorptive and dispersive OB, respectively. Section V
summarizes the main results.

II. FORMULATION

x, =y —(1+ie)x —2Cp,

p, =di [—(1+ih)p +xd],
dt =d~~ [1 d —t (p x +px )]

(2.1)

where f, =dfldt and t is a dimensionless time scaled by
the cavity relaxation constant a.. di —=yi/~ and d~~

—:}~)/K are defined as the ratios of the transversal and the
longitudinal atomic decay rates to the cavity rdaxation
constant, respectively. 6 and 0 are the atomic and cavity
mistunings, respectively.

The steady state-solutions of (2.1) are

(1—ih)x 1+6,P= d =1+6'+ /x /' 1+9,'+ /x f' (2.2)

and

An ensemble of homogeneously broadened two-level
atoms in a ring cavity is excited by a monochromatic
external field of amplitude y. In the single-mode case, the
mean-field model for dispersive OB is obtained from the
Maxwell-Bloch equations and describes the evolution of
the complex cavity field x, the atomic polarization p, and
the population difference d. They satisfy the following
system of ordinary differential equations:
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y2= fx f2 1+ 2C
1+9, + fx f2

d =do+C '/2 [i (a+p')e'
4Q)

2CA

1+6+]x [

(2.3)
—i (a'+p)e ' )+d, +O(C —'),

(3.4)

From (2.3}, we can analyze the condition for multiple
steady states. ' As C~ ao, the lower and upper transmis-
sion branches and their limit points are characterized by
the following orders of magnitude:

Lower transmission branch

x =O(1), p=0(1), d =O(1) andy =0(C) . (2A)

Upper transmission branch

x =O(C'/ ), p =O(C ' ),
(2.5)

d =O(C '), y=0(C'/') .

The purpose of our asymptotic analysis is to describe the
time-dependent response of the optical system when it is
initially near either the lower branch or the upper branch.
Thus, we shall take into account the scales (2.4) or (2.5)
and propose a multitime perturbation analysis of Eqs.
(2.1). Specifically, we seek a solution of (2.1) satisfying ei-
ther (2.4) or (2.5) which is a function of two independent
time-variables T and t. T is the fast time defined by

t
T=C 6) s s (2.6)

where to=t0(t) must be determined by the perturbation
procedure. The C'/ scale for T is suggested by our pre-
vious study of the absorptive case (8=5=0) (Ref. 6) and
was justified by the results of the linear stability analysis
of the steady states. In order to contrast the differences
between the absorptive and dispersive cases, we first sum-
marize the results obtained for absorptive OB and then
analyze the properties of the dispersive system.

III. ABSORPTIVE OB

A. The lower branch

Motivated by (2.4},we first assume

y =C[Y+O(C ')] (3.1)

In this section, we analyze Eqs. (2.1) with 8=5=0. If
at t =0, the optically bistable system is near the lower or
upper branch of the steady states, it is possible to deter-
mine the approximate solution of the time-dependent
problem. We summarize the principal results.

where the time-dependent frequency to of the oscillations
is given by

v)=(2dido)'/ (3.5)

The real functions do(t), di(t) and the complex functions
a(t), p(t) satisfy the following equations obtained from
the solvability conditions

r

p2
do, ——dpi

—do+ I—
4do

(3.6)

+2
dit =dpi —1+ di

4do

1+d, do, d~~ Y

4do 16do

id,
„,P'+ ad, ,

0 CO

1+di do, dpi Y
p, = p—+ +

4do 16do

(3.7)

(3.8)

2 a — pdi
16d0

Equation (3.6) admits two steady states given by

do ——d+ ———,'+ —,
' (1+Y )'/ (Y'&1),

(3.9)

(3.10)

B. The upper branch

where d+(d ) corresponds to the lower (upper} transmis-
sion branch of x. If Y &1 and do(0) &d, Eq. (3.6) de-
scribes the approach to the stable steady state do ——d+.
Then as t-moo, we note from (3.7) that d, ~0 and a
study of (3.8} and (3.9) indicates that

~

a
~

~0,
~
p

~

~0.
Therefore, the solution described by (3.2)—(3.5) represents
rapid oscillations about a stable steady state which slowly
decays on the time scale t. On the other hand, if Y' & 1 or
if 1' & 1 but do(0) &d, the amplitude of the solution in-
creases as t~ 0o and the solution (3.2)—(3.5) describes the
first stage of the jump to the upper transmission branch.
Assuming p=a' (i.e., real x and p), we find the results
described by (3.19)—(3.22) in Ref. 6.

and seek a solution of (2.1) by expanding x, p, and d in
power series of C '/. Using (2.6), the perturbation
analysis leads to the following expressions for x, p, and d:

Motivated by (2.5), we now assume that

y =C'/ [Y+O(C ')] (3.11)

dqF
x =(ae' +pe '")+ +O(C '/ ),

6)2
(3.2)

and seek a solution of (2.1) by expanding X=C '/x,
P=C'/p, and D =Cd in power series of C '/. Using
(2.6), we obtain

p =——C ' (iae'" ipe —' )+O(—C '),
2 2

(3.3)

x =C'"[X,+O(C-'")],
( —i/2[p +O(( —I/2)]

(3.12)

(3.13)
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d =C 'I(«'T+c. c.)+ ', [di+ i(PoiXo+PoiXo)]

ling

a, =a(P+iQ)+P'(R +iS)+ ad), (4.2)

+g (( —1/2)
) (3.14)

ldll
P, =(P +iQ)+a'(R +iS)— Pd, , (4.3)

co=(diidiXoXo )'i

The complex functions Po(t), Xo(t)=re'r and p(t)
=

~

a(t)
~

satisfy the following conditions:

Po= —,
'

( Y —Xo —Xo~) (3.16)

2
r, = ———r+Fcoap,

r
(3.17}

where c.c. denotes complex conjugate and the frequency co

is now given by

where

S=-
16d

(1+di) d~~
Y2 do~

2 16do2 4d,

(8+did ) d() Y b,

16d

d(IF 6
16do

(4.4)

(4.5}

(4.6)

Xo' X:+
r

Xp
Xo

N g

r tp„+y, [r (I+di)+(r ),]+di Yr sing)=0,

d((+di 1 d()di
pi= p—

(3.18)

(3.19)

If 8=5=0, Eqs. (4.2} and (4.3) reduce to (3.8) and (3.9)
and we know from the discussion in Sec. III that the
steady state a=p=di ——0 is always stable. However, a
different conclusion is possible if b,+0, 8+0. We first
observe from (3.7} that di~0 as taboo if dodd+ where

d+ is defined by (3.10). Thus, if do approaches the stable

steady state do ——d+, di ——0 and consequently Eqs. (4.2)
and (4.3}reduce to two linear equations in a and p:

From (3.17)—(3.19), we find that the steady-state solutions
are given by

r =r+ ———+ —,(Y —8)'~, y=p=O, ( Y & v 8) . (3.20}i]z

Then an analysis of the time-dependent equations shows
that if r(0) & r and Y & v 8, r~r+, p~O, and q&~0 as
t~00. Otherwise [i.e., if r(0)&r or Y&v 8], the sys-
tem jumps to the lower transmission state.

In contrast with the analysis of the following sections,
we emphasize that in this absorptive case the only insta-
bilities of the steady states are the two limit points.

a, =a(P+iQ)+P'(R +iS),

P, =P(P+iQ)+a (R+iS),
where P, Q, R, and S are given by

P=- (1+di ) d() Y

16d+

(e+d, S) d~~
Y'a

2 16d

16d+ 16d+

(4.7)

(4.8)

(4.9)

(4.10)

IV. DISPERSIVE OB

We now consider the case 5&0 and 8+0. We again as-
sume that the optically bistable system is either near the
lower or the upper branch of the steady states and analyze
its time-dependent behavior by a multitime perturbation
analysis. We first examine the lower branch.

A. The lower branch

Assuming (3.1), we seek a solution of (2.1) by expanding
x, p, and d in power series of C '~ . After introducing
these expansions into (2.1) and using (2.6), we find that p
and d are still given by (3.3) and (3.4) while x slightly
differs from (3.2) by a term involving 6

x=(«' +Pe ' )+ d, Y+0(C-'~') . (4.1);r (1+ib, )

CO

The expressions (4.1), {3.3), and (3.4} for x, p, and d de-
pend on the real functions co, do, d i which are defined by
(3.5), (3.6), and (3.7), respectively. The major difference
between the absorptive and dispersive problems appears in
the equations for a and p. They are now given by

a, =a (P +R cos%+S sin+),

a%, =2a (Q +Scos4 —R sin%),

where

(4.11)

(4.12)

(4.13)

Defining U and %o by Ucos+o ——S and Usin+o ——R, these
equations can be rewritten as

a, =a (P + U sing),

ag', =2a(Q+ Ucosg),

(4.14)

(4.15)

f—=0+Co and U=—(R'+S')'~'. (4.16)

Assuming a&0, the solution of Eq. {4.15) is either a
steady-state or a time-dependent function of t depending

After rewriting (4.7), (4.8} while a=ac'~ and p=be'",
we observe that since P & 0 and if a (0)&b (0),

~
a (t) —b (t)

~

~0 as t~ oo. Thus, to determine the sta-
bility of the zero solution, it is sufficient to examine the
case a =b With a =b,. (4.7) and (4.8) become
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on whether the condition

! Q/U! & I (4.17)

is satisfied or not. We thus consider two cases. If

! Q/U! & 1, we find from (4.14) that the amplitude a is

given by

a (t)=a (0)e [Q + U cos[g(t)] I

=u(0)e (g, /2) '", (4.18)

where g(t) satisfies Eq. (4.15). Since P &0 and g, is a
time-periodic bounded function of t, ! a!~0 exponen-
tially as r ~ oo. If (4.17} is satisfied, Eq. (4.15) admits a
stable steady state g=g, defined by

T

g =g, —:arccos —,sin(g, ) & 0 .
U

(4.19) 0 I i I I I t I i i i i I I I I i I i i I i I i I i

50

Then from Eq. (4.14), we find that !a I
~0 as r~~

provided that

FIG. 1. Time evolution of the intensity for y =211.07,
C=200, 5=3, 8= —4, d~ ——0.1, and d~~

——1.3. The final
steady state is on the low transmission branch.

P+Usi n(g, )&0. (4.20)

Using (4.19) and since P & 0, (4.20} requires that

p+(U2 Q2)1/2&0 oi p2& U2 Q2 (4.21)

Using the definitions of P, U, and Q given by (4.9), (4.10),
and (4.16), respectively, Eq. (4.21) becomes

[I+~g{1+&')+8&]& —(&i+1)'—(8+ddt )' .
4d~

(4.22)

This condition is always verified when 86 & 0. If 8 and b,

have opposite signs, however, the inequality may be
violated. This will be the case when

1+de(1+6 )

y2 y2 II
4yd

(y+d)~)

where

(1+&g )'+ (8+&&i )'
y= &0—58—1 —di(l+b, )

(4.23)

so that Y, & 1. Provided that (4.17) is satisfied, the condi-
tions (4.23} define a domain in parameter space where the
lower branch becomes unstable before the limit point.
The nature of this bifurcation is not determined by the
Eqs. (4.7) and {4.8) since they are linear. As an illustra-
tion of this instability we have solved numerically Eqs.
{2.1) with c =200, 8= —4, b, =3, d(~

——1.3, aild di ——0.1.
These parameters were chosen in order to ensure that 7',

is O(1); in this case F, =0.9954. The limit point has
coordinates (y~, ! xM! )=(213.46, 3.39). The initial con-
ditions were taken as x (t =0)=!x, !, P (r =0}=!p, !,
d(t =0)=d„where ! x, !, ! P, !, and 1, are the steady-
state solutions. Figure 1 shows the time evolution of the

intensity for y =211.07 corresponding to ! x, ! =2.89. It
displays an approach to a stable steady state on the lower
branch via damped oscillations. Figure 2 shows the time
evolution of the intensity for y =211.18 corresponding to

! x, ! =2.90. In this case we observe a transition to the
upper branch and the short time behavior (r &10) is
characterized by amplified oscillations. The same type of
instability occurs for all values of y larger than 211.18 up
to the limit point.

The instability described here is very different from the
so-called anomalous switching found by Hopf et al. and
discussed analytically by I.ugiato er al. These authors
have analyzed the stability of the lower branch when y is
suddenly changed by a large amount, typically starting at

g5-

Ixjo2

0--&-& ~ — l I i i i i i I i i J i i I i i i I i i

0 t 50

FIG. 2. Time evolution of the intensity for y =211.18; all

other parameters as in Fig. 1. The final steady state is on the

high transmission branch.
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y=0 and ending in the bistable domain. On the contrary,
the instability defined by (4.22) is of a more classical type
corresponding to an instability to infinitesimal perturba-
tions.

8. The upper branch

Assuming (3.11), we seek a solution of (2.1) by expand-
ing X=C '/ x, P =C'~p, and D =Cd in power series of
C '/ . Using (2.6), we find that (3.12) and {3.13) remain
unchanged while (3.14) involves an additional term pro-
portional to 5

N —T~N + T2N —T3 =0,3 2

where

T, =—2[2—r, (1+de )],1

rs

1+6T3=di 4 4
rs

—(1+8 )

T2 —
z
——[r, (1+8 +2di ) —2(1+86,)],

r,

(4.31)

(4.32)

(4.33)

{4.34)

d =C (ae' +c.c.)+ 2 di+ —,
'
(poXo +poiXo )

and r, is obtained from (4.28). The steady state is stable if
Re(ro) &0 or if

T3 & 0, T& ~0 and T~ T2 —T3 + 0 . (4.35)

+ 0(C—1/2)

+ di(PoXo —PoXo)
ih
2

(4.24)

Since T3 p 0 when r, & r„we conclude that the second
branch of steady states with r, &r, is always unstable.
When r, &r„T3&0 and the second or third condition
must be violated for (r„p, ) to be unstable. These two
conditions require that

where ni is given by (3.15). The complex functions Po(t},
Xo(t)=re'~, and p{t}=~a(t)

~

which appear in the ex
pressions of x, p, and d are obtained from the solvability
conditions. Equations (3.17) and (3.19}remain unchanged
but Eqs. (3.16) and (3.18) for Po and y contain additional
terms

and

r, & 2/(2+de ) (4.36)

—r, [(1+de) +8 ]+r, [3(1+di)+8 +86(2+de)]
—2[1+86+de(1+6, )] &0 . (4.37)

Po =
z [Y —(1+i8)Xo Xot] ~—

r2g „+q,[r'(1+de )+(r2), ]+dir Ysinq

(4.25) %e illustrate our stability results by considering the spe-
cial case

(4.38)

+d, 8r2 2dih+ —(r ),—=0.
2

(4.26)
Then the steady states are stable if

2Fco~, = —+r, , Fsiny, = 26
Br, . (4.27)—

r,

Equations (3.17) and (4.26) describe the evolution of the
amplitude r and the phase of the complex output field x.
Since p is related to x by (4.25) and p =

~
a

~

~0 as t~ oo,
the stability of the steady-state solutions will be deter-
mined from (3.17) and (4.26). The steady-state solution
(r„q, ) are

rg &r~=22 2= (4.39}

r, [(l+di) +—6 ]+r, [3(l+d&)+b, (3+de)]
—2(1+de )(1+6, ) &0 . (4.40)

Note that condition (4.36) is always satisfied. In Fig. 3,

Eliminating y„we obtain

2 2 2r'=r,
rs

8—2—
2

S

(4.28)

2

S.
1+0

J

Y,'= 4 I [(1+6,')(1+8')) '/2+ 1 —M, j,
and the steady states only exist if

F& Y, .

(4.29b)

(4.30)

The stability of (r„p, ) is determined from the linearized
theory. We obtain the following characteristic equation:

which corresponds to (2.3) with y =CY and

~

x
~

=C' r, Equation (4.2. 8) describes two branches of
steady states which are connected by a limit point ( r„Y, )

' 1/2
1 ++2

r~ =2 (4.29a)
1+

p2L--
2 =

a l

FIG. 3. Stability diagram r, vs A. The stability diagram is
obtained by solving Eq. (4.40) with 8=5 and dz ——10. r, corre-
sponds to the steady-state amplitude and is related to F by
(4.28). r, =r, =2 represents the limit point of the upper branch
( r, & r, ). %'e observe zero, one or toro Hopf bifurcations points
if 6 &EL, h=hL or 6& b,I, respectively. As h~~, the t~o
Hopf bifurcation points approach the asymptotic limits r, =2
and 1+0&.
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we represent the regions of stability and instability of the

steady states when dz & 1. The parabolic neutral stability
curve is given by the roots of Eq. (4.40}. It can be shown

that they correspond to Hopf bifurcation points to time-

periodic solutions. This suggests the existence of stable
time-periodic solutions when the steady states are unsta-
ble.

V. SUMMARY AND DISCUSSION

We have analyzed the stability of the steady transmis-
sion states in the limit C~ oo.

In the case of the lower branch of steady states, we have
shown that the steady states are stable if conditions (4.17}
and (4.22) are satisfied. Otherwise an instability leading
to diverging oscillations appears. This suggests the ex-
istence of a Hopf bifurcation. However, since the ampli-
tude equations are linear [Eqs. (4.7) and (4.8) for a and Pj,
it is unclear if a bifurcation to stable time-periodic re-

gimes is possible.
The case of the upper branch of steady states is more

completely analyzed; We have shown that the steady
states may become unstable and a Hopf bifurcation to
time-periodic solutions is possible. This bifurcation can
be studied from the nonlinear amplitude equations (3.17)

and (4.26) for r and p, respectively.
Another asymptotic approach of the OB equation has

been proposed by Lugiato et al. They first consider the
limit di —+ oo (or di »C), then they analyze numerically
the simplified evolution equations when C~ oo. Howev-
er, the limit di~ oo of our results is singular [both fre-
quencies (3.5) and (3.15) are proportional to di] which
suggest that the simultaneous hmit dz~ce and C~ po

may lead to different approximations depending on their
relative orders of magnitude.
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