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Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength
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The propagation of optical pulses is considered at the zero-dispersion wavelength of nonlinear

dispersive fibers. Even in the absence of group-velocity (first-order) dispersion, higher-order disper-
sive effects in single-mode silica fibers are found to be strong enough to cause significant broadening
and distortion of picosecond optical pulses for fiber lengths of 10—100 km. Using the parameters

appropriate for a 1.55-pm dispersion-shifted single-mode fiber, we have studied the evolution of
pulse shapes and pulse spectra along the fiber length for a wide range of initial pulse widths. For
peak powers -10 mW, the dispersive and nonlinear effects are comparable for pulse widths —1 ps
and their mutual interplay leads to new qualitative features in the pulse shape and spectrum that are
largely independent of the input profile. The theoretical results are useful for an understanding of
the higher-order dispersion and, at the same time, have implications for high-capacity, long-haul,
optical communication systems.

I. INTRODUCTION

Propagation of short, intense optical pulses through
single-mode fibers is of considerable importance' be-
cause of the current interest in high-capacity, long-haul,
optical communication systems. As pulses get shorter
and more intense, both dispersive and nonlinear effects be-
come increasingly more important. Under certain condi-
tions a balance between the two effects can lead to soliton-
like behavior" '" wherein the pulse propagates undistort-
ed over long distances. In practice, more often than not,
the group-velocity dispersion leads to considerable pulse
broadening. ' Commonly, one has attempted to avoid
this dispersive broadening by operating the optical com-
munication system at the so-called zero-dispersion wave-
length (ZDWL) at which the fiber has the same group
velocity for all frequencies associated with the pulse. For
silica fibers, the ZDWL generally occurs in the vicinity of
1.3 pm. ' '3 It can be shifted to 1.55 pm by suitable
design modifications in order to take advantage of the
minimum fiber loss occurring at that wavelength. Such
fibers are referred to as dispersion-shifted fibers and have
attracted considerable attention recently. '

The chromatic dispersion, however, does not vanish en-

tirely at the ZDWL, and higher-order dispersive effects
should be considered for an appropriate modeling of the
propagation characteristics of single-mode fibers. ' '

Even when the nonlinear effects are negligible, higher-
order dis ersion can distort and broaden the optical
pulses. ' ' However, under typical operating conditions
significant pulse distortion and broadening do not occur
unless ultrashort ( «1 ps) pulses are used. The situation
can change dramatically when the nonlinear effects be-

come important and need to be considered together with
the higher-order dispersion. It is only recently that this
case has attracted some attention. ' '

The object of this paper is to investigate in detail the
propagation characteristics of short, intense optical pulses
at the ZDWL of the single-mode fiber. By examining the
relative contributions of the nonlinear and dispersive
terms in the wave equation, we introduce the concept of a
characteristic width ~, such that the nonlinearity dom-
inates when the initial pulse width ~z pg~„while disper-
sion dominates when ~z g&~, . %hen the two are compar-
able, an interplay between the dispersive and nonlinear ef-
fects can give rise to new features. We consider pulse
shapes and pulse spectra over a wide range of initial pulse
widths and identify the role of nonlinearity. In particular,
we find, in agreement with previous work, that under
certain conditions the nonlinearity can induce significant
pulse broadening for fiber lengths in the range 10—100
km while almost none occurs in a linear medium.

For pulse widths r~-r„ the evolution of the pulse
shape along the fiber length exhibits remarkably new
qualitative features. The pulse consists of a number of
subpulses whose width is determined by the higher-order
dispersion alone at a given distance. Their relative ampli-
tude is, however, governed by the nonlinearity and varies
with the fiber length. In particular, the pulse shape exhib-
its a superstructure related to the nonlinearity-induced
self-phase modulation. Similarly, the pulse spectrum con-
sists of two parts: a central multipeak part arising from
self-phase modulation and two narrow dominant peaks
arising from the dispersion-induced subpulses in the pulse
shape. Further, in the presence of fiber loss, after propa-
gating a certain distance (about 50 km for 0.2 dB/km
loss), the pulse acquires a spectrum that does not change
with further propagation.

The paper is organized in the following way. In Sec. II
we obtain the pulse-envelope equation starting from
Maxwell's wave equation with particular attention paid to
the assumptions and approximations made during its
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derivation. We then describe the numerical procedure
used to solve this equation that makes use of the Fourier-
transform-based beam-propagation method. By
comparing the relative inagnitudes of the dispersive and
nonlinear effects, we introduce a characteristic time scale
r, that is used to identify three distinct propagation re-

gimes depending on the initial pulse width v&. Section III
considers the nonlinearity-dominant regime ~z &p ~, where
the qualitative features are governed mainly by the self-
phase modulation. The dispersion-dominant regime

r~ &&r, is considered in Sec. IV. Here the pulse shapes
are well described by the Airy function (linear-theory solu-
tion). ' Using the stationary-phase method we show that
the qualitative features in the dispersive regime are in-

dependent of the initial pulse shape. In Sec. V we consid-
er the intermediate region where ~& -v, and the dispersive
and nonlinear effects are comparable. Following the evo-
lution of pulse shapes and spectra along the fiber length,
we identify a number of new qualitative features. A sim-
ple model is used to obtain an approximate analytic solu-
tion that can explain reasonably well the numerically
predicted results. Finally, the results are summarized in
Sec. VI where we also discuss the feasibility of the experi-
mental verification of the theoretical results.

II. WAVE EQUATION AND ITS NUMERICAL
SOLUTION

BD
V E—po =0,

t2
(2.1}

where E is the electric field, D is the electric displace-
ment, and po is the vacuum permeability. The constitu-
tive relation between D and E takes into account the
dispersive and nonlinear nature of the fiber medium. If
we assume that the medium responds instantaneously to
the electric field, a suitable form for the constitutive rela-
tion is

D = eo[n '(~)+ 2non 2 I
E

I
']E (2.2)

where ep is the vacuum permittivity, np n( pi)pis——the
linear index of refraction at the carrier frequency pip, and

ni governs the strength of the nonlinear contribution to
the dielectric constant. Using Eqs. (2.1) and (2.2), the
wave equation becomes

(2.3)

where c =(@pep} ' is the speed of light in vacuum. In
obtaining Eq. (2.3) we have assumed that the fiber medi-
um is nonmagnetic and isotropic. The second term in Eq.
(2.3) is to be interpreted in the time domain using the
Fourier-transform correspondence ~~i 8/Bt, i.e.,

g2

c Bt Bt
[~'(p~)E]= —P i

2

A. Envelope equation

The starting point of our analysis is Maxwell's wave
equation

where

p(co) =con (co)/c (2.5)

is the propagation constant.
We consider wave propagation in a polarization-

conserved single-mode fiber and write the electric field in
the form

E(r, t) =eU(p)A(z, t) exp[ i—(coot —ppz)], (2.6)

+ —,p'"(~ pip)'+ ,' p—'"(pi ~—p)' . (2.8)

Here the derivatives p'"'=d "p/dpi" are evaluated at the
carrier frequency pio. It is convenient to introduce the re-
duced time (measured from the pulse center}

r=r p'"z . — (2.9)

Using Eqs. (2.7)—(2.9), the pulse-envelope amplitude is
found to satisfy the following equation:
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C c 87

where we have added a loss term with the amplitude-
absorption coefficient y to account for the fiber loss. In
Eq. (2.10), nz is the effective nonlinear coefficient

n2 —— UP P P UP P P n2

(2.11)

modified to account for the transverse variation of the
fiber mode.

Equation (2.10) describes the propagation of an optical
pulse in a dispersive nonlinear medium. The coefficients
p' ' and p' ' take into account chromatic dispersion and
are sometimes referred to as the first- and second-order
dispersion coefficients. Generally, p' ' dominates and the
contribution of p' ' can be neglected. At the ZDWL,
p' '=0 and p' ' has to be included. The last term in Eq.
(2.10) is responsible for self-steepening and can be neglect-
ed in most cases of practical interest when the pulse is nei-
ther too short nor too intense (pulse width )0. 1 ps and
the peak power &1 W). The pulse propagation at the
ZDWL of the fiber is then governed by

where e is the polarization unit vector, U(p) is the field
distribution in the radial direction p of the single mode
supported by the fiber, pp n——pcilp/c is the propagation
constant at the carrier frequency cop, and A(z, t) is the
(complex) amphtude of the pulse envelope. In the slow-

varying-envelope approximation,

I
BA/Bz

I «ppI A
I

and IaA/ar
I «pipI A

I
. (2.7)

We substitute Eq. (2.6) in Eq. (2.3), multiply by U'(p),
and integrate over the transverse dimensions. Since the
Pulse sPectrum is centered around Pip, we exPand P(co) in
a Taylor series about pip and retain terms up to third order
in ro —coo.

p(pi) =pp+ p"'(pi cop)—



NONLINEAR PULSE DISTORTION IN SINGLE-MODE OPTICAL FIBERS. . .
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This is a nonlinear, third-order, partial differential equa-
tion whose analytic solution is generally not available,
making it necessary to employ numerical techniques.

A =(D+N)A, (2.13a)

B. Numerica1 procedure

We solve Eq. (2.12) numerically using the Fourier-
transform-based beam-propagation technique. Equa-
tion (2.12) is written formally as

where N =in&(coo/c)
~

A
~

. However, N(z+5) cannot be
evaluated since A (z+5, r) is not known while evaluating
Eq. (2.16) at the midsegment located at z +5/2. We have
followed an iterative procedure that is initiated by replac-
ing N(z+5) with N(z) in Eq. (2.16). Equation (2.14) is
then used to estimate A (z+5,~) which in turn is used to
calculate the new value of N(z+5). We have found that
two iterations are enough in practice. The iterative pro-
cedure can, of course, be avoided by decreasing 5 until the
desired accuracy is achieved This may, however, increase
the computing time substantially.

where the differential operator D includes the first two
terms involving loss and dispersion while N consists of
the last nonlinear term, i.e.,

D
8

a1

1 g)B in2coo
y+ —P")—, N(A)=ad'

F exp D(ice) I' A(z, r—),6
2

(2.15)

where I' denotes the Fourier-transform operation, D(ice)
is obtained using Eq. (2.13b), and co is the frequency in the
Fourier space. The use of the fast-Fourier-transform algo-
rithm 5 makes numerical evaluation of Eq. (2.15) relative-
ly fast. Equation (2.14) can then be used repeatedly to
propagate the optical pulse through a given length of fiber
after suitably choosing the step size 5.

Care must be exercised in evaluating the integral ap-
pearing in Eq. (2.14). If we use the trapezoidal rule, the
integral can be approximated by

(2.13b)

An exact solution of Eq. (2.13) is difficult to obtain be-
cause of the noncommutating nature of the operators D
and N. However, an approximate solution can be ob-
tained using the following split-step procedure ' to
propagate the complex field A (z,~) by a small distance 5:

z+5
A (z+5,r)= e / exp f N(z')dz' e A (z, r) .

(2.14)

The numerical procedure consists of propagating the field
for a distance 5/2 with dispersion only, multiplying the
result by a nonlinear term that represents the effect of
nonlinearity over the whole segment length 5, and then
propagating the field for the remaining distance 5/2 with
dispersion only. In effect, the nonlinearity is assumed to
be lumped at the midplane of each segment. The beam-
propagation technique has been widely used in analyzing
unstable resonators, atmospheric propagation, semi-
conductor lasers, and pulse propagation in fibers. ' '

The propagation in a linear dispersive medium
governed by the exponential operator exp(5D/2) in Eq.
(2.14) can be accomplished using the Fourier-transform
method, i.e.,

A (z+5/2, r) =exp(5D/2)A (z, r)

A (0,r) =Ao exp( —2/2~~ ) (2.18)

is launched into the fiber. Here Ao is the peak amplitude
and ~z is the half-width at which the intensity drops by
1/e. Using Eqs. (2.17) and (2.18), we obtain

R=
3)

6H 26)OA () Tp exp( x i
)

(2.19)
c ' x(3—x )

where x =r/v&.
We define the characteristic time ~, as the pulse width

~~ for which R =1. The maximum value of R occurs
for x =1.478 in Eq. (2.19). Using this value of x and set-
ting R,„=1,we obtain

i)
' )/3

(2.20)
nz~ octo

The three propagation regimes are thus identified as fol-
lows: (i) When rz &&r„nonlinearity dominates over
dispersion; (ii) when rz ~&w„dispersion dominates over
nonlinearity; and (iii) when ~z-r„ the two are equally
important. We use ~z as a measure of pulse width for
simplicity. The corresponding full width at half max-
imum for a Gaussian pulse is obtained by multiplying it
by the numerical factor of 2&ln2=1. 66.

In the following three sections we consider each regime
separately. For our numerical calculations, we consider
the realistic case of dispersion-shifted fibers with the
ZD%'L at 1.55 pm. ' In particular, we consider a

C. Three propagation regimes

Numerical solutions of Eq. (2.12) under various initial
conditions show that depending on the initial pulse width

~z, three different regimes with different propagation
characteristics exist. These three regimes can be charac-
terized in terms of a characteristic time r, defined such
that when the pulse width rz -r„ the dispersive and non-
linear contributions are comparable. To obtain a quanti-
tative estimate of ~„we consider the ratio of the non-
linear to the dispersive terms in Eq. (2.12) and obtain

«idol A I'R— (2.17)cg"
Clearly, the ratio R varies with z and ~. We evaluate it at
the initial plane z =0 and assume that a Gaussian pulse
with amplitude
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triangular-core fiber with the core diameter of 6.5 pm and
the relative core-cladding index difference b, =0.01.
These are typical values for such fibers. The value of the
second-order dispersion coefficient, estimated from the
measured dispersion data, is P' '=0.2 ps /km. The mea-
sured value of nz ——1.14K 10 ' esu for silica fibers. To
obtain nz, the integrals in Eq. (2.11) are performed with
the Gaussian approximation for the fundamental fiber
mode, and we obtain nz n——z/2 F.or the fiber parameters
considered here the effective Gaussian-mode cross section
is estimated to be 7.6 pm . The nonlinear contribution is
directly proportional to the input peak power Po. For a
power level Po ——20 m%, n2A0-1. 67&10 ' . Using
these parameter values in Eq. (2.20), we obtain r, =0.8 ps.
In all calculations the fiber loss is fixed at 0.2 dB/km
which corresponds to y=0.023 km ' in Eq. (2.12). The
peak power of the input pulse is chosen to be 20 mW.
The nonlinear parameter nz(coo/c)Ao ——0.68 km ', corre-
sponding to this power level. It should be noted that for a
given peak power, the nonlinear parameter depends on the
fiber-mode cross section which in turn depends on the
core diameter and the core-cladding index difference.

In the following numerical results, Eq. (2.12) is solved
using Eqs. (2.14)—(2.16) with the initial Gaussian profile
(2.18) at the plane z =0. After propagating a certain dis-
tance, the calculated amplitude A (z,~) is used to obtain
the temporal intensity profile (pulse shape) ! A(z, r)!
and the spectral profile G(z, co). The latter is calculated
using

Cg 2

G(z, ru) = J A (z,r) exp[ i(ru —ruo)]d—r . (2.21)

The nonlinear and dispersive effects manifest through the
changes in both the pulse shape and the pulse spectrum.
We now present the temporal and spectral profiles for a
wide range of input pulse widths. For the sake of com-
parison, the temporal profiles are norinalized such that
A (0,0)= 1 and are shown after excluding the intensity
reduction exp( —2yz) due to linear absorption so that the
pulse area remains constant during propagation. The
spectral profiles are normalized to unit maximum ampli-
tude and are centered at the carrier frequency coo.

III. DOMINANT NONLINEARITY

This section considers the case of relatively broad
pulses compared to the characteristic width ~, . Figure 1

shows the intensity and spectral profiles at z =50 km for
rz ——25 ps. Dashed curves show, for comparison, the cor-
responding initial profiles at z =0. %'e notice that the
pulse shape has hardly changed whereas the pulse spec-
trum has broadened considerably with an oscillatory
structure. This spectral broadening is a consequence of
self-phase modulation induced by the nonlinearity and has
been previously studied. The effect of second-order
dispersion is to introduce an asymmetry, seen clearly in
the pulse spectrum of Fig. 1. This is, however, a minor
effect in the regime where the nonlinearity is dominant.

A qualitative understanding of the propagation charac-
teristics in the nonlinearity-dominant regime can be
develo ed by neglecting the dispersion altogether and set-
ting '=0 in Eq. (2.12). The resulting differential equa-
tion can be solved analytically with the result
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FIG. 1. Temporal and spectral profiles at z =50 km for a
Gaussian pulse with ~~ =25 ps. Dashed curves show the corre-
sponding initial profiles at z =0. Here and in all subsequent fig-
ures y=0.2 dB/km, P"'=0.2 ps'/km, and input peak power
~o ——20 mW.

A (z, r) =A (O, r)e

n 2ND 1 8
—2&z

+exp i
c 2y

! A(0, ~)! (3 1)

)& exp[ i (~ run)r—]d~, (3.2—)

Since the nonlinearity affects only the phase of the propa-
gating pulse, the pulse shape does not change during prop-
agation except for an overall loss-induced amplitude
reduction. However, the resulting self-phase modulation
significantly affects the pulse spectrum. This can be seen
by substituting Eq. (3.1) in Eq. (2.21). For a Gaussian
pulse with the amplitude A (O, r) given by Eq. (2.18), the
spectrum is given by

G(z, ~)=a@-'r' I exp( —+/2+)
p/p

&& exp(iP e ~ )
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P1 2Q)o
Ao

2 (3.3)

is the maximum phase shift due to self-phase modulation.

By expanding the second exponential in Eq. (3.2), the in-

tegral can be performed to yield the series solution

' 1/2
(i P~ )" 2mrq

G(z, co) =A pe n! 2n +1

0.5—
c5

02—
C
4)

O. I—
(co cop) T—

&

2(2n + 1)
(3.4)

The numerical evaluation of Eq. (3.2) or Eq. (3.4) shows
that the spectrum for the purely nonlinear case (P' '=0)
is similar to that shown in Fig. 1 but without the
dispersion-induced asymmetry.

The qualitative features of the pulse spectrum can be
understood through the time-dependent nonlinearity-
induced phase shift

0.0
-l.O

I.O

I

-0.5 0.0
time (ps)

0.5 i.O

exp( —r'/~,') (3.5) C
0.6—

occurring in Eq. (3.2). The effect of self-phase modula-
tion is to chirp the pulse or induce a frequency shift
5co=dp&/dt. The oscillatory structure seen in Fig. 1

arises from an interference between the two spectral com-
ponents for which the frequency shift is the same. The
extent of spectral broadening b,co on each side of the opti-
cal frequency is given approximately by

~
c)Q&/c)r

~

One can readily verify that b,co-P /r~. Since 7~
' is the

spectral width in the absence of self-phase modulation,
the spectrum is broadened by a factor of P, where P is
given by Eq. (3.3). We note that the numerical value of

is loss dependent. In the absence of loss (y=0), P
increases linearly with z, and the spectrum would keep
broadening with more and more peaks in Fig. 1. Howev-
er, P saturates for finite value of y for distances z & y
For the value y =0.2 dB/km used in Fig. 1, the saturation
has nearly occurred for z =50 km, and no further spectral
changes occur with an increase in the fiber length. The
number of peaks is given by the integer part of 2$ /2m,
and four peaks occur since P =15 for the parameter
values used for Fig. 1.

IV. DOMINANT DISPERSION

0.4—
ED

0.2—

0.0
-lO -5 0 5

Frequency (THz)

tive behavior can be reasonably well understood by drop-
ping the nonlinear term in Eq. (2.12). The resulting linear
equation can be readily solved using the Fourier-
transform technique with the solution

FIG. 2. Temporal and spectral profiles at z=5 m for a
Gaussian pulse with v~=0.05 ps. Other parameters are the
same as in Fig. 1. For such narro~ pulses, dispersion dominates
over nonlinearity and generates additional subpulses on the lead-

ing edge of the pulse. The pulse spectrum is indistinguishable
from the initial spectrum at z =0.

In this section we consider the case of ultrashort pulses
with width ~z ~&v;. Figure 2 shows the intensity and
spectral profiles for v&

——50 fs at the output end of a fiber
of length z =5 m. In contrast to Fig. 1, the spectral pro-
file is almost identical to the initial profile at z = On
the other hand, the pulse acquires significant structure on
the trailing edge appearing in the form of subpulses of de-
creasing amplitudes as r increases. (The dispension-
induced subpulses appear on the leading edge when P' ' is
negative. } Since the nonlinearity does not play a signifi-
cant role in the dispersion-dominant regime, the qualita-

A(z, r)=e "' A(O, co)exp icos P' 'co—z—dco,
00 6

(4.1)

where

Oo

A (O, co) = I A (O, r) exp( icos)d~-
2&

(4.2)

is the spectrum at z=0. For a Gaussian pulse with
A (O, r) given by Eq. (2.18}, A(O, co) is also Gaussian. The
integration in Eq. (4.1) in this specific case leads to the
analytic solution'
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Ai[(1 —Y.z) ~z
~

],
3z2

(4.3)

where 7 and z are the normalized width and distance de-

fined using

v=W2&/rq, z =v 213 'z/rp, (4.4)

and Ai(x) is the Airy function.
The qualitative behavior seen in Fig. 2 can be under-

stood using the Airy-function solution (4.3} obtained for
the linear dispersive medium. The Airy function Ai(x)
exhibits oscillations for negative values of its argument x.
It is thus evident from Eq. (4.3) that the pulse amplitude
would exhibit oscillations (or ringing) when ~z & 1, or us-

ing Eq. (4.4), when

envelope of the pulse structure. Using Eqs. (4.3) and (4.4),
the envelope is iven approximately by exp( r—/vo),
where vo ——P' 'zi ~. Thus the amplitude of the subpulses
decays exponentially and only a few pulses with r (~o
would have noticeable amplitude.

The previous discussion of the dispersion-induced sub-

puises js based on the Airy-function solution (4.3) ob-
tained for an initially Gaussian pulse. The phenomenon
is, however, expected to be general, and qualitatively simi-
lar results should hold for other pulse shapes. In the Ap-
pendix the integral (4.1) is evaluated asymptotically for
arbitrary pulse shapes using the method of stationary
phase. We find that the effect of pulse shape is to modify
the envelope of the subpulses while their width, governed

by Eq. (4.10), remains unaffected. This feature is illus-

trated in Fig. 3 where the pulse shape and spectrum are
plotted for a pulse with secant-hyperbolic profile at z =0,
1.e.,

~p/(2P' 'z) . (4.5) A (0,~)=An sech(r/~z) . (4.11)

For small distances z such that r~ &&~z, the oscillations
would not be apparent since their amplitude is very small.
However, if ~d (v~, the pulse would contain oscillatory
structure for v & rd Using. this criterion, one can estimate
the distance above which the oscillatory structure becomes
apparent. Setting rd r~ in E——q. (4.5), this critical distance
is given by

0.5—

z, =~~i/2P"' . (4.6) 0.3—
If we use ~z ——0.05 ps and P' '=0.2 ps /km, the parame-
ters used to obtain Fig. 2, we find that the distance z, is
about 0.3 m. As the distance increases, more and more
subpulses are added to the traihng edge (v&0) of the
pulse. One can estimate the number and width of these
subpulses by using the following asymptotic expansions
of Ai(x}, valid for large negative values of x:

0.2—

O. I—

0.0
-I.O

I

-05 0.0
time (ps}

O.S I,O

Ai(x)= ~x
~

'~ sin( —', [x ~'~'+ ,'n), —(4.7)

where on using Eqs. (4.3) and (4.4)

x=—~z
~

z
~

~ = —(22/P"'z)' ' . (4.8}

I.O

The pulse intensity becomes zero whenever the argument
of the sine function in Eq. (4.7) is an integer multiple of
217, 1.e.,

0.8—

06-
—',

~

x
~

~i+ —,
'

m =2mm,

or after using Eq. (4.8},

P' 'z(2m ——)

' 1/3

(m &0),

(4.9)

(4.10)

c5
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0.4-
Ch
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0.2

where ~ is the value of r for the mth zero. Equation
(4.10) shows that the location of subpulses (zeros in the
pulse intensity) varies with distance. Further, their widths
at a given distance z are not the same and decrease slowly
as m increases. Our numerical results verify these con-
clusions in the dispersion-dominant regime. The ampli-
tude and the number of subpulses are determined by the
exponential term in Eq. (4.3) which governs the overall

O. O
-IQ -5 0 5

Frequency (THZ)

FIG. 3. Same as in Fig. 2 except that the pulse shape is
governed by sech(~/~~). Compare ~ith Fig. 2 and note the
similarity in pulse shapes except for the pulse heights. In partic-
ular, intensity minima occur at the same locations.
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The other parameters are the same as in Fig. 2. A com-
parison of Figs. 2 and 3 shows that except for the height
of the subpulses, the dispersion-induced features are in-

dependent of the initial pulse shape. In particular, the lo-
cations of the subpulses (intensity minima) are the same in
the two cases.

V. DISPERSION AND NONLINEARITY
COMPARABLE

The preceding results have shown that depending on
whether the nonlinearity or the dispersion dominates, ei-
ther the pulse spectrum or the pulse shape is mainly af-
fected during propagation. In this section we consider the
important intermediate region wherein the dispersion and
the nonlinearity are comparable. As a result, their mutual
interaction plays an important role, and new qualitative
features arise.

Figure 4 shows the pulse shape and the spectrum for an

input pulse with ~z ——1 ps at a distance z =5 km. Since ~z
is comparable to the characteristic time r, =0.8 ps [see
Eq. (2.20)j, both the shape and spectrum are affected dur-

ing propagation. In particular, the dispersive effects
governed by P' ' introduce oscillatory structure (subpulses)
in the pulse shape. However, in contrast to the result
shown in Fig. 2, the modulation is not complete, i.e., the
intensity minima do not go to zero. Similarly, the asym-
metric double-peak spectrum is very different from the
nonlinearity-dominant case shown in Fig. 1. As a result
of interplay between the dispersion and the nonlinearity,
none of the analytic results presented in Secs. III and IV
are applicable here.

Further propagation of the optical pulse inside the fiber
reveals additional new qualitative features. Figure 5

shows the pulse shape and the spectrum at z =25 km and
should be compared with Fig. 4. The pulse exhibits a
large number of dispersion-generated subpulses. Howev-
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FIG. 4. Temporal and spectral profiles at z =5 km for a
Gaussian pulse with r~ =1 ps. Note that in contrast to Figs. 1

and 2, both the shape and spectrum are affected by dispersion
and nonlinearity.

FIG. 5. Same as in Fig. 4 except that the 1-ps pulse has pro-
pagated to z =25 km. Note the discrete nature of the pulse
spectrum with peaks at multiples of a characteristic frequency
-400 GHz related to the repetition rate of the subpulses in the
temooral orofile.
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er, a remarkable feature is that the first subpulse is no
longer the most intense one (as expected for the purely
dispersive case). Apparently, the nonlinearity is shifting
the power distribution among various subpulses. The
spectrum in Fig. 5 is dominated by two peaks occurring at
about +400 GHz on both sides of the optical frequency.
These peaks are a manifestation of the periodic structure
of subpulses in the pulse shape and their frequency is ap-
proximately given by the repetition rate of subpulses. The
additional side peaks at twice the fundamental frequency
also occur since the subpulse structure is not exactly
peAodlc.

In order to explore fully the propagation features, we
have followed the evolution of an initial Gaussian pulse

with rz ——2.5 ps from z =0 to 100 km. This corresponds
to a full width at half maximum of about 4 ps. In Figs. 6
and 7 we show the pulse shapes and spectra at several
values of z. Figure 8 shows the details of the pulse break-
up during the early stages on an expanded scale. As be-
fore, dispersion generates subpulses whose number in-
creases rapidly with z. As a result, there is a huge
broadening on the trailing edge of the pulse. (For nega-
tive values of P' ', the pulse shapes are mirror images of
those shown in Fig. 6 and the broadening is on the leading
edge of the pulse. ) The relative amplitude of various sub-
pulses changes with z and appears to be governed by the
nonlinear effects. In particular, the envelope develops a
two-peak superstructure whose origin, as will be shown
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FIG. 6. Evolution of the pulse shape along the fiber length for a Ciaussian pulse with ~~ =2.5 ps. The pulse broadens as a conse-

quence of dispersion-generated subpulses and develops a two-peak superstructure that is related to the nonlinearity-induced self-phase
modulation.
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below, can be traced to the self-phase-modulation-induced
spectral broadening.

The evolution of the pulse spectrum shown in Fig. 7 ex-
hibits a number of interesting features. Although it ap-
pears to have a complicated shape, the spectrum consists
of two parts. First, there occur two narrow peaks at
about +400 GHz similar to the case shown in Fig. 5.
These peaks are related to the almost periodic subpulse
structure generated by the dispersion. Second, there are
additional peaks of much lower amplitude in the central
part of the spectrum. These peaks are related to the
nonlinearity-induced self-phase modulation (see Fig. 1)
and their number increases with the distance propagated
inside the fiber. However, as already discussed in Sec. III,

in the presence of loss their number eventually saturates
after some distance z) y '. For the case of 0.2-dB/km
loss considered here, the saturation occurs around 50 km.
For this reason, no spectral changes are expected to occur
with a further increase in z. This is clearly seen in Fig. 7
for z =50, 75, and 100 km where the spectrum appears to
be "frozen. " The important point to note is that the spec-
trum is dominated by the dispersion-induced peaks rather
than by the nonlinearity-induced central structure.

In order to understand physically the qualitative
features of the pulse-evolution process, we obtain an ap-
proximate analytic solution of Eq. (2.12) using a simple
model. VAereas the dispersive and nonlinear mechanisms
act simultaneously to shape the optical pulse, the model
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FIG. 7. Evolution of the pulse spectrum along the fiber length for a Gaussian pulse (~~=2.5 ps) whose temporal evolution is
shown in Fig. 6. For z g 50 km, the spectrum does not change with propagation. The two extreme peaks are related to the subpulse
structure 4;see Fig. 6) while the central part is related to the self-phase modulation.
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l-2 '1

t l l 1 1 1 suits are applicable to all pulse shapes. Propagation in a
linear dispersive medium is accomplished using the gen-
eral solution (4.1), and we obtain

00

A(z, v)=Roe r' g(co)exp icos ——p' 'co z den,
CO 6

(S.2)
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02—
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is the pulse spectrum that has been broadened due to
nonhnearity-induced self-phase modulation.

The integral in Eq. (5.2) can be evaluated asymptotical-

ly using the method of stationary phase. The procedure is
similar to that outlined in the Appendix for the case of a
linear dispersive medium and the result is
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assumes that they can be treated separately. More specifi-
cally, we assume that the effect of self-phase modulation
occurring throughout the fiber length can be lumped at
the input plane so that the effective field at z &0 that
propagates in a purely dispersive medium is [see Eq. (3.1)]

ff(0, r) =Aof (r) exp[i/ I f (r)
I ] (5.1)

where f(r) is the initial shape and P is given by Eq.
(3.3). We leave f (~) unsnecified so that the followina re-

FIG. 8. Same parameters as in Fig. 6. Details of the pulse

breakup are shown on an expanded scale at three distances dur-

ing the initial stages of the pulse evolution.

In obtaining this asymptotic solution, we have assumed
that f(r) is an even function of r The pul. se shape be-

comes asymmetric during propagation because of second-
order dispersion. Equation (5.4) is valid only for ~& 0 and
z & z„where z, is defined by Eq. (4.6).

The asymptotic solution (5.4) can be used to study the
qualitative features of the pulse shapes shown in Fig. 6 in
the presence of both nonlinearity and dispersion. For the
parameter values P' '=0.2 ps /km and v~=2. 5 ps, the
asymptotic solution holds only for z&40 km [see Eq.
(4.6)]. The presence of a sine function in Eq. (5.4) indi-
cates the oscillatory structure or subpulses whose location
is governed only by dispersion at a given distance (similar
to the case of a linear medium). The amplitude of the
subpulses is, however, determined by the spectral function
g(co) or by the nonlinearity [see Eq. (5.3)] since the spec-
trum is affected by the self-phase modulation (governed
by P ). Equation (S.4) shows that all spectral features
would manifest in the pulse shape with the mapping
u=(2vlP' 'z)' . A separate evaluation of g(u) using
Eq. (5.3) shows that the observed envelope in Fig. 6 is
indeed consistent with this interpretation. In particular,
the double-peak superstructure is a direct consequence of
the nonlinearity-induced spectral broadening of the pulse
propagating inside the fiber. The superstructure remains
unchanged (except for an overall scale factor) for z =75
and 100 km since, as discussed in Sec. III, the spectrum
becomes frozen due to the saturation of P in the pres-
ence of loss [see Eq. (3.3)]. We have verified that when

y =0 (no loss), the superstructure keeps evolving in
response to the additional peaks generated in the pulse
spectrum with an increase in P
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VI. DISCUSSION AND CONCLUSION

In this paper we have considered the propagation of
short optical pulses in dispersive, nonlinear fibers at the
ZD%'L, i.e., the wavelength at which group-velocity
dispersion vanishes. It is found that the second-order
dispersion in silica fibers is strong enough to cause signifi-
cant pulse broadening and distortion. The relative impor-
tance of the nonlinear and dispersive effects depends on
the initial pulse width r~ We. have defined a characteris-
tic time r, (typical value —1 ps for dispersion-shifted sili-
ca fibers at 1.55 pm at a peak-power level -10mW) such
that dispersion dominates for r~ &&r, and nonlinearity
dominates for vz »~, .

Using the parameters appropriate for a 1.55-p, m
dispersion-shifted single-mode fiber, we have studied the
evolution of pulse shapes and pulse spectra along the fiber
length for a wide range of initial pulse widths. For rela-
tively short pulses such that ~~ &&r„ the linear theory is
approximately valid and the Airy-function solution' can
describe well the qualitative features of the numerical re-
sults. For relatively broad pulses such that v~ &~a„ the
pulse shape remains almost unchanged, except for the
developing a slight asymmetry, since dispersion plays a
minor role. The pulse spectrum, however, is considerably
broadened due to the nonlinearity-induced self-phase
modulation and exhibits a multipeak structure that is
slightly asymmetric because of second-order dispersion.

For pulse widths such that ~z-r„ the mutual interac-
tion between the dispersive and nonlinear effects intro-
duces remarkably new features in the pulse shapes as well
as the pulse spectra. Qualitatively speaking, the pulse is
broadened and consists of a large number of subpulses
whose width is governed mainly by the dispersion while
their amplitude is governed mainly by the nonlinearity.
The pulse exhibits a superstructure whose origin is related
to the nonlinmity-induced self-phase modulation. The
pulse spectrum is found to consist of two parts: a broad
central structure related to nonlinearity and two narrow
peaks of large amplitudes related to the periodic oc-
currence of dispersion-generated subpulses in the pulse
shape (see Figs. 6 and 7). Further, in the presence of loss,
after propagating a certain distance (=50 km for a 0.2-
dB/km loss) inside the fiber, the pulse acquires a spec-
trum that does not change with further propagation.
These qualitative features in the pulse shape and spectrum
are independent of the initial pulse shape.

An experimental observation of the above-mentioned
theoretical predictions would be of considerable interest.
Although the nonlinear pulse propagation in the presence
of first-order fiber dispersion has been experimentally
studied in relation to soliton formation, ' the case of
second-order dispersion at the ZDWL has attracted 1ittle
attention. The main requirement for the experiment is a
tunable picosecond laser source whose wavelength can be
tuned to the ZDWL of the single-mode fiber. Either con-
ventional fibers at 1.3 pm or dispersion-shifted fibers at
1.55 pm can be employed. A color-center laser can be
useful since it can be tuned in the vicinity of 1.55 pm.
Alternatively, a mode-locked semiconductor laser can be
employed with temperature tuning used for a fine adjust-

ment of the wavelength. We have estimated the tolerable
wavelength detuning from the ZDWL so as to make the
effect of first-order dispersion negligible, and find that for
a pulse width ~z —1 ps, the detuning should be less than 2
nm.

Our results suggest that significant pulse distortion
occurring at the ZDWL can limit the performance of
such fiberoptic communication systems. Equations (2.20)
and (4.6) can be used to estimate the importance of pulse-
distortion effects for given fiber parameters P' ' and ni
The peak power determines the characteristic time r,
(pulse distortion occurs for ~~ (r, ), while Eq. (4.6) pro-
vides the fiber length beyond which high-order dispersion
limits the system performance. For peak powers &10
mW, the dispersive effects would limit the performance
only at very high bit rates ( & 100 GHz), although the ex-
act matching of the carrier wavelength and the ZDWL
would become more and more critical with an increase in
the bit rate. At lower bit rates ((100 GHz), Eq. (4.6)
shows that the dispersive effects would manifest only for
fiber lengths —1000 km. For such ultralong communica-
tion systems (if possible in the future) the use of solitons
may become an attractive option. '

APPENDIX: ASYMPTOTIC EVALUATION
OF EQ. (4.1) USING THE METHOD

OF STATIONARY PHASE

In the method of stationary phase the integral (Al) is ap-
proximated by

X A (O, coj ) exp[izf (coj )], (A3)

where coj are the solutions of df /dc0=0 and f"(co& ) is the
second derivative of f(c0) evaluated at co&. The method
assumes that the most dominant contribution to the in-
tegral (Al) comes from the regions where f(co) varies
most slowly, i.e., the phase is stationary.

The frequencies coj corresponding to the extrema of
f(~) are obtained by using Eq. (A2) and setting
df /1 co =0. They are given by

coj =+(2~/zP' ')' (A4)

For r&0, coj. becomes imaginary and the method of
steepest descent should be used. However, for a discus-
sion of the dispersion-induced oscillatory structure, the re-
gion r & 0 is of interest (assuming P' '&0). A straightfor-
ward evaluation of Eq. (A3), using coj from Eq. (A4),
gives the result

For an asymptotic evaluation of the integral appearing
in Eq. (4.1), we rewrite it in the form

A (z,~}=e r' f A(O, co) exp[izf (co)]dc@, (Al)

where

1f (co)=—co ——p "co' .
z 6
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A (z, ~)=e
1/4

2X

g3)

' 1/2

2T 2v
p(3)

+—
4

(A5)

where
CC

A (O, co) = f 3 (O, r) exp( ic—or)d~ .
27/ 00

(A6)

In obtaining Eq. .(A5), we have assumed that A (O, r) is
an even function of ~, i.e., the pulse is initially symmetric
at the input plane z =0. During propagation, the pulse
becomes asymmetric because of second-order dispersion.

Equation (A5) is valid for r & 0 and large z satisfying Eq.
(4.6).

For an initially Gaussian pulse, Eq. (A5) is identical to
that obtained using Eq. (4.3) with the asymptotic expan-
sion (4.7). Equation (A5) is, however, valid for arbitrary
pulse shapes. The important point to note is that the sub-
pulse structure is governed by the sinusoidal function and
is independent of the pulse shape. In particular, the pulse
intensity becomes zero whenever the argument of the sine
function is an integer multiple of 2m, and for the ntth
zero, r is given by Eq. (4.10). The amplitude of the sub-

pulses is governed by the pulse shape. Equation (A5)
shows that the generation of subpulses in the dispersive
medium at the ZDWL is a general phenomenon, indepen-
dent of the shape and the width of the launched pulse.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973);
A. Hasegawa and Y. Kodama, Proc. IEEE 69, 1145 {1981).

2L. F. Mollenauer R. H. Stolen, and J. P. Gordon, Phys. Rev.
Lett. 45, 1095 (1980).

3N. J. Doran and K. J. Blow, IEEE J. Quantum Electron.
QE-19, 1883 (1983); K. J. Blow and N. J. Doran, Electron.
Lett. 19, 429 {1983).

~D. Anderson, Phys. Rev. A 27, 3135 (1983); D. Anderson and
M. Lisak, ibid. 27, 1393 (1983).

5K. J. Blow, N. J. Doran, and E. Cummins, Opt. Commun. 48,
181 (1983).

6V. A. Vysloukh, Kvant. Elektron. 10, 1668 (1983) [Sov. J.
Quantum Electron. 13, 1113(1983)].

7I. N. Sisakyan and A. B. Shvartsburg, Kvant. Elektron. 11,
1703 (1984) [Sov. J. Quantum Electron. 14, 1146 (1984)].

SH. E. Lassen, F. Mengel, B.Tromberg, N. Albertsen, and P. L.
Christiansen, Opt. Lett, 10, 34 (1985).

M. J. Potasek, G. P. Agrawal, and S. C. Pinault, J. Opt. Soc.
Am. B (to be published).
V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61,
118 (1971) [Sov. Phys. —JETP 34, 62 (1972)].

'~J. Satsuma and N. Yajima, Prog. Theor. Phys. Suppl. 55, 284
(1974).

tZA. Sugimura, K. Daikoku, N. Imoto, T. Miya, IEEE J. Quan-
tum Electron. QE-16, 215 (1980).

'3P. D. Lazay and A. D. Pearson, IEEE J. Quantum Electron.
QE-18, 504 (1982).
U. C. Pack, G. E. Peterson, and A. Carnevale, Bell. Syst.
Tech. J. 60, 583 (1981).

'5M. A. Saifi, S. J. Jang, L. G. Cohen, and J. Stone, Opt. Lett.
7, 43 (1982).

' S.-J. Jang, J. Sanchez, K. D. Pohl, and L. D. Lesperance, J.
Lightwave Tech. I.T-2, 313 (1984).

'7H. -T. Shang, T. A. Lenahan, P. F. Glodis, and D. Kalish,
Electron. Lett. 21, 201 (1985).

'SM. Miyagi and S. Nishida, Appl. Opt. 18, 678 (1979).
D. Marcuse, Appl. Opt. 19, 1653 (1980).

OE. A. Sziklas and A. E. Siegman, Appl. Opt. 14, 1874 (1975).
'M. D. Feit and J. A. Fleck, Appl. Opt. 17, 3990 (1978).

2~J. Van Roey, J. van der Donk, and P. E. Lagasse, J. Opt. Soc.
Am. 71, 803 (1981).

23M. Lax, J. H. Batteh, and G. P. Agrawal, J. Appl. Phys. 52,
109 (1981).

~~G. P. Agrawal, J. Appl. Phys. 56, 3100 (1984).
5J. %.Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965).
R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 {1978).

27F. Shimizu, Phys. Rev. Lett. 19, 1097 (1967}.
8T, K. Gustafson, J. P. E. Taran, H. A. Haus, J. R. Lifsitz, and

P. L. Kelley, Phys. Rev. 177, 306 (1969}.
E. P. Ippen, C. V. Shank, and T. K. Gustafson, Appl. Phys.
Lett. 24, 190 (1974).

MHandbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1970), p.
448.
L. F. Mollenauer, R. H. Stolen, and M. N. Islam, Opt. Lett.
10, 229 {1985).

G. Eisenstein, R. S. Tucker, S. K. Korotky, U. Koren, J. J.
Veselka, L. %'. Stulz, R. M. Jopson, and K. L. Hall, Electron.
Lett. 21, 173 (1985).

33H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Phys
ics (Cambridge University Press, London, 1978), Chap. 17.


