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Effect of cavity leakage on the emission and absorption of radiation from an atom in a cavity,
with the cavity mode in vacuum, is studied exactly by solving density-matrix equations and by
evaluating the relevant two-time quantum-mechanical correlation functions. Analytic expressions
for the widths and position of various spectral lines are given. Widths are found to depend on de-

tuning. Manifestation of the vacuum-field Rabi oscillations on different types of spectra are dis-

cussed. Vacuum-field Rabi oscillations are also apparent in the coherent scattering of external radi-
ation from the cavity.

I. INTRODUCTION

Recently it has become possible to experimentally
study' the novel features of the behavior of atoms con-
tained in a cavity. ' The dynamical behavior is deter-
mined by the relative magnitudes of the time scales tc

and g associated, respectively, with the cavity field de-
cay and with the vacuum-field Rabi oscillations. Most
theoretical predictions deal with idealized situations. For
example, the Jaynes-Cummings model is exactly soluble. "
However, in the presence of cavity relaxation no exact
solutions for various spectra appear to be known, al-
though cavity relaxation is very important since studies
on fluorescence, etc. , can be carried out only if photons
leak out. Thus it is desirable to have solutions for the
Jaynes-Cummings model in the presence of cavity relaxa-
tion, so that the effect of the cavity Q on vacuum-field
Rabi oscillations can be studied. The purpose of this pa-
per is to present exact quantum-electrodynamic results for
the behavior of an atom contained in a cavity with finite
Q. Many manifestations of the vacuum-field coupling in
a cavity will be presented.

The organization of this paper is as follows. In Sec. II
we discuss the basic dynamical equations for the model.
We show how closed sets of equations can be obtained for
a certain set of density-matrix elements assuming that ini-
tially the cavity with finite Q is in vacuum state. The in-
fluence of Q on the vacuum-field Rabi oscillations is stud-
ied. Vacuum-field Rabi oscillations can be monitored us-
ing cw methods by considering the response of the atom
contained in the cavity to an external field. In Sec. III
we study the absorption spectra, which in general have a
doublet structure; the resolution of the doublet depends on
the magnitude of the detuning and cavity Q in relation to

the field-atom coupling g. In Sec. IV we examine the ef-
fect of cavity relaxation on the transient spontaneous
spectra. Section V is devoted to the coherent scattering
from the atom in the cavity. The intensity of the coherent
scattering can be used to study the characteristic features
of the vacuum-field Rabi oscillations. Since our analysis
is valid for arbitrary Q it is possible to study the dynain-
ics of the atom in the cavity in various regimes.

II. MODEL AND SOLUTION
FOR DENSITY-MATRIX ELEMENTS

where, in terms of the spin- —,
'

operators, H is

H =fuooS'+ficoa a f+ig( Sa+H. c. ) . (2.2)

The relaxation part of Eq. (2.1) (tc-dependent terms) can
be derived by considering the interaction of the cavity
mode with a heat bath consisting of infinity of modes into
which the field leaks out. This interaction representing
the leakage gives the cavity mode a finite width x. Exact
eigenstates and eigenvalues of H are well known, '

We consider the solution for the Jaynes-Cummings
model in the presence of cavity-relaxation effects. This
model consists of the interaction of a single two-level sys-
tem with frequency too with a single mode of the radiation
field of frequency to in a cavity. In addition, we assume
that the field can decay at the rate tc. The dynamical
equation for the density matrix of the combined system of
field and atom is

Bp i [H,p] —a.(a ap 2apa +—pa a):—Lp, (2.1)—
t)t
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thus one needs to work with (2n+1) X(2n+1) ma-
trices. Thus with increasing n values one has to work
with matrices of higher and higher dimensions. Simpler
analytical solutions are possible for the initial state

I
0, e ),

i.e., for the empty-cavity case and when the atom is in the
excited state. In this ease the dressed states corresponding
to P„,n ~0 do not enter the dynamical equations.

For the initial state
I

O, e), the states to be considered
are

I l, g ), I
O,g ). The density-matrix elements now satis-

fy

(O, g I pl 0 e)=i(a)+b)(0 g [pl 0e)+ig(og
I pl l,g),

(2.4)

&o g I p I
1 g & =«~ —K) &o g I p I

1 g &+ig &0 g I p I
o e & .

Here
I g), I

e) are the ground and excited states of the
atom and

I
n) the Fock state of the field. The Hamil-

tonian H causes transitions between the states
I

n, e ) and

I
n+ 1,g). Field and atom occupation numbers change

at the same time. The relaxation in the cavity changes
only the photon number. For example, if the initial state
of the system is

I n, g ), then the system can be found in

any of the states

The induced dipole moment will be given by

P=Tr(pd) =d,s g (n,g I p I
n, e ) +c.c.

=de(o, g I
p(t) I

O, e)+c.c. ,

(2.5)

I
m, g),m =0, 1, . . . , n, lp, e),p =0, 1, . . . , n —1.

The total number of states to be dealt with is (2n + 1) and

since the states
I

n, e),n ~ 0 do not participate in transi-
tions. The equations relevant for calculating population
distributions are found to be

+lg
—lg

+ig
K—lk

—lg

—ig 0
0 —ig

+K+ih +ig
+lg +2K

(Oe Iploe)
(l,g Iplo, e)
&o e IPI 1 g&

& 1 g I p I
1 g &

=0. (2.7)

These equations are solved by Laplace transforms (denoted by carets). The following results are obtained from (2.4) and
(2.5):

(O, g lplo, e)= [[(zi ~ co+K)(o,g 'Ip(0)
I o,e)+ig(o, g I

p(0)
I
l,g)]e '

(zi —zz)

—[(z,—ito+K) &O,g I P(O) I
O, e &+ig(O,g IP(0) I

l,g ) ]e"'I, (2.8)

(0 g Ipl 1 g) = [[(zi its i~)—(og —lp(0) I
l,g)+ig&og lp(o) l0 e&]e '

(zi —zz)

—[(z2 io3 ih)(og—
I
p(—0)

I
l,g)+ig(og

I
p(0)

I
oe)]e ' J, (2.9)

zi 2=l co+———+ (K —6 —4g +2lkK)1,2 2 2 2, (2.10)

The Laplace transforms of the results following from (2.7) are given by the matrix relation

zo(zo' —~'+4g') i~(zo —~')

iQ(zo —K ) zo(zo K )

y(z) =P-'(z) —2lgKZp

—2lgZ p2gMo

zo=z+K, 4= &1 g I p I
0 e &+&0 e IPI 1 g&

@3 &oe lploe&+&1 g Ipl 1 g&

—2lg KZ p

zo(4g +b, +zo)

(b,i+zo)K

24gzo

—2lgZ p

K[6, +zo]2 2 ib(0),

zo[~'+zo]

(2.11)
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where the polynomial P(z) is

p(z) (z+ )4+(z+K)2(g2+4g2 2) g2«2 (2.12)

Above results (2.8}—(2.12) will determine the dynamical
aspects of the radiation matter interaction in a cavity with
inite Q. Equations (2.8)—(2.10) will be useful in our con-

siderations of the absorption and emission spectra,
whereas (2.11) will yield transition probabilities. The
roots of (2.12) govern the time dependence of the transi-
tion probabilities, whereas (2.10) will yield the positions
and widths of various lines in the spectra. From (2.10},
the following limiting cases are obtained.

1) Exact resonance b, =coo—to =0, 10 0

{

15 0

zi 2 =leo — + (K —4g )2 (2.13) FIG. 2. Same as in Fig. 1 but now cavity is detuned 5=Sg.

which for the bad-cavity case «4 becomes approxi-
mately equal to

i' K+—0(g /«), i' 0(g—/K ),
and which for the good cavity case K «4 ields

K
Zj 2 fN ——+lg .

2

(2.14)

(2.15)

These oscillation frequencies correspond to the transitions
from the dressed states P„+-, n=O to ~O, g), i.e., to
(O,g lp(t) lf &~0.

2 h»g, «. In this limit the two roots are approxi-
mately inio, ice « The —roo.t at the field frequency has the
width of the cavity decay. The root at the atomic fre-
quency has no width. This is as expected since no other
source of the atomic decay has been included i hincu jn t e

It should be noted that our results have been obtained
or arbitrary values of «and thus one can st d

'
d '1

ow t e p ysics of the radiation matter interaction
changes with change in the relaxation time of the cavity.
In particular, we can study the effect of the leakage of
photons on vacuum-field Rabi oscillations. Figures 1 and

s ow these oscillations in the transition probability p for

the transition
~

O, e )~
~
l,g ). In Fig. 1, the distance be-

tween two zeros is roughly n. Note that in the b fa in ea senceo
'

y re axation and for 6=0, the transition probability
has the form sin gt. Figure 1 shows that with an increase
in «, t e oscillations quickly damp out, and for « -2g one
has already reached, in a sense, the bad-cavity limit. Note

so that in the limit t-+ 00, ( l,g ~ p ~

(t)
~
l,g )~0 as the

p oo = O,g O,g ~. A similar result has been know
om Ref. 9. For 6&0 the scale of oscillations changes as

shown in Fig. 2. This is in accordance with the formula

4 2

2
sin2[(g2+ 52/4)'~2t]

5 +4g

ment
or the transition probability for «=0. A rec trecent expen-

ment looks at the average of the occupation probability
over several Rabi cycles. Hence in Fig. 3, we have plotted
the time average

T
T ' f (O,e ~p(r) ~O, e)d~=q-

as a unction of the detuning parameter for several values
o K. e results are sensitive to the value of T used in
averaging. Note that for «=0,

0.75

0. 75

0.50
q o. 5o

0
0 5.0

I

'{5 0 0.
- 5.0 2.5 5 0

FIG. 1. The probability p of finding the atom in the ground

co=a)p and for different values of x. All frequencies are in units

of g. Curves are marked by v values.

FIG. 3. e average of the prob bilit

q
T-1 dpir(O, e

~
p{r)

~
O, e) of finding the atom in the ex-

a i y

cited state as a function of detuning.
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q =1—,gT&)1 .2g
4g2+ +2

(2.16) =I.p —i[(GS+e ' +H.c. ),p], (3.1)

Figure 3 clearly shows how the resonance dip in the aver-

age excitation probability is affected by the cavity damp-
1Ilg.

III. EFFECT OF CAVITY RELAXATION
ON ABSORPTION SPECTRUM

The dynamics of the atom in a cavity can be studied in
several ways. One way to study this interaction will be
through absorption experiments where one monitors the
rate of absorption of energy from a weak-probe field. For
Rydberg atoms the probe field will be a microwave field
of frequency v. The density matrix Eq. (2.1) will be modi-
fied to

where the coupling constant G with the microwave field e
1S

G= —d e/R. (3.2)

The rate of absorption of energy can be calculated in the
usual manner by evaluating the induced dipole moment to
first order in G. It can be shown from (3.1) that

~(0)+~(.i)+. . . I ~0

(3.3)
C

p'"(t)= i j—e " '[(GS+e ™+H.c.),p' '(r)]d~.

The expectation value of the dynamical variable S+ in the
long-time limit is

&S+(t)&
= lim Tr[p'"(t)S+]

GeeivtTr Sy d eLr[e ivrS ——p(0)] tGe
—i r Tr S+ dre [e' S+ p ]

0 0
(3.4)

The time-average rate of absorption W is

W= —
&p& e=iv(d e)&S+&e '"'+c.c. , (3.5)

2
de 1

W =2v Re
zi —22

(Zi —l CO+K)

(iv —zi)

which on using (3.4} can be reduced to
2

W= —2v Re dre ' Tr(S+e '[S,p' ']) .de

(Z2 —t Co+ K)

(iv —z2)

(3.11}

p =10g&&Og
I

and hence

(3.7)

W=2v Re f dre ' Tr[S+e '( IO,g&&O, e
I )] .

(3.6)

As our cavity is at zero temperature, the initial density
matrix p is

Thus the absorption spectrum will exhibit resonances at
the complex frequencies v= izi, iz—2 F—or th. ecase of a
good cavity on resonance, Eq. (2.15) shows that the spec-
trum is a doublet v=co+g, the width of each doublet be-

ing K/2. These doublets can be associated with the transi-
tions from the state IO, g& to the two dressed states

Vacuum-field Rabi oscillations lead to a splitting
of the absorption spectra. For the bad-cavity case, the
spectra only have a single peak. It is remarkable to note
that the spectra in this case also consist of a line at v=co,

(3.8}

The operators e 'IO, g&&O, e I, e 'IO, g&& l,g I
satisfy

the same equation as (2.4} and (2.5) and hence

00—

"'IOg&&Oe
I
=«r) IOg&&Oe I+&(r) IOg&&1 g I

(3.9)

where a(r} and P(r) can be read from (2.8) and (2.9). On
substituting (3.9) in (3.8) and on simplification we get 0 25—

2

W =2v Rea(i v),
d'E'

fi
(3.10)

0—
-1 90 1.90

where a(z} is the Laplace transform of a(r). In terms of
the roots z i,zz (3.10}can be written as

FIG. 4. Absorption spectrum [Eq. (3.11}]as a function of
co —v for co=coo and for different values of x. The spectrum
goes from a doublet to a singlet as the cavity a is changed.
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FIG. 5. Same as in Fig. 4 but with finite detuning 5= 1.0g.

which is much narrower than the cavity-relaxation rate.
That is, it has a width [a/2 ——,

' (a —4g )'~ ]. Thus for a
bad cavity the absorption measurements will result in the
linewidth -(g /a). Such a linewidth has been seen in the
experiments of Goy et al. These general features are con-
firmed by the numerical solutions of (3.11) which are
shown in Figs. 4—6. In Fig. 4, the atom and the cavity
are at exact resonance. For small a( &gg) the vacuum-
field Rabi splitting is prominent. For large a, one ob-
serves a single-peak absorption spectrum with a half-
width -[a/2 ——,'(a —4g2)'~ j which is equal to —,

' (life
of the atom in the cavity) '. Figures 5 and 6 are, respec-
tively, for positive and negative values of the detuning
coo —c0. For small a, the vacuum-field Rabi splitting is
seen. Note also that the width of the line depends on the
detuning. For large a, the peak at the atomic frequency,
i.e., at v=roo is seen. The symmetry property of the ab-
sorption spectra with respect to the sign of b, is apparent
from Figs. 5 and 6.

A quantum treatment of the external field will yield the
same result as long as single-photon absorption from the
external field is considered. A problem in the observation
of the absorption spectra of this section can arise from the
saturation of the atom by the external microwave field
and this can mask the effects of the vacuum-field Rabi
splittings. However, in principle it is possible to imagine

I.O—

Y, 05

0000 07
x,

IOQ-

a purely quantum absorption problem involving the ener-

gy transfer from an excited atom to an unexcited atom;
which may or may not be identical to the excited atom.

Since the roots —iz~ and —
ized determine the structure

of the absorption and emission spectra, we have carried
out a detailed study of these roots for various values of a
and b, . Figure 7 shows how the roots ( —iz; =x;+iy;)
change as a is changed. Observe that for 6=0,
xi+yi ——g if a&2, whereas for v&2, x& ——0, y~~0 as
k~ac. On the other hand, for a)2, b, =0, xz ——0,
y2~ cc as lr~ ao. Note that x;{—b, ) = —x;(b ),
y;( —5)=y;(b, ). An interesting feature of Fig. 7(a) is that
the effect of cavity damping can be partially offset by
cavity detuning, i.e., for a given value of a the width of
one of the peaks will be smaller if the detuning is finite.
This effect is similar to inhibited spontaneous emission
where large offset reduces the free decay of the atom.
The crossing of the curves suggests that a range of (h, lr)

values can lead to the same width as one of the spectral
features.

1.00—
S-0-

0.75—

0.50—

0 25

OO
-I-0 -0.5

Xp

& ~00

OO

0
- 1.50 —0.60 1.00 1.61

FIG. 6. Same as in Fig. 5 but b = —1.0g.

2. 57

FIG. 7. Complex roots x;+Iy; =6/2+i K/2+ 2 i {K
—4g +2&AK)' that determine spectral features of absorption
and emission for different values of 6 and K. The arrow indi-

cates the direction of increasing s.. In {a) [(b)] each dot [cross]
represents an increment of a equal to 0.1 [0.5].
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IV. EMISSION SPECTRUM FOR ARMTRARY

Q VALUES

We have already seen how the coupling of the radiation
field in vacuum state with the atom can affect in an im-

portant manner the absorption spectra. Such a coupling
can also change drastically the spontaneous-emission spec-
tra. Kleppner showed, for example, that spontaneous
emission can be inhibited by choosing the cavity dimen-
sions such that part of the contribution to the density of
states gets switched off. Thus the slI)ontaneous line can be
narrowed. Eberly and co-workers examined the spon-
taneous radiation from an idealized cavity assuming no
source of relaxation so that in their model the density of
states was a delta function. They showed that when
the cavity is on resonance with the atom, then the
spontaneous-emission spectra have doublet structure. The
only source of line width in their model was the width of
the detector.

In the present section we account for an important
source of relaxation, i.e., leakage of photons from the cav-
ity or the finite Q of the cavity. This is very important
because realistic cavities have finite Q and in addition to
the measuring process will require that photons should
leak out. Following Ref. 13 we define the transient spec-
trum of the radiation that leaks out as

—(I —i t)(T tl ) ——(I +iV)(T t2)—
0 0

X (a'(t, )a(t, ) &, (4.1)

where I is the bandwidth of the detector, T is the time at
which the spectrum is evaluated, and P is a measure of the
leakage of the field energy. Expression (4.1) can be
transformed so that we have to only evaluate the time-

ordered correlation function (a (t +r)a (t) &, r & 0:

T T
&(v, T)=21 pRe dTe' '"' dt'e 2"'T ''(at(t'+z)a(t')& .

0 0

If the correlation function has the structure

(at(t+1}a(t)&=/Ate '

(4.2)

(4.3)

then the transient spectrum will be

S(v, T)=21"pRe+ AJ(21'+rtj ) '[(I"+TIt+iv —f(,;) '(e —e '
) —(I'+A, ; iv) —'(e ' —e " }].

(4.4)
We will now evaluate the field correlation function using the exact solutions from Sec. II. Using regression theorem,

one can show that

( a t(t +T.)a (t) & =Tr[a e 'ae 'p(0) ], (4.5)

where the initial genaitsr matrix p(0l is [O, e)(0,e
~

. mThis initial state is chosen keeping in view the problem of pure
spontaneous emission. The operator e '~o, e&(o,e (

=—( (O,e&(o,e
~

}, can be evaluated by examining equations of
motion

—e~t
~

O, e &(O,e
~

=e 'L
~

O, e & (o,e ~, (4.6)

which on using l. from (2.1) reduces to

—( ~O, e&&Oe
~

)t ———ig(
~
l,g&(O, e

~
), —K( ~oe&&l,g ~

)t . (4.7)

Resulting is a closed set of equations

0 lg

ig i (a)0 —a—) ) +~
—+ —ig
dt

0 0—lg

0
~o, e&(o,e

~

ig 0 —
~
l,g&(o,e

~

f(~, ~)+~ —ig O (O,e&&l,g ~

=O.
ig 2 —2

o o o

(4.8)

e 'ae 'p(0)=(e '))2e '~og&(o, e
~

+(e ')i4e" Io,g&&1 g I
. (4.9)

If we denote by M the 4X4 square matrix in (4.8) formed
out of the first four rows and four columns, then it can be
shown that

One can further show that

—l COp —lg—+ —lg —l CO+ K (
i

O,g&(l,g i ),

(4.10)
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Let us denote the 2X2 square matrix in (4.10) by ¹

Then, using the solution of (4.10) in (4.9), one can show
that

&tht(h+r)ti(h)&=(e ~') (e "')

+ (
M—t) ( Nr)— (4.11) s [s,]

The matrices M and X are the same as those appearing in

Eqs. (2.7), (2.4), and (2.5). The Laplace transform of e
can be read from (2.11). The relevant elements of e
are given by (2.8) and (2.9):

0 25—

(zi —zz)
0 ~ «gal »

-3 0 1 Q

(&-N ) [(zi ia) —ib )e—'

(zi —z2)

g2T—(zz ice —i h)—e ] .

(4.12) FK)". 8. Emission spectra for leaked-out photons (solid
curves) and fluorescence photons (dashed curves) as a function
of (v—u). Different curves are labeled by ~ values. Other pa-
rameters are detector width I =0.2g and the counting time
T =100g

Complete spectrum of spontaneous emission can now
be obtained using (4.11) and (4.3) in (4.4). If we consider
the long-time limit of (4.4), I'T » 1, then

S(v, T)~21 pReg A J(21"+i)~)
i,j

9TXe ' (I +rhj+iv —A,;) (4.13)

In this limit the spontaneous-emission spectra consists of
several lines whose positions and widths are determined
by Im(A, ;—rhj ), I +Re(re —A,; ). In the special case of ex-
act resonance b =0, such positions and widths can be ob-
tained from (2.15)

From (2.12) we see that if th~0, then the roots of (2.12)
are simply z =0, +i (h +4g )'~ Thus rlj. can be zero or
+i(dP+4g )'~. If rI T is large, then the terms corre-
sponding to re =+i(h +4gz)'~ can be ignored and thus
in (4.13) we can retain only those terms such that i)J =0,

S(h0, T)~21 13Re g A,J(2I +qj)
g) -0

Xe"' (I'+rhj. +t'v k;) ' —. (4.14)

X(S+(h, )s-(h, )) . (4.17)

Here P' will be related to the measure of spontaneous
emission into other modes. The atomic correlation func-
tion (S+(hi )S (h2) ) can be shown to have the form

&S'(h+.)S-(h)) =(.-")»(.-" i»

+ (e hft) (e Nr)— —
(4.18)

and thus SF can also be computed. We exhibit SF in
Figs. 8 and 9 by dashed lines. SF shares many of the

For moderate values of tt or for tt. »g (bad cavity), the
transients die out very quickly and the spectrum takes the
shape shown in Fig. 10. The curve corresponding to K=g
shows considerable transit-time broadening.

Finally note that the atom in the cavity will also emit
by spontaneous emission into other modes although this
channel will be very weak. Thus, weak fluorescence in a
direction perpendicular to the cavity axis can also be mon-
itored. The spectrum of such a fluorescence will be

$ (vT)=2I P' Ch, dh
0

'
0

K
v=Q7+g+E I +—

2
(4.15) 1.00—

On the other hand, for large b„spontaneous-emission
lines occur at

v=coo+l I, v=co+t (K+I ) . (4.16)

The Auorescence line acquires only the width of the detec-
tor, the Rayleigh peak has width due to both the detector
and the cavity leakage. Figures 8 and 9 give the spectrum
of the radiation that leaks out for the resonant as well as
the offresonant case. For ttio=t0, the spectrum is a doub-
let which is a consequence of vacuum-field Rabi oscilla-
tions. For nonzero 6, and K~O, the spectrum is a sym-
metric function of v —co. The cavity damping very quick-
ly reduces the overall magnitude of the spectral peaks.

0.50—

FIG. 9. Same as in Fig. 8 but now detuning is finite 5=0.5g.
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(a ) = —iG'e'"'Tr a I dye~'[e ' S,p'+)

tN

iG—e '"'Tr a d~e '[e' S+,p' '], (5.1)

which on simplification [cf. Eq. (3.8)] leads to

(at) =iG*e' Tr a I dre ' e '(
I

O,g)(0,e
I

)

(5.2}

(}
- 100 -50 50 100

On using the result (3.9), (4.2) simplifies to

(a ) =iG'e'"'P(iv),

which on using (2.8) leads to

(5.3)

FIG. 10. Emission spectra for the bad-cavity case 5=0
I =0.2g, T=0.2g

features of S though for «=0, 6&0, Sz is not a sym-

metric function of v —co. Thus for the detuned case, SF
has dominant asymmetries in contrast to S. It may be
added that the work of Sanchez-Mondragon et al.
focuses on the spectrum SF in an ideal cavity. The bad-
cavity result for SF is also shown in Fig. 10. Here SF is
narrower than the corresponding S.

V. COHERENT SCATTERING OF RADIATION

For an atom in free space, it is well known' that the
spectrum of resonance fluorescence from a system driven

by a weak monochromatic field consists of a line at the
applied frequency with zero width. The atom thus
scatters coherently. In this section we show how coherent
scattering of the external radiation at the frequency v
from the atom in the cavity can be used to monitor the
vacuum-field Rabi sphttings.

The mathematical development is somewhat similar to
that used in Sec. III. We have to evaluate the mean value
of the field amplitude associated with the cavity mode
(a"). Thus, in place of (3.4) we will get

( at ) 7 G elv t gl 1 1

(zi —zz) (iv zi—) (iv z2)—

The intensity I of the coherent scattering will be'

(5.4)

I(»=
I

&a'& I'=
I

G I'g'~l(iv —zi}(tv—zz) I'.
Thus a scan of the coherent scattering as a function of ap-
plied frequency will have spectral features determined by
the roots zi,z2 [Eq. (2.10)]. Hence another cw method of
studying the vacuum-field Rabi oscillations is provided by
the coherent scattering from the atom in the cavity. One
can also show, ' using second-order perturbation on (3.1),
that

lim (a (t+a)a(t)) =e' I(v) . (5.6)

It turns out that the coherent scattering I(v) as propor-
tional to the absorption spectrum of Sec. III and hence
various characteristics of the vacuum-fleld Rabi oscilla-
tions will also be seen in the coherent scattering of radia-
tion.
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