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Model studies of collective atomic excitations by intense laser fields
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A quantum version of the Drude-Lorentz model of the atom is used to study abnormally large en-

ergy transfers found in recent ionization experiments by strong laser fields. It is argued that collec-
tive excitations greatly enhanced by parametric resonance may lead to an exponential growth of the
atomic energy with time. It is shown that the repulsion between the electrons plays an essential role,
reducing the frequency at which parametric resonance occurs.

I. INTRODUCTION

Recent experiments' on multiphoton ionization of
heavy atoms by intense laser fields (up to 10' W/cm )

seem to indicate that many-electron response of the atom
plays a role in its interaction with high-intensity radiation.
Collective, many-electron excitations are probably respon-
sible for the abnormal abundance of iona with high-charge
multiplicity. These experiments also show a sensitive
dependence of the energy transferred from the light beam
to the atom on the atomic number Z.

The theory of many-electron excitations in atoms
developed over the last 20 years by many authors, al-

though very successful in high-frequency spectroscopy as
exemplified by the prediction of the giant-dipole reso-
nance, is restricted to the weak-field (linear-response) re-
gime. The exact theory of many-electron excitations in-

duced by intense laser fields requires solving the many-

body Schrodinger equation without resorting to perturba-
tion theory and has, therefore, not lead to any quantitative
results. Under these circumstances, simple models were

proposed to explain the experimental data. Crance used
a statistical model to calculate, by pure combinatorics, rel-
ative abundances of iona with different charge multiplici-
ties and the energy spectra of photoelectrons. She ob-
tained a reasonably good agreement with experiments for
laser intensities up to 10' W/cm. In her model the
dynamics of the laser-atom interaction is not specified
and electrons are treated as independent, undistinguish-
able particles. The same purely statistical reasoning per-
meates the recent work by Geltman. Using the Hartree
model of the atom, he expressed all multiple ionization
probabilities by the probabilities to eject one electron from
any given shell and he next fitted his formulas to the ex-
perimental data. ' In the papers by Crance and Geltman
only the outer-shell electrons are taken into account. In
view of the preliminary character of the experimental
data, it is difficult to judge the success of the statistical
approach and to decide whether the correlations between
the electrons play a significant role.

In turn, Rhodes ' suggested that inelastic collisions be-
tween the outer and the inner atomic shells may be re-
sponsible for the observed inner-shell excitations induced
by high-intensity lasers.

Still, the exact mechanism of many-electron, multipho-
ton atomic excitations remains unknown. The interesting
questions are: Can collective modes of the electron cloud
be excited by intense laser fields? Do these collective exci-
tations play a significant role in increasing the rate of the
energy transfer to the atom'? What is the role of the mu-
tual interaction between the electrons?

The purpose of the present paper is to study the dynam-
ics of the interaction of a many-electron atom with a
strong laser field using a simplified, exactly soluble model.
Our model has all the features of the realistic situation
(electron-nucleus attraction as well as electron-electron
repulsion, Fermi-Dirac statistics, and the minimal elec-
tromagnetic coupling to radiation) with the only exception
that all Coulombic forces have been replaced by harmonic
forces. Thus, our model may be viewed as a quantum ver-
sion of the classic Drude-Lorentz model of the atom. "

The main result of our analysis is the discovery of
parametric resonances in colltative excitations that lead,
under some conditions, to a greatly enhanced energy
transfer from the wave field to the atom. The location of
the resonance regions in the frequency-amplitude plane of
the electromagnetic wave depends in a crucial way on the
electron-electron repulsion.

II. MODEL OF THE ATOM

Our model is most conveniently formulated in the
language of second quantization, which is best suited for
handling collective phenomena. In this descri;ption, the
basic quantities are the operators fa(r, t) and g (r, t) that
annihilate and create an electron at the point (r, t) with the
spin projection tr (cr= —, , ——,

' ). Since the electrons obey
the Fermi-Dirac statistics, their field operators obey the
anticommutation relations

[g (r, t),f (r', t)]+=5 5(r r') . —

The field operator fe(r, t) obeys the Heisenberg equation
of motion (fi= 1),

i g(r, t) =—[P (r, t),H~ ]
t

where the atomic Hamiltonian HA is chosen in the fol-
lowing form:
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Hq ———,
' g f d r P (r, t)(p /m+mQ r )P (r, t) 4—m—Qi g f d r f d r'g (r, t)g (r, t)(r r—') P (r', t)g (r', t),

O', P

where m is the eltx:tron mass and

S= r, t r, t

R(t) =f g (r, t)rp (r, t),
P(t)= f f (r, t)pP (r, t),

UJ(t}=—,
' f P (r, t)r;rjg (r, t) R;(t)R—J(t),

(5b)

T;,(t)= ,' f f (r, t}—p;p,f (r, t) P;(—t)P, (t),

W~J(t)= —,
' f p (r, t)(r p~+p&r;)g (r, t)

1
[R;(t)Pi(t)+Pi( )R;(t)],

(5e)

where the integral sign denotes both the integration over r
and the summation over o.

These operators have the following physical interpreta-
tion. The scalar operator N is the operator of the total
number of electrons in the atom and is a constant of
motion. The vector operators R(t) and P(t) describe the
position of the center of mass and the total momentum of
the atomic electrons. The remaining (tensor) operators
describe the quadrupole degrees of freedom of the electron
cloud. The Hamiltonian Hz expressed in terms of these
collective operators has the form

p= —r 7'

The first part of this Hamiltonian describes the motion
of electrons in an external potential of the isotropic har-
monic oscillator which simulates the Coulomb potential
of the nucleus. The second part describes the mutual in-
teraction between the electrons. Here also, the Coulombic
forces have been replaced by (repulsive) harmonic forces.

Following the analysis of a closely related model,
described in an earlier publication, ' we introduce the fol-
lowing set of collective operators:

[P + (m QR)']+ (—T +~ U}=HD+Hg,2m% Pl

where

~= ( mco/2) (7)

and

co=2(Q —QiN)'i

We have denoted the traces of the matrices Ui and T~~ by
U and T. Similarly, the operator W will be defined as
w=g w, ,

The collective operators N, R, P, U, T, and W form a
closed commutator algebra, because their only nonvanish-
ing equal-time commutators are

[R;,P)]=i5(qN, [U, T]=2iS',

[ W, U] = i U, [—W, T]=iT .

(9a)

(9b)

III. ATOM-WAVE INTERACTION
IN THE DIPOLE APPROXIMATION

We will now study the interaction of our model atom
with the laser light, treated as an external field. This field
will be represented by a monochromatic, linearly polar-
ized, plane electromagnetic wave. Assuming minimal
electromagnetic coupling, we obtain the following Hamil-
tonian:

Since the R and P operators commute with the rernain-
ing collective operators, two parts of the system, described
by the Hamiltonians H~ and H~, respectively, evolve in-
dependently. In the absence of external fields, the "giant
dipole" represented by R and P oscillates with the fre-
quency Q, while the quadrupole operators U, T, and W
oscillate with a much sinaller frequency c0.

In Sec. III we shall study the behavior of these collec-
tive quantities in the presence of an electromagnetic wave.

H= —,'g f d rf (rt) p—ear .
sin(cot t —It r) m+mQ r g (r, t)

——,'mQi g f d r f d r'P~(r, t)g (r, t)(r r') g (r', t)g —(r', t),

where coI, k„and e are the frequency, the wave vector,
and the polarization vector of the wave.

We have neglected the coupling of the electrons to the
wave through their magnetic moments since it is of the
order of higher relativistic corrections.

In the dipole approximation, the Hamiltonian H ex-
pressed in terms of collective operators has the form

ea e a~ =Hq — e Psin(toLt).+ 2
N sin (coL t) . (11)

)AC 2P7lC

The last term does not influence the dynamics of the sys-
tem, because X is a constant of motion. The second term
is a source of the driving force in the equation for the
component of the R operator in the direction of the wave
polarization. We shall fix the coordinate system by as-
suming that the wave propagates in the z direction and is
polarized in the y direction. Using the commutation rela-
tions (9), we obtain the following Heisenberg equations of
motion:
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~ 1 ea
R = —I' — %sin(coLt),y m y mc

(12a)

I'y ———mQ Ry . (12b)

From Eqs. (12) we get the following equation for R»:

Ry+0 Ry ———e E cos(cot t), (13)

where I',

is the amplitude of the electric field of the wave.
The solutions of this equation exhibit the well-known

giant dipole resonance. At the resonance frequency
(t0L ——0) the energy of the dipole grows as t Off .the
resonance, the energy of the atom oscillates with a con-
stant amplitude. In the optical and in the uv region we
shall always be in this purely oscillatory regime. The in-

teraction of an atom with a wave taken in the dipole ap-
proximation leaves the other degrees of freedom unaffect-
ed.

[ Uij ~ Tkl )— 2 (5ik Wj I +5il Wj k +5jk Wil +5jl Wik ) ~

(16a)

[~IJ & Wkl 1 =2 -i (5ji Uik +5ii Ujk } (16b)

[Tij, Wkl] = —
2 l(5ikTjl+5jkTil) ~ (16c)

ponents also (in the direction of the wave propagation) are
driven by the wave field, due to the second term in the
Hamiltonian Hl. The third term in HI couples the y and
the z components. As a result, the oscillator frequency is
modulated by the field and parametric resonance may
occur. However, we shall not study this resonance any
further, because the frequencies of the electromagnetic
wave in the optical or in the uv region are far from the di-
pole resonance region in real atoms.

We turn now to the study of the evolution of the quad-
rupole operators. We shall use the following equal-time
commutation relations to write the Heisenberg equations
of motion. These commutation relations are obtained
froin the definitions (S) of the Uj, T~j, and Wj operators
and from the anticommutation relation (1) for the field
operators g (r, t) and i' (r, t):

IV. QUADRUPOLE APPROXIMATION
[Wj Wkil =&-t(5aWkj 5ik—Wt} (16d)

H =Hg+Hl,

where

ea ea
H, = — e Psin(coLt) —,k Rsin(2toL, t)

PlC 2@le

ea (k R)(e P) e a+ cos(t0L t) + N sin (tot t)
mc 277lC

2ea+ k' W leos(coL, t) ~'
7tEC

(1S)

In order to study the excitations of the internal degrees
of freedom characterized by the operators U;j, Ti, , and

W~j, we shall consider the quadrupole approximation to
the interaction of our model atom with the wave. The
most interesting quantity to be determined is the energy
transferred from the wave to the atom through these de-

grees of freedom.
The total Hamiltonian of the system in the quadrupole

approximation has the form

The Heisenberg equations of motion for Uj, T~j, and
Wj are governed only by that part of the Hamiltonian
which contains the quadrupole operators. We shall write
it in the form

H~+H»»+H~+2g(t) W~,

where

H~ =—(T~+vU~),1

m

etc., and

e
g (t) = cos(cot t) .

mc
(18)

Since in the quadrupole approximation there is no cou-
pling of the atom to the magnetic field of the linearly po-
larized wave, the part of the energy corresponding to the
motion in the x direction, namely 8, remains constant.
In what follows we shall disregard H and study only the
varying part E of the quadrupole energy,

The first three terms in the interaction Hamiltonian Ht
infiuence only the motion of the atomic dipole, but the
last term changes also the evolution of the operators UJ
and TJ, thus changing the energy H~ of the quadrupole
degrees of freedom. Also, in this case, the evolution of
the quadrupole is completely decoupled from the evolu-
tion of the dipole, and one can study these two problems
separately.

The Heisenberg equations of motion for the dipole
operators R and P are changed in the quadrupole approx-
imation as compared to Eqs. (12}. Now, the z com-

E =Hyy+H~ .

The rate of change of this energy is

dE 2=—g(t)( —T~+aU~) .
dt m

(20)

The two components of the quadrupole operators ap-
pearing on the right-hand side of this equation are cou-
pled to other components through the following ten equa-
tions of motion:
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T~ = ——( W~ + W~ ) g—(t)Tyy,

U = —(W +W„)+g(r)U

(21a)
as a basic tool in our analysis. We shall show in Sec. V
that they exhibit parametric resonance near the frequency
CO.

V. PARAMETRIC RESONANCE
2

Tyy
————x 8"yy,

Pl

2
U~ =—8'~,

m

(2 1c)

(2ld)

W~ —— (T&——R U& ),
P7l

(21e)

W~ = (T~——~U~ )+g (t)( W~ —W~ ),
rn

W~ = (T~ z—U~ )—g(t) W—&,
7?l

(21g)

W~ —— (Tyy ——R'U~ ) +g (t) W~, (21h)

T = — W 2g(r)T~- ,
Pl

(21i}

U~ ———W~+2g(t)U~ . (21j)

K+ —— ( —T~+RU~)+( W~ —W~),
2

mao

L ~ —— (T~+x'U~)+2W~,2

mes

(22a)

Fortunately, by choosing proper linear combinations,
we may reduce this large set to two independent sets of
three equations. To this end, we define the dimensionless
quantities,

In the absence of the field, when g(t)=0, all quadru-
pole variables of the atom oscillate with the frequency co.

In this case, Eqs. (23) for K+ and M+ describe simply a
one-dimensional oscillator. When g(t)&0, the evolution
equations (21), (23), or (24} involve a parametric coupling
between the atom and the field. This parametric coupling
introduces field-dependent modulations of the atomic
quadrupole oscillations with the amplitude and period of
modulation dependent on the field intensity and the de-
tuning. It is of interest to locate the regions of parainetric
resonance where the oscillatory modulations turn into an
exponential growth. %'e expect that in these regions the
energy transferred to the atom will increase dramatically.
The location of these regions in the frequency-amplitude
plane can be found analytically or numerically.

Since we cannot solve Eq. (24) exactly we shall resort to
well-established methods' of studying the parametric res-
onance which employ the existence of two time scales.
These methods eliminate the divergencies occurring in the
straightforward perturbation theory that are due to the
appearance of secular terms.

%e expect parametric resonance to occur when the laser
frequency aiL, is close to the frequency co of the atomic
quadrupole oscillations. In addition to the time scale
determined by this resonant frequency, there is another,
much larger time scale associated with an analog of the
Rabi frequency in our problem, namely by

M+ —— [(T~—Tyy)+a(Uyy —U~)]+(W~+ W~) .
1 e

PlC
(27}

(22c) The ratio 5 of these two frequencies,

K+ ——+aiM++g (t)L+, (23a)

The equations of motion for the operators K+, L+,
and M+ have a similar form to equations for K, L
and M; we shall write them together in a compact form,

(28)

will serve as a small parameter in our perturbative
analysis of the instability regions. We shall use the Whit-
taker method, which employs the ansatz,

I.+ ——+coE;+, (23b) L (r) =ei'i(r), (29)

Mp ——+coK++g(t)K+ . (23c)

This set of three equations can also be replaced by one
third-order equation,

~ ~ ~

L+-+co[+a) 2g (t)]L+ +cog(t)L+———0 . (24)

Equations (23}have a constant of motion,

K+ L+(L++2M+) .—

where I (t) is a rapidly changing part of the solution, while

exp(yt) is a slowly changing envelope. The idea of the
Whittaker method is to absorb all secular terms into the
slowly varying part of the solution. This can be done in
every order of perturbation with respect to 5. In the first
order, we obtain three linearly independent solutions for
L (t), characterized by the following three values of y:

'Yi, i=—+ T[~R —4(~1.—~) ]
1

The energy E and its rate of change can be expressed as
follows: y3 ——0.

(30)

E =a)(L+ +M~ +L +M )/2,
dE 6)=—g(&)(K++K ) .
dt 2

(25)

(26)
~a~ &~R/2. (31)

The first solution grows exponentially for the detunings
&=~i —~ satisfying the condition:

Equations (23) together with (25) and (26) will be used This condition gives the boundary of the instability region
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in the frequency-amplitude plane in the lowest order of
perturbation theory.

We shall illustrate different types of behavior near and
at the resonance by numerically integrating Eqs. (23) in
the strong-field regime (boa/cot ——0. 1). For simplicity,
we have assumed the initial shape of the atom to be
spherically symmetric [E+(0)=0=M+(0) and L +(0)
=L (0)]. In Fig. 1 we show the time dependence of that
part of the quadrupole energy which is affected by the
light wave.

Far from the resonance region, the energy oscillates
rather mildly; few photons are exchanged between the
wave and the atom. As we approach the region of
parametric resonance, both the period and the amplitude
of modulations increase dramatically. Finally, in the reso-
nance region the energy transferred to the atom grows ex-
ponentially with time. As seen in Fig. 1, after only 15
wave periods the atom absorbs as many as 25 photons.

!

!

I'
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I

)
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VI. DISCUSSION

Since experimental evidence seems to suggest that col-
lective behavior of electrons is responsible for abnormally
high-energy transfers, we have chosen a model in which
the dynamics of the atom is fully collectivized. By substi-
tuting the harmonic forces for the Coulombic forces we
have effectively replaced the atom by its dipole and quad-
rupole moments. In realistic atoms all the multipole mo-
ments will be dynamically relevant, but we expect the
lowest two moments to be most important for the cou-
pling to the electromagnetic wave in the optical or in the
uv region.

One should observe the essential role of the repulsion
between the electrons. In our model it leads to a softening
of the characteristic frequency of the quadrupole oscilla-
tions. This may lead to the frequency to being much
lower than the frequency of the dipole oscillations. Were
it not for this softening, we could not argue that the reso-
nance region for the quadrupole oscillations lies at much
lower energies than about 100 eV, which is typical for the
giant dipole resonance. As seen in Eq. (8), the characteris-
tic quadrupole frequency to results from subtracting two
large quantities. In the absence of electronic repulsion,
the quadrupole frequency, as expected, would be twice the
dipole frequency. However, at this stage we have no way
to predict the values of the two free parameters of our
model: 0 and Qt. This would require either a fit to ex-
perimental data when they become available (frequency
dependence of the ionization rates) or a derivation of our
model froin the proper theory with Coulombic forces.

In order to excite the quadrupole degrees of freedom,
we had to resort to the quadrupole approximation in the
wave-atom coupling. Even though the coupling of the
quadrupole oscillations to the wave field is, in some sense,

FIG. 1. Time dependence of the atomic quadrupole energy
E. The photon energy AcoL is used as the energy unit and the
wave period 2~/~L is used as the time unit. A11 three curves a,
P, and y correspond to co~ ——O. lcoL, , but they differ in the value

of the detuning: 5~=0, ~p ——0.52cog, +y —0

weaker than that of the dipole, the energy transferred to
the atom through the quadrupole degrees of freedom can
be much higher if it all happens in the region of
parametric resonance. Let us also note that the standard
arguments for the smallness of the quadrupole coupling,
based on the smallness of the atomic size as compared to
the wavelength, may lose their validity for the multielect-
ron atom which expands rapidly when "heated" by an in-
tense laser field.

If one views our model more realistically than we had
originally intended, two clear predictions can be made.
First, the interaction has a resonant character. Therefore,
one should try experimentally to locate the resonance re-

gions for different elements. Second, the quadrupole exci-
tations play the crucial role. This fact should show up in
the correlations of the ejected electrons characteristic of
such excitations.

Note added in proof The model .of the atom with all
Coulomb forces replaced by the harmonic forces has been
also studied by Moshinsky and his collaborators [M.
Moshinsky, O. Novaro, and A. Calles, J. Phys. (Paris),
Colloq. 31, C4-125 (1970); M. Moshinsky, N. Mendez,
and E. Murow, Ann. Phys. (N.Y.) 163, 1 (1985)],but they
explored different aspects of this model.
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