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We present a semiclassical analysis of ultrahigh-resolution two-photon optical Ramsey spectros-

copy of cold neutral atoms falling freely in a fountain. Considering atoms which interact with the

same standing-wave laser field twice on their parabolic trajectories and averaging over a broad

atomic velocity distribution, we predict a nearly Lorentzian line shape whose width is just the natur-

al linewidth. %e have investigated a number of systematic corrections to the atomic resonance fre-

quency, including first-order and second-order Doppler shifts, gravitational red shifts, and ac Stark
shifts. First-order Doppler shifts due to vertical motion cancel even if the counterpropagating
beams are slightly misaligned, and resolutions below 1 Hz appear feasible with a fountain of modest

dimensions.

I. INTRODUCTION

In this paper we explore Doppler-free two-photon opti-
cal Ramsey spectroscopy of cold neutral atoms falling
freely due to gravity. Using a semiclassical model, we
consider a fountain of atoms which interact with the same
standing-wave laser field twice on their parabolic trajec-
tories. After averaging over a broad atomic velocity dis-
tribution, we predict a simple nearly Lorentzian interfer-
ence signal whose width is just the natural linewidth.
Resolutions below 1 Hz appear feasible with a fountain
reaching only a few centimeters above the laser beams.
Residual first-order Doppler shifts due to vertical motion
cancel even if the counterpropagating beams are slightly
misaligned. Optical Ramsey spectroscopy of an atomic
beam'i suffers from uncontrolled line shifts caused by
phase differences between the two interaction regions.
The fountain geometry avoids this problem because the
same light field is used for both interactions. A brief
summary of the results derived here has already appeared
elsewhere.

One of the motivations for this analysis has been the re-
cent progress in high-resolution continuous-wave (cw)
two-photon spectroscopy of atomic hydrogen. The hy-
drogen IS-2S transition at 243 nm is of particular interest
for precision measurements of fundamental constants and
for tests of fundamental physics laws, and its 1-Hz
linewidth presents a very tantalizing goal for ultrahigh-
resolution spectroscopy. Other atoms with two-photon
transitions of similarly narrow widths have been recog-
nized as interesting candidates for optical frequency stan-
dards. '

To obtain resolutions near 1 Hz, the effective observa-
tion time must extend over a good fraction of a second.
Unfortunately, such long observation times are not easily
achieved for neutral atoms, despite recent spectacular ad-
vances in laser radiation pressure cooling. Even at a
temperature of 1 mK, atoms of an atomic mass M (in
amu) are still traveling with a most probable speed of
4/v M m/s. Adequate interaction times can be reached

in principle by trapping of laser-cooled atoms ' but then
the atomic energy levels are perturbed by the strong exter-
nal electromagnetic trapping fields, and the transition fre-
quency may be shifted by an uncontrollable amount.

Here we show that natural-linewidth-limited spectros-
copy with extreme resolution is possible if the Earth' s
gravitational field is used to further slow laser-cooled
atoms so that each projectile can be observed for an ex-
tended period near the turning point of its parabolic tra-
jectory. The freely falling atoms can remain completely
unperturbed by any external fields except for the two brief
passages through the exciting laser field. The basic idea
of using gravity to slow atoms is not new. "'2 More than
30 years ago, Zacharias at MIT built an apparatus 9 m
tall for microwave spectroscopy of an atomic cesium
fountain. That experiment was not successful because
collisions in the orifice of the hot cesium oven eliminated
the slow tail of the Maxwellian velocity distribution. This
obstacle can be overcome by laser cooling, which provides
such low temperatures that even atoms near the peak of
the velocity distribution can be slowed by gravity to a
standstill over modest distances. Fountain experiments
have recently been suggested as a means to study the 1S-
2S two-photon transition in atomic hydrogen. ' Howev-
er, we do not know of any quantitative analysis of two-
photon optical Ramsey spectroscopy in an atomic foun-
tain.

In our model we consider the experimental arrangement
shown in Fig. l. Atoms from a cold source region (or
"nozzle" ), prepared in the ground state, move upward
against the force of gravity towards a single excitation re-
gion of two horizontal, nearly counterpropagating laser
beams with the same frequency. We are interested in
those atoms which pass through this laser field twice as
they move along their parabolic trajectories. Any excited
atoms falling from above are monitored by a suitable
detector positioned just below the light field. As in opti-
cal Ramsey spectroscopy of an atomic beam, ' the first
passage leaves an atom in a coherent superposition of
ground state and excited state. The effect of the second
passage then depends on the relative phase of the atom-
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FIG. l. Scheme for two-photon optical Ramsey spectroscopy
of atoms falling freely in a fountain.

field system after the time of flight T between the interac-
tions, giving rise to Ramsey interference fringes in the ex-
citation probability.

In ordinary Ramsey spectroscopy, the atoms travel with
constant velocity u between two distinct interaction re-
gions separated by a distance L, so that T=L/u. Hence
in that arrangement the narrowest fringes are provided by
the slowest atoms. In the fountain, however, atoms which
enter the light field with vertical speed u spend a time
T=2u/g between the interactions, so in this geometry it
is the fastest atoms which give rise to the fringes with the
highest resolution. But the fringe contrast becoines very
small if the atoms are too fast: the effect of the atoms'
first interaction is diminished because of spontaneous de-
cay before they return. (Since it is the interference of the
second interaction with the first that causes the fringes,
only atoms which are still in a coherent superposition of
states when they reenter the excitation region can contri-
bute to the signal. ) On the other hand, atoms which are
too slow do not reach sufficient height to cross the beams.
As a result, only atoms within a relatively narrow range
of vertical velocities contribute to the useful interference
signal, and the distribution of atomic speeds outside this
range is unimportant for the velocity-averaged signal line
shape.

In Sec. II, we apply the semiclassical formalism
developed in the Appendixes to derive the excitation prob-
ability for a single atom in free fall which passes twice
through an interaction region of two counterpropagating
laser beams. %e consider corrections due to beam
misalignment, first-order and second-order Doppler shifts,
gravitational red shifts, and ac Stark shifts. In Sec. III we
determine the velocity distribution of the atoms which
reach the excitation region in terms of the velocity distri-
bution at the source. %'e then average the single-atom ex-
citation probability over the atomic velocity distribution.
%e point out that, as long as the damping is large enough,
the useful velocity range will be narrow compared with
the width of the distribution, and an average over all
atoms yields a nearly Lorentzian signal, regardless of the
exact shape of the distribution. For a Maxwellian velocity
distribution at the source, we derive the higher-order
corrections to this line shape. Finally, in Sec. IV, we ap-

ply our analysis to a particular example, the 1S-2S transi-
tion in atomic hydrogen.

In the Appendixes we briefly develop the theory of
two-photon transitions with an eye towards our particular
application. The resonant interaction between intense
laser beams and atoms is treated with a semiclassical
model, introducing vacuum field-atom interactions with

appropriate phenomenological damping factors. In Ap-
pendix A we derive the semiclassical optical Bloch equa-
tions for a general two-level atom, including time-
dependent frequency corrections such as ac Stark shifts.
We then write down a simple integral expression for the
time-dependent excitation probability. In Appendix B, we
use conventional techniques to develop an effective semi-
classical Hamiltonian for resonant two-photon transitions
in the electric dipole approximation (EDA) and the
rotating-wave approximation (RWA). We contrast our re-
sult with that of quantum electrodynamics, and we dis-
cuss the limitations of the usual photon number state
treatment. Finally, we explicitly define the circumstances
under which our effective Hamiltonian reduces to the
form commonly found in the literature.

II. THE SINGLE-ATOM EXCITATION
PROBABILITY

In our semiclassical model we assume that the
(quantum-mechanical) atoms follow classical trajectories
through a classical electromagnetic field. We label the in-
tensities of the two nearly counterpropagating cw laser
beams I, and Iz, the phases P~ and Pq, and the propaga-
tion vectors ki ——kz and kz ———kz+ b,k, where
kc =2mc /A, =co is the frequency of each laser and

~

b,k~ =2kz b,k&&k allows for a small misalignment.
The intensity profile of the light field (e.g., Gaussian) will
determine the size and shape of the relatively broad en-

velope of the Ramsey fringes corresponding to a particu-
lar velocity class. '~ However, the field profile has little ef-
fect on the central interference signal after averaging over
the atomic velocity distribution, so for simplicity we ap-
proximate the geometry of the electric fields by rectangle
functions of dimension 2wo in the y direction. At t =0 an
atom which is initially in the ground state enters the light
field at r(0) =0 with a nearly vertical velocity
v(0)= u, x+u~(0)y+u, z. Under the influence of the
Earth's gravitational field g= —gf, the atom exits the in-
teraction region after a time

r= —tu~(0) —[u~(0)—4gwo]' ) =2wo/u~(0) .

It then continues on a parabolic trajectory and reenters the
light field at the time T=2u~(0)/g 7.. Finally, at tim—e
t =T+~ the atom leaves the interaction region, travels a
short distance, and reaches a metastable detector.
(Throughout this analysis, we neglect the small contribu-
tion to the background from atoms with u~(0) & +4gwo
which enter the laser beams only once and fall back out
after being excited. )

The fountain apparatus is used to observe two-photon
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transitions from the ground state
~
b), with Bohr fre-

quency cub, to a metastable excited state
~

a ), with Bohr
frequency c0, . We label the resonance frequency
cv,b

——cv, —cob, and we assume that the atom decays from
I

the upper level to the lower level at a rate y &10 s
Generalizing Eq. (A6) to the case of a moving atom, and
using the effective transition matrix element (810), we
find the excitation probability

p' '(t) =
~
D,b ~

IiIzexp( y—t) f dt'f(t')exp i —2Qt' bk—.r(t')+(p, +{{)i)—J dt"ibcv, b(t")+iyt'/2
I

,
2

(2.1)

Here D,b is defined by Eq. (Bl1), the angular frequency
Q=co —,' co,b —isthe laser detuning from resonance, r(t} is
the position of the atom at time t, and f ( t) is an envelope
function given by

pared to the resonance frequency of an atom that is sim-
ply at rest in the interaction region. Near the top of the
atom's parabolic trajectory, however, where v(t)=0, co,b
is shifted towards the blue. We include all three effects by
writing hcv, b(t) as

1, 0&t&r and T&t&T+r
0 otherwise . (2.2)

bcv, b(t) =Ibcv, f(t) —[v'(t)+2g r(t)] .
2c

(2.3)

The phase shift hk r(t) gives rise to a residual first-order
Doppler effect. The frequency shift b,cv,b(t) represents
contributions from the ac Stark effect, ' the second-order
Doppler effect, ' and the gravitational red shift. 'b The ac
Stark shift occurs only when the atom interacts with the
light field, and so it can be represented simply by bee,f(t),
where hcv, is given by Eq. (812) and depends linearly on
the laser intensities I, and I2. In the laboratory reference
frame, the second-order Doppler effect red shifts the
atomic resonance frequency by an amount

co,bv (t)/2c .—In addition, however, the gravitational
red shift of the resonance frequency will be reduced by an
amount co,bg r(t)/—c as the atom rises to apogee. 's'7
Hence, at both t =0 and t =T+r, co,b is red shifted com-

To proceed, we evaluate Eq. (2.1) at t =T+r and use
Eq. (2.2) to break up the integral in Eq. (2.1) into two in-
tegrals corresponding to the two distinct interactions, and
we perform the change of variable t~t+ T in the latter.
Furthermore, those parts of the total shift proportional to
either u~(t) or ur (t) are significant only when
ur(0) »+4givo. When calculating the total shift during
either of the two interactions, therefore, we may take
T»r and assume that the velocity of the atom is essen-
tially constant. The final excitation probability will not
depend on the phase factor exp[ i(Pi—+Pi)], since it is
common to both integrals. If we use the conservation of
energy, v (t) —2g r(t}=v (0), to rewrite the second term
of Eq. (2.3}, with all of these modifications Eq. (2.1) be-
comes

p (T+r)=
~

D b ~
IiI2exp[ y(T+r)]—

dt exp i 2Q —b—co, +co,b —hk, u, bkrvr—(0) hk, u,—+i t
'r

C

+exp[ —i@+id,kyuy(0)r+y T/2)

P r

«exp —t 2Q &cv, +cv.b— , Ak„v„+6k~v„—(0) b,k, u, +i t—
0 (2.4)

where b k„, b kr, and hk, are the projections of hk onto the x, y, and z axes, respectively, and

4=2QT Ib.cv, r+ [u„+u—, —,v~(0)]T—(—hk, u„+b.k, u, )T .2 (2.5)

The maximum interaction time is r =+4ivolg; if we assume that y «2/r, „, then we can neglect damping during
the interactions, and Eq. (2.4) becomes

p (T+r)=
~
D,b ~

IiIzr exp( yT) jo —2Q —bc0, +co—,b bk„u„bk u (0) —Ibk, v, — —{2) 2 1 v (0)

2

(2.6)

1'

+exp( ie+yT/2)jo —2Q Ecv, +co,b— , hk, u„+i—N u (0) b—,k, u, r—1 v (0)
2C
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where j0(x) =sin(x)/x is the zeroth-order spherical Bessel
function.

Each term in Eq. (2.6) has a simple, intuitive explana-
tion. The first Bessel function is proportional to the prob-
ability amplitude for excitation as the atom passes up-
wards through the (rectangular) light fields, while the
second corresponds to that of the downward passage. The
frequency corrections in the arguments of the Bessel func-
tions are the ac Stark shift, the second-order Doppler red
shift, and the residual first-order Doppler shift. The rela-
tive phase 4 is just the phase that the atom accrues as it
travels between the interactions, and it is this which gives
rise to the Ramsey fringes in the excitation probability.
In 4, note the characteristic reduction of the ac Stark
shift by r/T, since the two-photon resonance frequency is
shifted only during the short interaction time r '.The
third term in 4 is the sum of the second-order Doppler
shift and the gravitational red shift after integration over
the atom's parabolic trajectory. ' In the case where
v +v, «u~(0), this results in a net blue shift of the
Ramsey pattern.

We now consider in detail the consequences of a
misalignment of the laser beams by the small relative an-
gle 68=+26k, /k. The resulting two-photon recoil shift
(iris', b/Mc )(b8/2), which we have not explicitly includ-

ed in Eq. (2.6), remains below two parts in 10' for
b,8&100 p, rad. The same is true for the residual first-
order Doppler shift due to horizontal motion along the
laser beams, bk, u, =co,b(u, /c)(b8/2), and the corre-
sponding second-order Doppler shift, co,b u, /2c, if v, & 2
m/s. However, in order to keep the residual first-order
Doppler shift due to horizontal motion transverse to the
beams, b,k u„=co,b(u„/c)(b, 8/2), below two parts in
10', the apparatus would have to restrict

~
u„~ to less

than 1 mm/s even if the horizontal misalignment is only
10 grad. In what follows we assume that these conditions
have been met, and we ignore any first-order or second-
order shifts caused by nonzero horizontal velocities.
However, most of the atoms which will eventually contri-
bute to the central interference signal are evenly distribut-
ed over the velocity range 0&v~(0) &g/y, and so at this
point we cannot ignore the v~(0) contributions to the
second-order shifts in Eq. (2.6). But we can approximate
uz(0) by the magnitude of the total velocity at t =0,
which we denote simply as u from now on.

If bkz ,uu/2c « I/rm, „, then the Doppler shifts of
the broad background terms are small compared to their
widths. Therefore, near line center, both of the Bessel
functions in Eq. (2.6) may be replaced simply by 1, and we
finally obtain

p' '(T+r) =p' '(r)[1+exp( —yT)+2exp( yT/2—)cos(2QT bee, r—Ui,bT—U /6c )], (2.7)

where r=2wu/v, T=2v/g, and p' '(r) =
~
D,b ~

IiI2r is
the transit-time-limited Doppler-free two-photon excita-
tion probability at line center.

Two of the most interesting advantages of the atomic
fountain technique become apparent upon close examina-
tion of Eq. (2.7). First of all, the phases Pi and Pq have
completely disappeared from the final result, because the
atams interact twice with the same counterpropagating
beams. In an ordinary Ramsey experiment, an additional
shift —(Pi+Pi Pi P4) —woul—d appear in 4, with each P
coming from two laser beams in two separate interaction
regions, ' and great care must be taken to avoid cavity
phase shifts of the central peak. Second, the atomic foun-
tain completely avoids residual first-order Doppler shifts
due to vertical motion through slightly misaligned beams
because any net phase shift accumulated as the atom as-
cends is canceled by an equal and opposite shift acquired
during the descent.

III. THE VELOCITY-AVERAGED EXCITATION
PROBABILITY

In order to determine the signal line shape for the
atomic fountain, we must average Eq. (2.7) over the atom-
ic velocity distribution. We define 4b as the flux of
ground-state atoms in s 'sr ' emitted upward by the
source located at y = —h towards the interaction region at
y =0. An atom with speed v at the nozzle must be emit-
ted into an effective solid angle rl(u ) in order to pass twice
through the exciting laser fields and then reach the detec-
tor. We assume that for the atoms which contribute sub-

The atomic current distribution at arbitrary y,
jb(u, y)du, is proportional to n'(u, y)udu and is normal-
ized so that the integral of jb(u, —h)du over all positive
speeds yields 4brl Therefore, if w. e assume that n(u) cor-
responds to a Maxwellian velocity distribution, ' then the
atomic current distribution in the interaction region is

Jb(U, O)du =0 bi)(2U /Uo)+u +2gh

X exp( —u /vo —2gh/uo)dv, (3.2)

where vo is the most probable atomic speed at y = —h. '

[We have corrected an obvious sign error in Eq. (2) of
Ref. 3.] Now, if we multiply Eq. (2.7) by Eq. (3.2) and in-

t

stantially to the central interference signal, v is essentially
vertical, so that r)(u) is small and does not depend strong-
ly on speed; we denote these quantities simply as v and q
in the following discussion. We define the velocity distri-
bution n(u)du as the number of atoms per unit distance
with speeds in the range u to v+du emitted by the source
into the solid angle g. Above the source the atoms are no
longer in thermal equilibrium, and we may treat the
mation of each particle as that of a simple projectile sub-
ject to the force of gravity. Those atoms with
u & v'2g(y +h) at the source are too slow to rise to verti-
cal position y. The velocity distribution at arbitrary y,
n'(u, y )dv, may be deduced fram n(u)dv simply by making
the change of variable v ~u +2g(y+h):

n(u)du~ vdu =n'(u, y)du .—(3.1)
n(+u +2g(y+h))

+u +2g(y+h)
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b J,(Q) =24srjp' '(ro)K(Q),

where the line-shape function E(Q) is given by

K(Q) =2exp( —2gh/uo)

X u u +2g u0 exp —yT0u 2 —u
"mm

(3.3)

tegrate over velocity, we obtain for the signal line shape the metastable 2S state' is y =8.23 s ', so that the natur-
al linewidth of the 1S-ZS transition is 0.655 Hz (at 243
nm). We assume that the laser fields have parallel linear
polarizations, and we choose the atomic axis of quantiza-
tion along the direction of the electric field. In this case,
the two-photon transition amplitude defined by Eq. (813)
has been computed to be

2
+0 U0icos 2AT0u —he@ ——u bT0 uS 0

(3.4)

M~b ——11.78,

giving for (811)

a.b=4.63 cm'J '.

(4.1)

(4.2)

( /4)2 3Q (y/4)
[Qi+ ( y/4) P

(3.5)

The leading term in this approximation is just a Lorentzi-
an. The correction factor due to the second term in the
large parentheses is —2(1—uo/4gh)/(yTo/2) at line
center; hence, for a truly Maxwellian velocity distribution
at the source, a fountain with an interaction region placed
at a height h =uo/4g above the nozzle will provide an al-
most perfectly Lorentzian line shape. The lowest-order
Lorentzian term in Eq. (3.5} does not depend on the exact
shape of the velocity distribution, as can be shown by ex-
panding n'(u, 0) in a Taylor series about u =0, noting that
n'(0, 0}=0,and then keeping the first-order term. At line
center, the ratio of the Doppler-free two-photon back-
ground to this signal is approximately —, +(1+
uo/8gh )v my To/8.

IV. EXAMPLE: THE HYDROGEN 1$-2$
TRANSITION

To consider a tractable example of particular interest,
we apply the results of our analysis to the 1S-2S transi-
tion of atomic hydrogen. The two-photon decay rate of

Here ro ——2wo/uo To ——2uo/g, and u in=% 16gwo/vo
The lower limit of integration has been chosen so as to ig-
nore the broad background introduced by very slow atoms
which rise less than three beam diameters above the laser
field. In a more precise treatment these atoms would re-
quire special consideration: to first order in u

they simply add a small constant background
2V 2gh/voexp( —2gh/uo)u;„ to E(Q) near line center.
We have scaled K(Q} so that in a standard Ramsey
geometry, when damping between the interactions can be
ignored„K(0)=1. In the limit where u;„«1 and
yTo/2&&1, we neglect all shifts and expand the Maxwel-
lian factor Qu +2gh/uoexp( —u } to second order in u.
Then the central interference signal becomes

' I/2

6J,(Q) =4@gyp' '(ro)
3 ~0

I

Xexp( —2gh/uo)
(y/4)

Q'+(y/4)'

2(1—vo/4gh )
X 1+

(yTo/2)'

If the two laser beams have the same intensity I, then the
ac Stark effect (812) can be obtained using~'

(M~+M~) (Mbs+—Mbb)=53 35 (4.3)

resulting in a shift of the 1S-2S transition frequency (at
243 nm) by

=1.67I Hz% ' cm
4m

(4.4)

We assume that the hydrogen atoms at the source have
been cooled to a temperature of 1 mK. In principle, radi-
ation pressure cooling of hydrogen atoms could be accom-
plished very effectively with laser light at the 121.6-nm
La line. Unfortunately, there are still no suitable tunable
vacuum ultraviolet lasers available, and so far nonlinear
four-wave mixing has produced only short pulses of mod-
est power. On the other hand, once the atoms are
precooled to liquid helium temperature by conventional
means, a hydrogen atom can be stopped over a very
short distance by resonant scattering of only about 100
La photons. Alternatively, the atoms could be cooled
into the millikelvin range with the help of a dilution refri-
gerator, or inhomogeneous magnetic fields might be em-
ployed for velocity reduction and selection.

We assume that the standing-wave light field is located
at a height h =uo/2g= 85 cm above the source and has a
vertical thickness 2wo ——100 p, m. It may be desirable to
expand the beams in the horizontal direction to a width of
a few millimeters. Since the mass of the hydrogen atom is
so small, if we restrict the horizontal speed u„ to less than
1 mm/s, then according to the Heisenberg uncertainty
principle we cannot localize the x component of the
atom's position to better than 60 pm.

The average resonant excitation probability for an atom
passing twice through this interaction region is approxi-
mately 10 sI cm W 2; the corresponding count rate is
obtained by multiplying this number by 4bg. The con-
tinuous curve in Fig. 2 shows the signal line shape K(Q)
as predicted by a full numerical integration of Eq. (3.4}
for I= 1 W/cm, including a small constant background
2V 2gh/uo exp( —2gh/uo) u;„. There is a slight net blue
shift of 0.02 Hz inainly due to the second-order Doppler
effect and the gravitational red shift. The ac Stark shift
reinains below 0.02 Hz up to intensities of 30 W/cm, al-
though the line shape becomes more asymmetric at higher
intensities. The limiting assumptions made in the deriva-
tion of Eq. (3.5) are not well satisfied here, since the hy-
drogen atom is so light. Nevertheless, the Lorentzian
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troscopy of neutral atoms falling freely in a fountain. The
proposed technique can provide simple interference sig-
nals of ultrahigh resolution without perturbing the atoms
with trapping fields. We have investigated a number of
systematic corrections, including the effects of beam
misahgnment, first-order and second-order Doppler shifts,
gravitational red shifts, and ac Stark shifts, and we point
out important advantages of the fountain geometry com-
pared to more conventional excitation schemes. Continu-
ing rapid progress in laser frequency stabilization tech-
niques and laser cooling technology should make it possi-
ble to perform such an experiment in the near future.

FIG. 2. Interference signal expected for the hydrogen 15-2S
transition (source temperature 1 mK, 6 =85 cm, 2wo ——1OO pm).
The continuous curve gives the result obtained by numerical in-

tegration of Eq. (3.4). The dashed curve shows the Lorentzian

approximation predicted by the leading-order term in Eq. (3.5}.

line-shape approximation, given by the leading-order term
in Eq. (3.5) and illustrated by the dashed curve in Fig. 2,
describes the line shape fairly well. The 8% difference in
signal height between the exact and Lorentzian line pro-
files is due almost entirely to our neglect of the correction
term in Eq. (3.5). In the chosen units, the Doppler-free
background reaches about 0.4 at its center.

Of course, it will be important to shield the hydrogen
atoms from perturbing electric fields so as to avoid dc
Stark shifts. For a small electric field E, Stark mixing of
the 2S&~z state with the closely adjacent 2Pi&z and 2P3/z
states shifts the 2S level upward by about 3600E
HzV cmz. In order to keep the resulting blue shift of
the 1S-2S transition below 0.02 Hz (at 243 nm), any
external electric fields would need to be reduced below 3.3
mV/cm.

Magnetic fields pose a less serious problem since both
the 1S and the 2$ states have the same magnetic moment
at low fields, and the selo:tion rules dd'=0 and b,mF 0——
permit transitions only between corresponding ~man
sublevels. Since the 1S and 2S levels have different hy-
perfine coupling strengths, the rnF 0 transitions ——are field
sensitive, and inagnetic hyperfine decoupling gives a shift
of about 108 HzG . Hence, any external magnetic
fields must be smaller than 2 mG if these shifts are to
remain below 0.02 Hz (at 243 nm). But the line com-
ponents with mF ——+1 will exhibit zero Zeeman shifts up
to much larger fields. Motional Stark shifts due to the
electric field observed by an atom moving through a dc
magnetic field are also negligible up to about 1 kG as long
as the atoms are cooled to millikelvin temperatures so that
U/c &10

Thus, while formidable technical difficulties remain,
the proposed fountain experiment promises a viable path
towards the tantalizing goal of measuring the hydrogen
1S-2S transition with a natural-linewidth-limited resolu-
tion of better than one part in 10' .

V. CONCLUSIONS
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APPENDIX A: THE T%'0-LEVEL OPTICAL
BLOCH EQUATIONS

Consider an unperturbed atom described by an effective
two-level Hamiltonian whose eigenvalues and eigenfunc-
tions are known. In the basis in which the Hamiltonian is
diagonal, let

~

a ) and
~
b) denote the eigenstate vectors

describing the upper and lower levels, respectively, and let
%co, and %cob denote the corresponding energy eigenvalues.
We allow the atom to interact with a c-number elec-
tromagnetic field through the interaction Hamiltonian
Hi(t), which not only causes transitions between the two
states, but also shifts the Bohr frequencies to, and cob by
the amounts bto, (t) and bcob(t). Using time-dependent
perturbation theory in the rest frame of the atom we write
the equations of motion for the Schrodinger picture prob-
ability amplitudes as

c, (t) = i [co, +b—co, (t)]c,(t) —V,b(t)c—b(t),a ~ a

(A 1)

cb(t}= i [tob+hc—ob(t)]cb(t) —
Vb (t)c—,(t) .

Here c~(t) is the probability amplitude for finding the
atom in the unperturbed upper state at time t, cb(t} is the
corresponding probability amplitude for the lower state,
and V,b(t) = Vb, (t) For iV-pho. ton resonant transitions,
V,b(t) is of order N in Hi(t), but b,co, (t) and b,cob(t) are
always quadratic in Hi(t).

The method of obtaining the appropriate two-level opti-
cal Bloch equations from the above equations of motion is
well known. From Eqs. (Al) we identify the effective
two-level Hamiltonian H(t) =Ho+ V(t), where

In conclusion, we have presented a semiclassical model
exploring the merits of two-photon optical Ramsey spec-

Ace, 0
Hp —— (A2}
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fiasco, (t) V,b(t)
V(t) =

Vb, (t) A'jacob(t)
(A3)

which may decay to
~

b ) after a mean lifetime y '. If we
neglect collisions, we have

The density operator p has the matrix elements

p„(t)=(n
~
p(t)

~

m ) =c„(t)c (t), where n, m=a, b, and
in the atomic rest frame it obeys the equation of motion

I'(p) =— 2 pab

2 Pb TPaa

ihip=[H, p]+ifiI (p) . (A4)

Here the matrix 1 (p) describes relaxation due to Wigner-
Weisskopf decay and dephasing processes such as col-
lisions. We are particularly interested in the case where

~b) is the ground state, and
~

a) is a metastable state

We define the resonance frequency co,b
——co, —cob and

the total shift bco.b(t)=Leo. (t) jacob(—t). If the initial
conditions are p~(t)~0 and pbb(t}~1 as t~ —oo, then
solving Eq. (A4) for p (t) and pbb(t) to second order in
Vgb(t) gives

V,b(t')
p,','(t) =exp( —yt) f dt' exp ico,bt'+i f dt"bco, b(t")+yt'/2

pbb (t) = 1 —p' '(t) .
(A6)

APPENDIX 8: AN EFFECTIVE TWO-LEVEL
HAMILTONIAN FOR SEMICLASSICAL

T%'0-PHOTON TRANSITIONS

terms of those in

C» ( t) =c» (t}exp(icok t ).
heory yields25, 26

the Schrodinger picture by
Time-dependent perturbation

Here we employ conventional techniques to derive an
effective semiclassical Hamiltonian for resonant two-

photon transitions. '2 Unlike a quantum electrodynamic
treatment describing each of the counterpropagating laser
beams with photon number states, our model accounts for
spatial interference effects in the standing-wave electric
field. We discuss below the conditions under which this
interference can be neglected, and our result reduces to the
form usually found in the literature.

In the EDA, we consider resonant semiclassical two-
photon transitions between the two states

~

a ) and
~

b ) of
the atom illustrated in Fig. 3. The electric dipole matrix
element between states ~a) and

~

b) is zero, but non-
resonant one-photon electric dipole transitions from

~

a )
and

~
b) to intermediate states

~

n) are allowed. For con-
venience we first determine the equations of motion for
the interaction picture probability amplitudes, given in

Ck(t)= . g &k
I
&i(t)

I
n )exp(tco»„t)C„(t),1

ifi

where cok„=co» —co„. The sum over n includes an in-

tegration over continuum states. In the EDA the interac-
tion Hamiltonian is given by

Hi(t)= —eaod E(r, t), (B2)

where e &0 is the charge of the electron, ao is the Bohr
radius, eaod is the electric dipole operator, s and E(r, t } is
the total classical electric field at r, the position of the
atomic nucleus. In the case where the exciting laser band-
widths are much smaller than the resolution of the experi-
ment (which may be limited by either the natural
linewidth of the transition or the finite interaction time),
the electric field may be written as the sum of two mono-
chromatic fields with angular frequencies co, and co2 tuned
so that coi+coz-co, b and complex vector amplitude func-
tions E,(r, t ) and Ei(r, t ):

E(r, t) = —,
' E,(r, t)exp( i co, t )+c.c. —

+ —,Ez(r, t )exp( i co2t )+c c— . (83)

The equations of motion for the probability amplitudes
C, (t) and Cb(t) are therefore

eao
C, (t) =i g d,„Ei(r,t)exp[i(co,„—coi)t]C„(t)a 2~ an

FIG. 3. Atomic energy level diagram for resonant two-

photon transitions.

8Qo
+i gd, „Ei(r, t)exp[i(co,„+co,)t]C„(t)

5

+(1~2),
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where d =(a ~d~ n). The expression for Cb(t) is iden-

tical to Eq. (84), except that a~b .We cannot yet make
the R%A, since the frequencies N„are all far off reso-
nance. (In the RWA, we neglect all but slowly varying
terms, i.e., we ignore all terms with a very rapidly oscillat-
ing time dependence. ) However, we anticipate that C, (t)

and Cb(t) will be slowly varying, so that the only terms in
the equation of motion for the probability amplitude
C„(t) of the intermediate state

~

n ) which will eventually
contribute to a two-photon resonance are those propor-
tional to C, (t) or Cb(t} Then

eQO eao
C„(t)=i d Ei(r, t)exp[ i(—co,„+col)t]C,(t)+i d Ei (r, t)exp[ i—(co,„co—i)t]C, (t)

+(terms with 1~2)+(similar terms with a ~b) . (85)

If the lasers are tuned very near to the two-photon resonance, then C, (t) and Cb(t) oscillate slowly compared to fre-

quencies such as co,„+coi. Hence, if we can make the adiabatic approximation' ~Et(r, t)
~

&& ~coEi(r, t) ~, where

co=co~„+coj,j= 1 or 2 and m =a or 6 [i.e., if we can assume that neither E,(r, t) nor Ei(r, t) has any significant high-

frequency components], and if
~

Ei(r, t) ~, ~
Ei(r, t)

~

0 as t~ —ao, then we can integrate Eq. (85) directly. After we

substitute the result into Eq. (84), make the RWA, and convert the interaction picture probability amplitudes into those
of the Schrodinger picture, we obtain Eqs. (Al) with

hco, (t)=bco,"(t)+hco, (t)+bco,' (t)exp[ i(co—i —co)zt] +6 c,o'(t)exp[ +i( col col)t]—,

Vab ( t ) Vab ( t)exp( i 2co, t ) +—Vab ( t )exp( i 2co—it }+ [ Vab ( t) + Vab ( t ) ]exp[ i (co, +—co2 }t],
where

(86)

hcoaj(t) = eao dan EJ'(r, t)d«E;(r, t) dan E;(r,t)d«EJ (, )+'" '

2irl n COan +CO; Ng~ —NJ.

(87)
V,'b(t) eao li '

E&( rt) db E;(r,t)
2' „cob„+co;

The expression for

jacob(t)

may be obtained from the first of Eqs. (86) and (87) by making the substitution a ~b Physi-.
cally, the two-photon transition potential V,b(t) and the small ac Stark shifts hco, (t} and bcob(t) all arise from two con-
catenated first-order virtual electric dipole transitions: the first is froin the initial level to a nonresonant intermediate
level

~

n ) and the second is either to the other state (stimulated two-photon absorption or emission) or back to the same
state (ac Stark shift).

When col —co2 is much larger than the resolution of the experiment, the last two terms in the first of Eqs. (86) are rap-

idly varying and can be neglected. In this work, however, we are primarily concerned with the important case where

col ——col ——co; after this simplification Eqs. (86) become

«o I d, [Ei(r,t)+El(r, t)]
I

'
I dan [Ei(r t)+E2« t)]

I

bco, (t) = +
2iri N~z +N N~„—N

«0 . d '[Ei(r, t)+Ei(r, t)]dab [Ei(r,t)+El(r, t)]
exp( i 2cot)—

2% cobn +co

with a similar expression for bcob(t).
Here we have treated the laser light as a purely classical

electromagnetic field, and we have used the term "two-
photon transition" to denote a resonant second-order
semiclassical field-atom interaction in the electric dipole
approximation. Since electromagnetic field quantization
is important only in phenomena where vacuum field-atom
interactions play a significant role, 0 we expect a full
quantum electrodynamic analysis of the same problem to
yield Eqs. (88). This will not happen, however, if the
quantum laser field is described in the "fuzzy-ball" pho-
ton model by simple counterpropagating photon number

states. In the case of two-photon absorption from coun-
terpropagating beams which have the same frequency,
this model predicts a degenerate final state: the possibility
exists to absorb two photons from the first beam, or two
photons from the second beam, or one photon from each
beam (through two different paths). The probability am-
plitudes for these three processes are usually calculated
separately, squared, and then added together to obtain the
total absorption probability. ' ' ' This procedure re-
sults in an expression which does not depend on spatial
properties of the laser field, and therefore it neglects any
interference between the counterpropagating beams.
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Under certain circumstances, ho~ever, this can be a seri-
ous omission; for example, an atom traveling along a node
of a standing-wave electric field will not be excited and
will not suffer a level shift. Clearly, the fuzzy-ball photon
model fails here, because the state vectors for the field
have completely unknown relative phases and cannot in-
terfere. If the electromagnetic field is quantized with the
spatial boundary conditions satisfied by the corresponding
classical field, however, as is done in Ref. 26 for the case
of standing waves in a laser cavity, then the correct phases
are automatically acquired and Eqs. (88) are obtained,
with the classical field amplitudes replaced by the ap-
propriate electric field operators and the purely atomic
state vectors replaced by field-atom state vectors.

Nevertheless, in most situations of practical interest the
interference between the counterpropagating beams can be
neglected, and under these circumstances we recover the
much simpler formula obtained using the fuzzy-ball pho-
ton model described above. Consider an atom with veloci-
ty v=u„P+u, 'k interacting with a standing-wave light
field of thickness 2wo consisting of two counterpropagat-
ing laser beams with propagation vectors ki ——k2 and
ki ———kz, where kc =2m.c/l, =tv is the frequency of each
laser. The number of standing-wave nodes that the atom
crosses during the interaction is given by 2v, r/A, , where
~=2wolu~ is the interaction time. If u, /u~ &&k,/4wo,
then the atom traverses many nodes, and as long as the
vast majority of atoms have velocities which satisfy this
inequality, an average of the excitation probability given
by Eq. (A6) over the atomic velocity distribution will e-

liminate the interference between the counterpropagating
beams.

Even if velocities in the z direction are so tightly re-
stricted that v, /v~ &A, /4wo, the interference effects will

average out for slow atoms because of the Heisenberg un-
certainty principle. Our ability to localize the z com-
ponent of the atom's position is limited by the inequality
bz&A'/Mu„so that bz&(2R/Mu„)(2wa/A, ). Hence, if
bz»A, , each atom will sample a large region of the
standing-wave light field.

A further consequence of the averaging process over u,
is that the two Doppler-broadened terms due to second-
order interactions with only one of the two beams will be
very small at line center compared to the Doppler-free
term caused by the interaction with both beams. i'~ It is
this latter term, arising from V,'b(t) and V,b(t) in the
second of Eqs. (86), that we are concerned with in the

where

Xexpi[(ki+k2) r —2tvt —(pi+pi)], (810)

1 a
n'Rc

—M,b
1 12 (811)

and R„ is the Rydberg constant. For the ac Stark shift
of the resonance frequency to,b we obtain

3

hco, (t) =
2R„

x [(M Mbb ) i eocE ) (t)
I
Ui(r)

I

+(Maa Mbb) z &Oc&z(t)
I

Uz(r)
I

'] ~

(812)

The dimensionless two-photon transition amplitudes in
Eqs. (811)and (812) are defined as

e i 'dz„e'i d~ +e'z'd~„e'i dnb'
M,b 3mcR—— , (813)

bn+ CO

(814)

The expression for Mg is the same as Eq. (814) with
a ~b. The field-dependent factors in Eq. (812),
, eocE&(t)

I
UJ(r)

I
—(j=1,2), are simply the intensities

I/(r, t ) of the two laser beams.

fountain experiment, and so hereafter we neglect the con-
tributions from the Doppler-broadened terms.

In writing our results below, we have assumed a partic-
ular form for the complex electric field amplitude EJ(r, t ):

EJ(r, t) =eiEJ.(t) Uj(r)exp[i(kt" r Pj—)],
where ej. is a complex polarization vector having unit
magnitude, Ez(t) is a real, slowly varying envelope func-
tion having the dimensions of an electric field, UJ(r) is a
dimensionless complex function describing the geometry
of the light field, kj is the propagation vector, and Pi is a
phase. Finally, then, for two-photon absorption from
counterpropagating laser beams having the same frequen-
cy, the effective stimulated absorption-emission matrix
element V,b(t) becomes

V,b(t)
2=D,b —,
'

evcEi (t)E2(t) U) (r) Up(r)
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