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Energy straggling of light-ion beams
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The dielectric function method is applied to investigate the energy straggling of protons and heli-

um ions using the atomic and the solid local-electron-density models. A partially stripped ion is

treated as well as point charges. At low energies, the conventional stragglings of a proton (0„+)
and of helium ions (0 +,A„~+) due to the fluctuation in electronic excitations are proportional to

the kinetic energies of the ions even when the local-electron-density models are adopted, and at high

energies they approach the values predicted by Bohr. Here we do not consider the bunching term

since we assume the probability of exciting an electron is small. The straggling ratio 0„+/0„+
shows a remarkable feature that it is nearly constant up to -50 keV/amu, and increases gradually

beyond this energy for solid targets. The estimation of the collisional straggling of helium-ion

beams is performed using the charge-state fractions, resulting in displaying Z2 (target atomic num-

ber) oscillations similar to those of 0„+and 0 2+. The straggling caused by charge-state fluctua-

tions, which enhance the Z2 oscillations of the total straggling of helium-ion beams more sharply at
the energies considered, is also estimated.

I. INTRODUCTION

where the variable y is defined by y =(1/Z2)(u/u&)' (uo
is the Bohr velocity) and I. (y) denotes the stopping num-
ber, which has an approximate form

1.(y) =1.36y' —0.016y {1.3)

The energy loss of impinging charged particles has re-
ceived wide attention recently in ion-beam —material in-
teractions, since it is a fundamental problem to investigate
the composition, the depth distribution, and the location
of lattice sites of implanted atoms in the host material.
The energy spread around the average energy loss, i.e., the
energy straggling, limits ultimately the spatial resolution
of such implanted atoms. The energy straggling is caused
by statistical fiuctuations in the collision processes that
particles are subjected to during the passage. For col-
lisional (hereafter this term is used instead of "conven-
tional") energy straggling, several theories are available.
Bohr' derived the straggling formula for a particle with
atomic number Z~ and velocity U penetrating a target ma-
terial with Z2,

Qg ——4nZ)Z2e Nx,
in the high-velocity region, where N and x denote the
number density of target atoms and the path length of the
particle, respectively. The typical feature of (1.1) is that
Qz is independent of u and proportional to x. In order to
apply the above formula for lower velocities, Lindhard
and Scharff (LS) have extended Bohr's formula by multi-
plying by the velocity-dependent factor

( —,
' )L(y) for y (3

0 /Qtt —— {1.2)

if the Thomas-Fermi model is used. Refinements of the
LS theory have been performed by Bonderup and Hvel-
plund, who assumed the Lenz-Jensen atomic model. By
adopting a more realistic electron distribution derived
from the Hartree-Fock wave functions, Chu obtained the
crossover feature for different target atoms at the same
proton and helium-ion velocities, which results in the
well-known Z2 oscillation. Apart from collisional strag-
gling, the extra contributions coming from, e.g., target
thickness variation, the "bunching" effect in atomic and
molecular targets, and charge-state fiuctuations have also
been discussed recently, since experiments supply us with
straggling values greater than the ones predicted from the
conventional part.

To obtain the stopping powers and the straggling, the
local-electron-density models (LEDM's) are successfully
used for describing the spatial target electron distribu-
tions. For an atomic target, the local electron density is
easily obtained from Hartree-Fock wave functions, while
for solid targets, it should be modified to include free elec-
trons through a constant electron density in the outer re-
gion of the Wigner-Seitz cell, where the collective excita-
tion mode is characterized by the bulk plasma frequency

The aim of this paper is to evaluate the straggling of
protons and helium ions penetrating solid media, where
the charge-changing contribution Qcc is treated as well as
the conventional contribution 0„». Estimation of Qcc
has been emphasiztxl because none of these calculations
have been done systematically for various targets. The
present calculation of the straggling of a single particle is
based on the Lindhard-Winther (LW) theory together
with the LEDM's. One difficulty in estimating Qcc
theoretically lies in the stopping cross section for a par-
tially stripped ion (PSI). To attack the problem, the
dielectric function method extended to a PSI is used with
the I.EDM. Moreover, a reasonable knowledge of

Q~1986 The American Physical Society



1654 T. KANEKO AND Y. YAMAMURA 33

charge-changing cross sections and charge-state fractions

is necessary. In our case, for these quantities, a consistent

treatment is prescribed using experimental data and

theories. In Sec. II, our procedure is described, and Sec.
III is assigned to present numerical results and discus-

sions. Atomic units are used unless otherwise is stated.

II. PROCEDURE

As energetic particles pass through matter, they are
subjected to successive electron capture and loss and they
also excite the target in collisions with target atoms.
After traversing a sufficiently long distance, the charge
states of the particles reach the equilibrium state. Consid-
ering the particle transport, we write down the basic equa-
tion discussed previously as follows:

d(Q )/dx = g dG(i;x, 2)/dx

—2g G(i;x, 1)

(2.5)

Qcc——Nx(2lD) Ia, [(S2 So) 4—'oiti2

+(S2—Si ) i)Ii/2+ (Si —So) /pi]

X gdG(j;x, 1)/dx . (2.4)
J

Substituting into (2.4) the right-hand side of Eq. (2.1) with
n=2, and using the solution of G(i;x, l) (i=0,1,2), we

get, under the charge equilibrium condition, the following
after integrating over x:

u+~cc2 2

11 Q4'0+ Q le 1 +Q2(t'2

dG(i;x, n)/dx = g [B;JG(j;x,n) BJ;G(—i;x,n)]
j (~i) with

Si ) (('2A12 (Si So) iI)lAoi ]

n 00

+ g k G(i;x, n —k) f dcoP(co)co",
k=1

t =~2&+~12+~ io+~o1

~01~ 12+~ &o+ &2+ ~ &o (2.6)

(2.1)

(E)= QG(i;x, l)

and (2.2)

(E') = g G(i;x,2),

as a function of x. Then, the energy straggling of ion
beams is defmed as

Q'=(E') —(E)'. (2.3)

To get the explicit form of 0, as an example, for the ion
beams with three dominant charge components labeled by
0, 1, and 2, the differential equation is constructed

where G(i;x,n) is defined as the contribution to the nth
moment of energy loss E at path length x from the parti-
cles in charge state i at x. B,j is the charge-changing
probability per unit length from charge state j to i, and
P;(01)dco is the probability per unit length of transfering
energy co of the particle in charge state i to the target elec-
trons. Here we neglect the deflection of penetrating parti-
cles, namely, the contribution of elastic collisions with
particles and target atoms. And we assume the probabili-
ty of exciting an electron during the passage of a projectile
is very small. Therefore, the "bunching" term is not in-
troduced at this moment. In (2.1), the terms for energy
transfer accompanied by charge exchange in a collision
are also neglected because they are regarded as the first-
order correction to the leading term. In the case where
the emergent particles are detected in all charge states al-
lowed in matter, the average energy transfer (E ) and the
average of the square of the energy transfer (E ) to the
matter from the particles are given by

o= Aoi A12/D, Q, =A 10A 12/D, i))2
——A,0A2, /D,

where N is the number density of target atoms, and S;
and P; (i =0,1,2) denote the stopping cross section and the
equilibrium charge fraction, replacing G (i;x,0) at a suffi-
ciently large x, respectively. Here only the cross sections

A;1 ( =B,J/N) for changing the charge by +1 are includ-
ed. In (2.5), Q„» is the so-called collisional energy strag-

gling, resulting from the square-energy transfer to target
electrons from the particles in each charge state, and this

quantity has been discussed for point-charge intruders. In
this paper, besides the charge state distribution (CSD) the
straggling of a partially stripped ion is also treated and,
therefore, the size effect of a PSI is included. It is noted
here that the contribution of the elastic collisions between
incident particles and target atoms is neglected. The col-
lisional part Q„ii is straightforwardly obtained for ion
beams with an arbitrary number of charge states allowed
in matter, resulting in

Q'„= gQ,'y, . (2.7)
l

The additional contribution Qcc is due to charge-state
fluctuations of particles during the passage, in which the
differences of the stopping cross sections play a signifi-
cant role. If we set A21 ——0 and A12&0 in (2.5), then Qcc
reduces to the formula that has already been obtained for
the case of two dominant charge components

QCC=2(Si —So) $+1Nx/(Aoi+A 10),
(2.8)

$0=Aoi/(Aoi+Aio) pi=Aio/(Aoi+Aio) .

This formula for Qcc indicates that the charge-
fluctuation effect on the straggling is reflected only via
the squares of the difference in the stopping cross sec-
tions, apart from the charge-changing cross sections.

The collisional straggling of a partially stripped ion in
charge state i with bound electrons is expressed in the
dielectric function theory as
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Q;=Xx a)co k 2 mku Z( —p; k Im 1 e k, a) (2.9)

where e(k, ni) is the dielectric function of a solid and p;(k)
is defined by p;(k) =Ip; (r) exp(ik. r)d r. The spatial dis-

tribution of the bound electrons, p;(r), is assumed to be
spherically symmetric so that its Fourier transform p;(k)
has the same symmetry. In contrast with the stopping
cross sections, the collective excitation branch contributes
negligibly in comparison with the pair excitation branch.
Therefore, we consider only the electron-hole pair excita-
tion in the spectrum of the target excitation. In order to
estimate Q;, local-electron-density models are used. The
local electron density of neutral atoms, which is assumed
spherically symmetric, is given by statistical distributions,
e.g., the Thomas-Fermi or the Lenz-Jensen model, and in
a more reahstic way, by Hartree-Fock wave functions.
On the other hand, in solid targets, the local electron den-

sity p(r) should be modified in such a way that p(r) in-
cludes the free electrons as well as the core electrons. For
simple metals (or semiconductors), this modification is
rather easily performed by introducing a constant electron
density no in the outer region of the Wagner-Seitz cell,
where no is characterized by the frequency of the collec-
tive motion, i.e., the bulk plasma frequency co~ through
niz

——(4nno)'/ in atomic units. More detail descriptions
of and comments on the present I.EDM are given in Refs.
6 and 10.

One important point in the paper is to include the
charge-state distribution (CSD) in the formulation. Our

concern here is not to determine the CSD from the first
principles, but to use the CSD that is inferred consistently
from the stopping cross sections for ion beams. In order
to arrange the experimental data of charge-state fractions,
P's, the following expression for the ratio, P;/PJ, is suc-
cessfully used:

P;/QJ AE—— (2.10)

where E is the energy of the projectile, and A and 8 are
constants independent of E. In spite of its simple form,
the predicted CSD from Eq. (2.10) using both the data of
the stopping cross sections for helium-ion beams and the
calculation of those for helium ions in each charge state
provides a good agreement with the CSD data and the re-
sulting average charge. From the discussion of the linear
screening effect on external charges in solids, "a hydrogen
atom, H, and a helium one, Hen, cannot generally exist
inside solids except in alkali metals. Therefore, for
helium-ion beams passing through solids, formula (2.8)
for two-charge-component cases is sufficient to estimate
the charge-changing contribution Qcc. And Qcc can be
neglected for a proton beam in such solids. On the other
hand, in gaseous targets, neutral particles H and Heo are
able to exist during the passage so that the formula Qcc in
Eq. (2.5) for three charge components will be used in prin-
ciple for helium-ion beams. In addition, this formula will
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FIG. 1. The collisional straggling of a H ion incident on solids calculated from Eq. (2.9) with the solid LEDM.
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FIG. 2. The collisional straggling of a He ion incident on solids calculated from Eq. (2.9) with the solid LEDM.

be applicable to Qcc of heavy ion beams, of course, when
the charge components are limited to two or three.

III. NUMERICAL RESULTS AND DISCUSSIONS

Based on the local electron density models, the calculat-
ed collisional stragglings of a proton and a singly charged

helium ion are shown in Figs. 1 and 2, respectively, where
the number of free electrons are assumed to be two for Be,
Mg, Ca, three for 8, Al, In, and four for Si, Sn. From the
L% theory, Q„&~ is proportional to the kinetic energy E in
the low-E region. This relation is also valid even when
the LEDM is adopted here, and, in addition, whether it is
a point charge (H+) or a partially stripped ion (He+). At
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FIG. 3. The ratio of the collisioaal stragglings, 0 +/0 +, calculated for solids.
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low energies, the free electrons contribute a major part of
Q~&& especially for light elements, where they produce
more than 80% of the total 0 s of a H+ ion up to —100
keV. %ith increasing energy, the core electrons contri-
bute dominantly and, in the extreme case, the binding ef-
fect can be neglected so that only the number of electrons
is important to estimate Q u. Then the Bohr formula be-
comes valid. In Fig. 3, the ratio of the stragglings of a
He+ (Q +) and of a H+ (Q +) ion are illustrated with

He+

respect to E W. e note here the remarkable feature that
the ratio 0 +/0 + is nearly constant up to —50

keV/amu and increases gradually beyond this energy until
it reaches 4.0 asymptotically. This is explained in the
same manner as the stopping ratio SH, + /SH+ by the fact
that at low energies, the momentum transfer k ranging
from 0 to -2kF (kF is the Fermi wave number) contri-

butes dominantly to the straggling. And the external
charge of a He+ ion in Fourier space is not very much
different from 1.0 in the region 0 (k & 2k~. On the other
hand, at high energies the contributing momentum-
transfer region in the k-co plane depends on the particle
energy, where the electrons in the matter tends to be scat-
tered by the nucleus rather than by the bound electron in a
He+ ion. Then, the external charge in the Fourier space,
i.e., 2 —p;(k), approaches 2.0 as a result.

In Figs. 4 and 5, the Z2 dependence of the stragglings
are illustrated for helium ions with 200 and 400 keV/amu
energies, where the charge-exchange contributions are es-
timated as well as the collisional ones of a He+ and a
He + (QH, +) ion using both the atomic and the solid
LEDM's. In the solid LEDM, the observed plasma fre-
quencies" are used to deduce the number of free electrons
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per Wigner-Sitz cell for nonsimple metals. To be able to

get Qcc reasonably, accurate information of the magni-

tude of charge-changing and stopping cross sections with

respect to Z2 and U, is necessary, and moreover so is a
consistent treatment of the cross sections and the charge-

state fractions (CSF's). Our procedure is the following:

the first step is to obtain the CSF from experiments, '

or to predict the CSF from the stopping cross sections for
heIium ions. For the latter case, the constants A and 8
in Eq. (2.10) are tabulated in Table I for some solids with

the observed co~. As far as the stopping cross sections for
a He+ and a He + ion, i.e., SH + and SH 2+, are con-

cerned, we need partly the aid of the semiempirical data. '

As shown previously, the LEDM is practically useful in

spite of its simplicity. In order to avoid any discrepancy,
we adopt the semiempirical values for the proton stopping

Element 22» 26Fe 29Cu ioZn g7Ag

0.313 0.467 0.554 0.553
1.88 1.18 1.77 1.62

0.626 0.291
2.47 2.25

cross section SH+ so that SH 2+ is obtained as 4S +.He2+ H+'
Furthermore, as the stopping ratio y (=S +/S„+) is

computed by the theory, ' the modified SH + is straight-

forwardly obtained by multiplying the semiempirical S„+
value by y. It is not easy to estimate successfully the elec-
tron capture cross sections for various targets within a

TABLE I. Parameters A and 8 for some solids in Eq. (2.10)

predicted from the stopping cross sections for helium ions and

for helium-ion beams. The energy E is measured in MeV.
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FIG. 5. Same as in Fig. 4 except for at 400 keV/amu.
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reasonable order of magnitude, partly because we have to
treat three-body problems at least, and partly because they
sometimes display nonmonotonical behavior with respect
to Zz. Instead we adopt the idea of obtaining capture
cross sections from the charge-state ratios and the loss
cross sections. Recently, the unitarized impact-parameter
method has been presented to obtain the electron loss
cross sections, ' and yields a good agreement with the
data both in the monotonical Z2 dependence and in the
energy dependence. This idea enables us to determine the
capture cross sections much more easily. The procedure
stated up to here brings us a consistent evaluation of Qcc,
which have been estimated explicitly only for a few target
elements. In the figures we should remark the following
points: the first is that the straggling of a He+ ion shows
almost the same structure as that of a Hez+ ion with
respect to Zz, the second is that the total straggling Q
(=Q~ii+Qcc) of the helium-ion beams is greater than
the straggling of a He + ion at the energies considered,
and the third is that the charge-changing contributions
enhance the Zz oscillation compared with the collisional
ones. It is noted, in addition, that the solid LEDM tends
to yield larger collisional, and consequently larger total
stragglings than the atomic I.EDM.

The charge changing part Qcc is closely related to the
width o of the charge-state distribution, defined by
o = g (q —q) Ps where the ((}~'s and q denote the

charge-state fraction and the average charge, respectively.
In the case where two charge components are dominant,
we obtain

(3.1)

which is actually contained in Eq. (2.8). Therefore, Qcc is
expected to contribute greatly at energies where the charge

distribution is broad as well as where the stopping cross
sections are large.

Figure 6 shows the comparison of the calculated results
with the experimental data' for an Ag target where

co&
——23 eV. Below 100 keV/amu, the total straggling of

the helium beam is less than that of a He + ion, since a
partially stripped ion He+ can exist in the He-ion beam
inside Ag, and also since Qcc is small. In the specific en-

ergy range of 100 & E~ 500 keV/amu, the charge-
fluctuation part is the main contribution, enhancing the
total straggling and decreasing the discrepancy. Our total
straggling curve also improves the LS curve at low ener-
gies, and explains the experimental data at least qualita-
tively. When we see the large differences, e.g. , as much as
a factor of 2, between measurements performed by dif-
ferent research groups with the same target material, fur-
ther measurements especially by the transmission tech-
nique are necessary to get accurate and universal behavior.
In this paper we concentrate only on the charge-state fiuc-
tuation effect on the straggling among the extra contribu-
tions in order to examine it systematically.

In conclusion, based on our procedure, the straggling of
helium ions and of helium-ion beams are estimated using
LEDM's, where a partially stripped ion as well as point
charges were treated. Here we rely on the possibility of
defining charge states in a solid. This subject may be con-
troversial. For example, it is claimed by the authors that
charge states are only well defined in gases. However, our
opinion is different, based on the following points: One is
the observation of the Zz oscillation in the average charge
of MeV helium-ion beams. This effect is well predicted
by electron capture and loss cross sections for a single ion
in the charge states considered, ' ' z the reason for which
is that the core electrons rather than the free electrons in a
solid play a dominant role in charge-changing processes

1.0-
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I I I i i a I i i i i i i i i i l i i
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FIG. 6. Comparison of the calculated stragglings with the experimental ones in Ag target: the collisional straggling of a point
charge in the solid LEDM ( ), the total straggling of helium-ion beams ( ———), and the data [o-protons, 7-deuterons, C7-

alpha particles (Ref. 18), 0-protons (Ref. 19},Q'-protons (Ref. 20), 6-averaged alpha particles (Ref. 21), and ~-alpha particle (Ref.
22)J. The Lindhard-Scharff (LS}result is denoted by —- —-.
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except in the low-energy region. Moreover, the above sit-
uation is also supported for a proton. The other point is

the analysis of the stopping cross sections performed in
Ref. 8 based on (2.1). The experimental stopping data for
helium around the stopping maximum are located be-

tween the theoretical curve for a He+ ion and that for a
He + ion. This implies that it is important to take into
account the charge states in estimating the stopping cross
sections there. These situations mean that charge states
are also well defined in a solid.

The ratio of the col}lsiond straggling QH, +/QH+,
shows remarkable energy dependence for various solids,
providing curves similar to those of the stopping ratio,

S„,+ /SH+. This reflects the size efftx:t of a He+ ion. As

to the charge-changing contribution to the straggling, the
formula for ion beams with three charge components is
derived. The charge-changing contribution is evaluated
through the careful consideration of the stopping data and
the charge-changing cross sections, resulting in the
enhanced Z2 oscillations. Compared with the straggling
data, the collisional contributions of helium-ion beams are

smaller, even if we take into account the relatively large
experimental errors. Based on the linear screening, the
formula (2.8) of Qcc for two-charge-component cases is
valid for solid targets. The charge-changing part, there-
fore, decreases the discrepancy a little bit. It is pointed
out that the bunching term is important at low energies
for atomic and molecular targets, where the probability
for a projectile to excite an electron is not so small. In
our case, however, this term is neglected because we con-
centrate on the analysis based on the local electron density
models which assume a small probability of exciting an
electron. To get a more satisfactory agreement, the other
extra contributions will be examined quantitatively in the
future.
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