
PHYSICAL REVIEW A VOLUME 33, NUMBER 3

Multichannel variational expressions of scattering theory

MARCH 1986

Robert R. Lucchese
Department of Chemistry, Texas 34M Uniuersity, College Station, Texas 77843

(Received 2S June 1985}

%'e have compared variational functionals for multichannel scattering. The functionals con-
sidered were Schwinger-type functionals based on the close-coupling equations, the Schwinger-type
variational functionals of Takatsuka and MeKoy [Phys. Rev. A 24, 2473 (1981)],and a Kohn-type
variational functional. The results for a simple Huck-model potential containing both open and
closed channels indicate that the Schwinger-type variational functionals yielded very similar results
and that all the methods considered converged at a similar rate with respect to the closed-channel
expansion. To obtain good convergence with any of these methods it was essential to include
separate trial functions outside the range of the Huck square-well potential in the channels where a
correct asymptotic form of the wave function was required, those being only the closed channels for
the Schwinger-type functionals and both open and closed channels for the Kohn-type functionals.
These asymptotic functions were needed to reproduce the discontinuity in the second derivative of
the wave function due to the discontinuities in the model potential. Convergence characteristics of
these methods with respect to target-state expansions were also considered.

I. INTRODUCTION

Variational methods have been extremely efficient in
the computation of electron-molecule scattering wave
functions. ' At the static-exchange level, a variety of ap-
proaches have been used including the Kohn method,
and various methods related to the Schwinger variational
expression. 3 5 Additionally, several extensions of these
approaches have been studioi for multichannel scattering.
Of these methods, the extensions of the Sch winger
method proposed by Takatsuka and McKoy 7 have been
most widely applied to molecular problems.

In the present paper, we will discuss the application of
the C functional proposed by Takatsuka and McKoy to
the usual close-coupling equations. We show how the re-
sulting variational expression can also be obtained from
the Kohn variational expression with the appropriate vari-
ational basis set. The C functional approach is known to
be rapidly convergent even in the case where long-range
forces, such as those found in electron-molecule scatter-
ing, are present. This method should also have great utili-
ty in the multichannel case.

We have compared a number of variational methods for
a modified version of the Huck potential problem, which
includes closed channels. ' The methods employed were
the restricted interpolated anomaly-free (RIAF) method
of Nesbet, " the two Schwinger-type variational methods
of Takatsuka and McKoy, ' and the direct application of
the Schwinger' and C functional methods to the close-
coupling equations. One question which we have resolved
here is why the RIAF and the other methods based direct-
ly on the Kohn method seemed to perform so poorly on
the original Huck potential in comparison to the
Schwinger-type variational methods. ' The poor conver-
gence properties of the Kohn-type methods on the Huck
potential is in contrast to the relatively good performance
found when these methods were applied to a single chan-
nel exponential scattering potential. ' ' For rapid conver-

gence the Kohn methods require basis functions which are
outside the range of the interaction potential in the Huck
problem in order to reproduce the discontinuity in the
second derivative of the scattering wave function which
occurs at the radius where the interaction potential has a
discontinuity. ' When such functions, which were not in-
cluded in the Kohn calculations of Nesbet, " are included
in the scattering basis, we found the RIAF method to
have much better convergence properties, although the
Schwinger-type approaches still exhibit much better con-
vergence characteristics.

The various methods were applied to a modified Huck
potential which contained a closed channel. 'o In this case,
we found that when the open-channel basis sets were near
convergence, the rate of convergence with respect to the
closed-channel basis sets were identical for all of the
methods which we employed. It was also found that the
RIAF method" gave adequate but clearly inferior conver-
gence with respect to the open-channel basis set compared
to that obtained in the Schwinger-type methods. The
Schwinger methods of Takatsuka and McKoy ' were
found to be nearly identical to the methods obtained from
the direct application of the Schwinger variational expres-
sion to the close-coupling equations. Although it was ex-
pected that the Takatsuka and McKoy approach would be
very similar to the close-coupling approach for the model
system used here we did not anticipate that the numerical
differences between the methods would be as small as two
orders of magnitude less than the differences between the
variational and exact results, as we have found.

Finally, we have also examined the effect of having ap-
proximate target states in the variational expressions. As
was shown by Demkov, ' the Kohn variational methods
are variationally stable with respect to errors in the target
state as long as a given target state is orthogonal to the ex-
act states corresponding to the other target states used in
the expansion of the wave function. Here we will show
that as long as the target states are obtained from a linear
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variational calculation, the overlaps between the approxi-
mate target states and the exact target states is a second-
order quantity and thus the expressions used are varia-
tionally stable with respect to first-order variation in the
approximate target states.

(r],r&)= g C& 4&(r],ri)+8 (r, )]]'j (ri), (3.1)

where 8 is a vector of open target states 8;, P is a vector
of corresponding channel scattering functions tP] ~ and 4&
is a closed-channel state. The closed-channel state 4„
can, in turn, be defined by

II. THE MODIFIED HUCK MODEL
4~(r], ri) =8;(q)(r] )f (q](r3), (3.2)

We will compare the results of inultichannel variational
principals for a modified Huck-model potential. The
original Huck model has been used as a prototypical
problem for multichannel scattering calculations. "'3
Here we have used the extended model' to examine both
the dependence on the accuracy of the target states and to
compare the treatment of closed channels in various
methods. In the modified Huck model' there are two
distinguishable particles interacting through a spherically
symmetric interaction potential. Furthermore, we will

only include s-wave scattering. The radial Hamiltonian is
then

where

(r3)-S;(r3)5; +C;(r2)K; as ri~ oo, (3.3)

' 1/2
2

S;(ri)= Siil(k;ri ) (3.4a)

and

where 8;(&] is a closed-channel target state and f~(„] is an
I. basis function. The open-channel scattering functions
asymptotically are given by

1 d 1 d
H(r] ~r2) ———

3
——

3 + V ( ]]r)+V]3(r],ri )
dr] 2 dri

1/2

C;(ri) = — cos(k;ri) .2
(3.4b)

(2.1)

The first particle is confined by a particle in a box poten-
tial

Using the Kohn variational expression, ' ' the effects
of the closed-channel contributions on the scattering wave
function, i.e., correlation and polarization, can be included
as a matrix optical potential,

0, r1&a1
V](r])=

r1)a1
and the interparticle interaction potential is

V]2(r] r2)= g l
ei(r»&~(J'(rz)(ej'(ri)

I

i=1
j=1

(2.2)

(2.3)

V = g (8 iH E i(13„),,
—(H —E)„„'(@„iH E

i
Hr)„,—

p, v

(3.5)

where H is the total Hamiltonian given in (2.1) for the
system and E is the total energy. Defining the direct po-
tential as

The 8 s are the exact target states, and VJ(r2) is a
square-well potential

~'

Cij r2 +a2
VJ(r2)= ~

0, r2 &a2. (2.4)

We have considered two versions of this potential, the
original Hock potential where all coupling elements were
zero except C]3——C2, ——( —,

' )', and the modified Huck po-
tential' where the nonzero coupling elements were

C]2 —Ci] —( ) C]3 —C3] —0 1 C33 C33
1 2

C33 ———2.0. For both models the radial parameters were

a, =2m and ai ——1.0. The modified Huck potential has a
resonant state in the third channel, which in the absence
of interchannel coupling would lie at a total energy of
0.921 449 3.

III. MULTICHANNEL C FUNCTIONAL

The multichannel C functional can be derived in a
fashion identical to that used by Maleki and Macek to
derive the multichannel Schwinger functional. ' For the
purpose of clarity, we will present the scattering equations
in a form applicable to the Buck-model potential prob-
lem. The most general scattering wave function for this
model is of the form

1
2

v =(eiH Eie'), +—— +1' (3.6)

where (k );J =5;Jk;, the scattering problem is reduced to

1 d
, +k' f +(V'+V')g

dr
(3.7)

(G)J = 5(JS;(r()C;(r) ) . — (3.9)

Expanding P in a basis set f], the C functional of
Takatsuka and McKoy for the E matrix is given by

E„=(S
i
V i—S„)+(S

i
V "GV iS„)

+ g (S iVDPGVDPif )

x U](„(f„i
V GV

i S„), (3.10)

where U~' are elements of the matrix inverse of U~& de-
fined by

Rewriting Eq. (3.7) as an integral equation leads to

=S +GV (3.8)

where V =V +V, (S ); =5; S;, and G is the Green's
function whose kernel is
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U (f i

VDP VDPGVDP
i f ) (3.11) (e,'i H, i e,') =5,,E, (4.3)

As shown by Takatsuka et al. for the single channel

case, ' the C functional given in Eq. (3.10) can also be ob-
tained by directly from the Kohn variational principle for
the K matrix

(5e, iH, i 5e, ) —E, (5e,
i
58, )

(e, i5e, =
J j

(4.4)

then it follows that (8; i 581 ) is actually a second-order
quantity since

[rC„]=a„'. &—q'„ iH —E
i

e' )

by using trial functions

q"„=g C„"@„+HrS„+g e~f C"

and

%"~ = g Cq 4 q+ 8 S ~ +8 GV S ~

(3.12)

(3.13)

As long as E;&EJ, all terms in the expansion of
(ql'„

i
H E

i
—4' ) involving the error in the target states

are then of second order. Thus we can conclude that the
Kohn variational expression is stable with respect to vari-
ations in both the scattering functions and target states as
long as Eqs. (4.2) and (4.3) are satisfied.

V. COMPARISONS
OF MULTICHANNEL METHODS

+QerGV f~C~ . (3.14)

K„' is then the asymptotic E matrix of 4'

Ic„' = —(s„iv 'is ) —g(s„iv 'if. )c. . (3.15)

&e,
'

i e,') =5,, (4.2)

IV. DEPENDENCE ON TARGET STATES

As has been discussed by Demkov, ' ' the Kohn varia-
tional principle is stable with respect to variations in both
the scattering functions, g;, and in the target states, 8;,
as long as the scattering momenta satisfy

k
(8,'ia, ie,')+ ' =E,

2
(4.1)

where 8,' is the trial target function and Hr is the target
Hamiltonian. When the trial function is expressed as
8,'=8;+58;, then the first-order terms containing 58; in
the expansion of (4'„

i
H E

i

4' ) in—the Kohn varia-
tional expression, Eq. (3.12), are products of (8; i 58J)
and surface integrals. When i =j, these surface integrals
can be shown to be zero. However, when i&j, these
terms are, in general, not zero. Thus, for the Kohn varia-
tional expression to be valid we have to require that
(8; i58J)=0 for i&j Alternati. vely, if the 8,' are ob-
tained from a linear variational expression such that

Here we will examine the convergence properties of the
multichannel C functional (MCC) discussed in Sec. III
along with the multichannel Schwinger functional (MCS)
discussed by Maleki and Macheck, '2 the Schwinger and C
functional multichannel functions of Takatsuka and
McKoy ' (TMS and TMC) and the RIAF multichannel
method of Nesbet. "

The basis set used for the open- and closed-channel
scattering functions were

0, fp (Qp

X+ t
—&['2 —2]8;(ri)(r2 —a2) e

(5.2)

r2 &a2 and A, =12, . . . , Mo or M, .

Including functions of this form in the wave functions al-
lowed the trial function to exhibit the same discontinuities
in the second derivative as would be found in the exact
solution. '

To illustrate the importance of the asymptotic func-
tions, consider the results for the original Huck potential
problem presented in Table I. First, note that the asymp-

f; i„8;(ri}rze ——', A, =1,2, . . . , NO or N,

where No was the member of basis functions used in the
open channels and N, was the number of basis functions
used in the closed channels. %e also considered the im-
portance of functions beyond the range of the potential
(i.e., r&a2}, asymptotic functions, which were of the
form

TABLE I. Importance of asymptotic functions in the RIAF method for the convergence of eigen-
phase sums for scattering by the original Buck-model potential with E=0.625.'

Np

MCS,TMS
5, (rad)

1.245 770
1.239 537
1.239 S34
1.239 534

MCC, TMC
5, (rad)

1.239 807
1.239 524
1.239 534
1.239 534

RIAF (Mp ——0)
5, (rad)

1.227 187
1.227 370
1.233 214
1.235 135

RIAF (Mp ——Xp)
5,„(rad)
1.209 311
1.237 250
1.239 532
1.239 534

'Exact eigenphase sum is 1.239 S34. The energy scale has been shifted up by 0.125 compared to that
found in earlier applications to the Hucl(; problem, so that the energy used here is equivalent to E =0.5
found in Refs. 9, 11, and 13.
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TABLE II. Rates of convergence of eigenphase sums with respect to the open-channel basis set for
scattering by the modified Huck-model potential with E =0.625.'

Xp, Mp, N„M,

1,1,8,8
2,2,8,8
4,4,8,8
6,6,8,8
8,8,8,8

MCS
5,u (rad)

1.111549
1.263 720
1.257 267
1.257 265
1.257 265

TMS
5, (rad)

1.112621
1.263 730
1.257 267
1.257 265
1.257265

MCC
5,„(rad)
1.138454
1.257 533
1.257 254
1.257 265
1.257 265

TMC
5,„(rad)
1.139 175
1.257 536
1.257 254
1.257 265
1.257 265

RIAF
5, (rad)

1.132493
1.227 192
1.254993
1.257 262
1.257 265

'Exact eigenphase sum is 1.257 265.

totic functions are not needed for the Schwinger or C
functionals since the trial function need only extend as far
as the range of the interaction potential in the open chan-
nels. Additionally, the multichannel variational principles
of Takatsuka and McKoy ' are identically equivalent to
the standard Schwinger and C functionals when there are
no closed channels for model potentials of this type.
Table I shows that the inclusion of the asymptotic func-
tions substantially improves the convergence properties of
the RIAF method. The importance of the asymptotic
functions explains why a comparison between previous re-
sults obtained using Kohn-type functionals, such as in the
RIAF method, " and results using the Schwinger
method, ' would lead to the misleading conclusion that
the Kohn methods have relatively bad convergence
characteristics. This same basis set effect is clearly evi-
dent in the comparison of convergence rates of resonance
energies and widths for the modified Huck potential using
the R-matrix methods which does not require asymptotic
functions and the Siegert method ' which does require
them.

The results presented here indicate that the RIAF
method still converges somewhat more slowly than the
Schwinger-type methods when the asymptotic functions
are included, in agreement with a comparison of these
methods on an exponential potential. ' ' Also Table I
shows that the C functional methods converge somewhat
faster than do the Schwinger functional methods even for
the short-ranged scattering potential of the Huck model.

Next we consider the results obtained for the modified
Buck model. In Table II, we present the results obtained
when No and Mo were varied awhile X, and M, were both

Qt(ri)= Pi-n
2

2 20( 0)
4 2

n = 1,2, . . . , N7 . (5.3)

8, which is a sufficient number of functions to assure con-
vergence in the closed-channel part of the problem at
E=0.625. It was found that all five methods required
asymptotic functions in the closed channel for good con-
vergence. The same pattern emerges here as was found in
Table I. The methods based on the C functional con-
verged most rapidly, followed by those based on the
Schwinger functional, and then finally the IUAF pro-
cedure. Additionally, the difference between the method
based on the standard close coupling equations, MCS and
MCC, and the method ot Takatsuka and McKoy, ' are
two orders of magnitude smaller than the errors in the
variational estimates. Thus, the rates of convergence of
the two approaches are effectively the same with respect
to the number of open-channel functions.

We also considered the rates of convergence with
respect to the closed-channel basis set. We found that
when No and Mo were both 8, that all five methods yield-
ed results identical to seven significant figures, irrespec-
tive of the values of N, and M, . In Table III, we see that
the rate of convergence with respect to N, and M, is
similar to that with respect to No and Mo found in Table
II.

The effects of using an approximate target state are
shown in Table IV. The approximate target states were
linear expansions of the basis functions

Np, Mo X„M

8,8, 1,1

8,8,2,2
8,8,4,4
8,8,6,6
8,8,8,8

MCS,TMS,MCC, TMC,RIAF
5, (rad)

1.243 110
1.256001
1.257 121
1.257 265
1.257 265

'Exact eigenphase sum is 1.257 265.

TABLE III. Rates of convergence of eigenphase sums with
respect to the closed-channel basis set for scattering by the
modified Huck-model potential with E =0.625.'

TABLE IV. Convergence properties of the scattering equa-
tions with respect to the target basis set. '

4
6
8

10

E3 —E3

0. 168
0.439x 10-'
0.384x 10-"
0.124x 10

0.433x 10-'
0.122x 10
0.105x 10
O.56Ox 1O-"

5sum 5sum

0. 122
0.293x10 2

0.307x 10-4
0.106x 10-'

'Scattering for the modified Huck potential with E =1.625.
Error in the energy of the third target state with E3 ——1.125.

'Error in the eigenphase sum for any of the methods MCS,
TMS, MCC, TMC, or RIAF with Xo——Mp ——8, and
5, = —1.217 114.
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The scattering energy was E =1.625 which is above the
threshold for exciting the third state which has

E3 —1. 125. The scattering wave function then has three
open channels and no closed channels. With XQ ——MQ —8,
all five scattering methods give eigenphase sums which
agree to seven significant figures. As can be seen in Table
IV, the error in the variation energy of the third state,
(8i

~
8'i), and the error in the eigenphase sum all converge

at about the same rate. This is numerical evidence of the
fact that all of these quantities are second order with
respect to errors in the target trial function, 8s, as was dis-
cussed in Sec. IV.

VI. CONCLUSIONS

We have compared three multichannel variational
methods, the Schwinger-type methods based on the close-
coupling equations, 'i the formulations of Takatsuka and
McKoy, ' and the standard Kohn-type variational
methods, " using a simple model potential which contains
both open and closed channels. For this problem, we have
found no substantial difference between the Schwinger-
type close-coupling methods and the variational methods
of Takatsuka and McKoy. s' Both of these methods were
found to converge somewhat more rapidly than did the

Kohn-type methods for the open-channel part of the
problem. This comparison does not include the effects of
particle indistinguishability which is an important facet of
electron-molecule scattering, for which these variational
methods are of particular interest. However, we expect
that the relative rates of convergence will be similar in the
electron-molecule scattering problem to those found here.

We have also established that methods obtained from
the Kohn variational expression, such as the multichannel
C functional method suggested here, are variationally
stable with respect to errors in the target states, as long as
the trial target states satisfy the relationships given in
Eqs. (4.2) and (4.3). The variational stability of the Kohn
method can also be shown for the case of electron-
molecule scattering.

Applications of the multichannel C functional to
molecular systems are in progress.
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