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Energy loss of protons and helium ions passing through matter
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Based on the dielectric-function method, together with the use of local-electron-density models

|,'LEDM s), the stopping powers of solid materials for the proton and helium-ion beams are investi-

gated over a wide specific energy range from 1 keV/amu to 2. S X 10 keV/amu. The screening ef-
fect due to free electrons on ions with bound electrons is taken into account within the framework of
the linear response. For a H atom in alkali metals, the screening effect increases significantly the

stopping powers, while for a He+ ion it does not increase so much. The mean excitation energy is

also calculated using the solid and the atomic LEDM s, For a Ag target, not being a simple metal,
we report how much the change in the number of free electrons affects the stopping cross section for
a H ion. The charge-state distribution (CSD) suggested from the master curves of compiled stop-

ping data is in agreement with the observed CSD. The calculated energy dependence of the effective
charge of the helium-ion beams reproduces experimental data well.

I. INTRODUCTION

The slowing down and the charge-state population of
energetic ions traversing matter have been one of the main
problems in atomic collision phenomena in solids for
many years. Accurate estimation of the energy loss of
protons and helium ions plays an essential role in analyz-
ing the depth profile of impurity atoms in ion implanta-
tion. So far, the data compilations have been performed
comprehensively so that we can get some general features
in the processes of slowing down' and charge distribu-
tion. Some authors have given their theories of the elec-
tronic stopping powers of matter for point-charge in-
truders, based on either atomic collision methods3 s or
the dielectric-function method. The dielectric-function
method has been extended for a partially stripped ion.
Besides the target-excitation process, the contribution of
the projectile-excitation process to the stopping cross sec-
tions has been discussed within the first Born approxima-
tion. For heavy ions with intermediate velocities, the
effective-charge model discussed intensively by Brandt
and co-workers is particularly useful to summarize suc-
cessfully a large amount of stopping-cross-section data.
Judging from those data, the effective charge does not de-
pend strongly upon target materials with atomic number
Z2. In the case of helium ions, the weak Zz dependence
of the effective charge does not directly imply that of the
average charge inside matter. Actually, as for MeV
helium-ion beams, this weak target dependence was recon-
ciled with the strong Z2 oscillations in the average charge
by taking into account the equilibrium charge-state popu-
lation in matter and the spatial size of a He+ ion. '

From practical points of view, the local-electron-density
model (LEDM) for describing the spatial distribution of
the target electrons and the related physical quantities is
often used successfully to estimate the stopping cross sec-
tions for a single particle. For atomic targets, the LEDM
is easily obtained, for example, by using Hartree-Fock
wave functions, " while for solid targets it should be

modified in such a way that free electrons are included.
To satisfy this request as simply as possible, we assume
the electron density constant in the outer region of the
Wigner-Seitz (WS) cell. This constant density is charac-
terized by the bulk plasma frequency. ' Although it is a
crucial approximation, this method is similar to band-
structure calculation by means of the Korringa-Kohn-
Rostoker (KKR) method in that the potential is divided

into two regions in order to separate corelike and freelike
wave functions in the WS cell.

The charge-state distribution of a proton beam and a
helium-ion beam in solids has been discussed for several
decades. ' To count the number of allowed charge states,
we are faced with the historical problem of how many
bound states can exist stably in the ion inside solids. Fol-
lowing Rogers et al. ,

' the number of stable bound states
n' in the screened Coulomb potential is found approxi-
mately to be

n ' =0.5829+0.4993DZ& /ao,
where Zt and D denote the nuclear charge of the ion and
the screening length of the potential, respectively. Re-
cently, by using the many-body technique, Guinea et al. '

have formulated the equilibrium charge of a proton and a
helium ion traversing an electron gas, in terms of the
correlation self-energy corresponding to the electron tran-
sition from (to) the conduction band to (from) the hole
created in the ion. This procedure is considered as an ex-
tension of the idea of Cross, ' who shows the equilibrium
charge state of a proton in a solid is determined by the
electron-capture and -loss cross sections obtained for the
same target element in a gaseous phase. His opinion is
valid at higher velocities than the Fermi velocity UF, since
the core electrons play a more dominant role than free
electrons in the processes of electron capture and loss. At
lower velocities than vF, however, free electrons become
important in determining the equilibrium charge in terms
of the energy-level broadening of the beund states in the
ion, which is caused by the resonance electron capture and
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the collisional electron loss. '

The aim of this paper is to evaluate the stopping cross
sections of solid media for proton and helium-ion beams

as an extension of previous work. ' The stopping cross
sections for a single particle, whether it is a point charge
or not, are calculated on the basis of the Lindhard-
Winther theory together with the LEDM. The effective
charges are also calculated using the charge-state fractions
suggested from the stopping data. We show the differ-
ence in the mean excitation energy by using the atomic
LEDM and the solid one. The screening effect is taken
into account within the linear response. In Sec. II the
basis of calculation is described briefiy, and Sec. III
presents the results and discussions. The conclusion is
given in Sec. IV. Throughout the paper, atomic units are
used unless stated otherwise.

II. BASIS OF CALCULATION

When an ion beam passes through solids and gaseous
targets, it is allowed to have several charge states inside
them. Provided that the charge-state distribution (CSD)
is not rearranged after emerging, the observed CSD
directly reflects the CSD inside matter. In the case of
heavy ions emerging from foils, the post-foil CSD is not
necessarily the same as the CSD inside foils. This effect
is explained by the Auger deexcitation process after em-

erging. As we concentrate on the energy loss of ions in-

side matter, the post-foil CSD is not considered in the for-
mulation of this paper. Including the charge states in the
transport problem, ' our starting formula for the stopping
of matter for ion beams is given as follows:

S= gp(i;x)S;, S;= I dcocvP;(cv), (2.1)

where I';(cv)dcv is the excitation probability per unit

length between excitation energies co and co+dcv. Equa-
tion (2.1) means that the stopping power of matter for ion
beams is obtained by averaging that for a single particle
over allowed charge-state fractions in matter. In general,
as the particles traverse, their charge-state distribution is
equilibrated. Then the charge fraction at depth x, P(i;x),
in (2.1) reduces to its equilibrated value P(i; ao ). The path
length L, at which the CSD attains equilibrium, depends
upon the magnitude of the charge-changing cross sections,
cr;J's, from charge state j to i In the c. ase of H or He with
two dominant charge states, e.g., labeled 0 and 1, at any
velocities, L is nearly equal to (crpi+cr&0) 'N ', where X
is the number density of target atoms. Except for surface
scattering techniques measuring the outgoing particles
colliding with the surface atoms, most measurements of
energy loss are performed under the charge equilibrium
condition. Moreover, in view of the comparison of the
theoretical results with the experimental ones, we may
neglect a thin "nonequilibrium" region with its depth L in
comparison with a thick "equilibrium" region of target
materials.

As for the stopping power for a particle in a particular
charge state i, 5;, with atomic number Z~ and velocity v,

is given by the dielectric-function theory, extended for a
partially stripped ion. The stopping pow'er of a free-
electron gas is then found to be

X 1m[1/e(k, co)], (2.2)

where n and e(k, cv) denote the number density of free
electrons and the dielectric function of the media, respec-
tively. The spatial distribution of the bound electrons,
p;(r), in the ion is assumed to be spherically symmetric so
that its Fourier transform p;(k) has the same symmetry.
As regards H and He, p;(r) is calculated from the hydro-
genic ls orbital. As is well known, the imaginary part of
e '(k, co) is contributed both from the electron-hole pair
excitation branch and from the collective excitation
branch. These contributions are both evaluated numeri-
cally.

The LEDM's are used from practical points of view to
calculate the stopping power S; and the mean excitation
energy I. For atomic targets, the spatial electron densities
are described by Hartree-Fock (HF) wave functions. Thus
we easily use the atomic LEDM. On the other hand, in
the solid LEDM, the electron density in the outer region
of the WS cell is assumed to be constant, for simplicity,
for describing the free electrons. Their collective motion
is characterized by the bulk plasma frequency co&.

' In
this case a correction term is needed to conserve the total
number of electrons in the WS cell, since the electron den-

sity in the inner region of the WS cell is still described by
HF wave functions.

The induced polarization of a free-electron gas screens
the electric field provided by a moving charged particle.
In the Thomas-Fermi model of a degenerated electron gas,
the screened potential is spherically symmetric and of the
OHll

V(r) = Zi exp—( k, r)/r, k, =—(12/n. )'~ r,
' (2.3)

in atomic units, for the case v ~&vF. In the above„r, is
the radius of a sphere occupied by one electron measured
in units of the Bohr radius ao. This screening effect
resultantly weakens the binding force applied to the bound
electron in a H or a He+ so that the orbital radius is en-
larged more than in the case of no screening. The extend-
ed orbital radius a& is determined by minimizing the ex-
pectation value of the binding energy (Eb ) with respect
to ai. d(E&)/da, =0. Within the first-order perturba-
tion, (E& ) is given as

(2.4)

We assume here the hydrogenic ls wave function of the
form f(r)=(ma&) ' exp( r/ai) (ai ——1/Zi) to —de-
scribe the bound electron in a H or a He+. Unless the
screening is taken into account, i.e., k, =0, then a& ——1.0
for a H and 0.5 for a He+, in atomic units. Due to the
extension of a&, the external charge in the Fourier space,
i.e., Zi —p;(k), results in being effectively greater than
that in the vacuum.

One of the basic points is to include the charge-state
distribution of ion beams inside matter in calculation of
the stopping powers. In a free-electron gas the screening
length D is given as D =k, within the linear screening,
so that Eq. (1.1) allows us to get the number of stable
bound states in the particle. %hen we set n'=1 with
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P) /Pj AE—— (2.5)

where A and B are parameters. This energy dependence
of the charge fraction ratio is actually valid except at low
specific energies less than -10 keV/amu. We show later
the comparison between the predicted CSD from the mas-
ter stopping curves and the measured CSD.

III. NUMERICAL RESULTS AND DISCUSSIONS

First, as an example, we show in Fig. 1 the calculated
stopping cross section of Al for a H+ and a He+, denoted

by S + and S +, respectively, in the solid LEDM. Ex-

cept for the maximum stopping region, the calculated
S + agrees with the data. We assume that there are

Z~ ——1 and n'=2 vnth ZI ——2, we obtain r, =1.70 and
4.92, respectively. This means that a proton inside solids
with r, ~1.70 cannot bind any electrons stably and also
means that two electrons cannot be bound in a helium ion
inside solids with r, &4.92. Therefore, it is enough to
consider the fractions of protons and singly and doubly
ionized helium ions inside solids except for alkali and
alkaline-earth metals.

Equation (2.1) implies that if we can calculate reason-
ably the stopping cross sections for ions in each charge
state, we infer the CSD from the master curves of the
data obtained experimentally on the stopping cross sec-
tions for the ion beams. Fortunately, as regards H and
He, many data have been reported and such available data
covers a wide energy range of interest per nucleon from 1

keV/amu to 2.5 X 10 keV/amu. The charge fraction data
for light ions are well arranged as a function of the energy
E in the form

three free electrons per Al atom participating in the con-
duction band. This is consistent with the number of con-
duction electrons deduced from the observed uz. As well
as S +, S + can be easily calculated over the whole en-

ergy range within the linear response on the basis of the
LEDM. Compared with S +, the specific energy at the

peak of SH + is a bit shifted toward a large keV/amu re-

gion. Moreover, the S + curve has a broader hump than

the S + curve. We note that the screening effx;t on a
He+ is not included here.

In Fig. 2 the ratios of the stopping cross sections, i.e.,
SH +/SH+ versus specific energy E (keV/amu) are illus-

trated for various targets. At a glance, we can see the re-
markable feature. That is, in the lower-energy region
E &60 keV/amu, the ratio is nearly constant. Beyond
-60 keV/amu, it increases rapidly and at last saturates in
the high-energy region. This behavior is explained by the
following. At low velocities ( U & Up), a momentum-
transfer region 0& k &2kF contributes dominantly to the
integral in (2.2) almost regardless of U. According to
rigorous calculations of the stopping of a uniform electron
gas, ' SH+ and S„+ are proportional to U at low veloci-

ties. Besides the magnitude of a factor, this velocity
dependence is still preserved even if we adopt the LEDM.
With increasing velocity (v & vF), free electrons are scat-
tered rather by the nucleus of the ion and resultantly the
contribution of a large momentum-transfer region, de-

pending on u, becomes significant. In this region,
Z, —p;(k) approaches 2, and consequently a He+ tends to
behave like a He +. Thus the orbital size effect on SH +
is vanishing as the velocity increases. Such a velocity
dependence of S„+/SH+ is expected for all solid targets
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FIG. l. Stopping cross sections of Al: the experimental results for a H ( x, Ref. 20; o, Ref. 21;Q, Ref. 22; D, Ref. 23; +, Ref.
24; U, Ref. 25; ~, Ref. 26; Q, Ref. 27; 4, Ref. 28; +, Ref. 29; ~, Ref. 30) and the theoretical results [ for a H (left vertical
axis) and ———for a He+ (right vertical axis)].
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FIG. 2. Ratios of the stopping cross sections, S + /S +, vs specific energy for various solids.

considered here so that it can be regarded as a general
feature. As will be seen later, this trend plays a decisive
role in the effective charge qeff for low-energy helium-ion
beams. Small hollows around the specific energies corre-
sponding to the maximum stoppings are caused by the ap-
pearance of the collective excitation branch.

The screening effect increases the stopping cross section

SH + through the enlargement of orbital radius a~. We

denote by 5' + the stopping cross section for a He+ ion

in the case of including the screening effect. The calculat-
ed ratio SH +/8 +, tabulated in Table I, is almost in-

dependent of the velocity u in the u & u0 (u0 is the Bohr
velocity) region. There, the stopping cross sections in-

crease by about 10%%uo for a He+.
To examine the Z2 dependence of SH+ at a low veloci-

ty, the calculated result is shown in Fig. 3, where we as-
sume the number of free electrons per atom to be one for
3Li, »Na, &9K, 29Cu, 37Rb and 47Ag; two for 48e, ,2Mg,

20Ca 22Ti 23~ 25M» 26Fe 27Co 2sNi 30zn 3sSr 46pd
and 4sCd; three for 38, ,3A1, 2|Sc, 24Cr, »Ga, 33As, 39Y,
4~Nb, 43Rh, and 49In; four for 6C, ~4Si, 32Ge 34Se, 40Zr,
44Ru, 30Sn, and 32Te; and five for»Sb. As regards alkali
and alkaline-earth metals, the stopping cross sections for a
hydrogen atom are also calculated in consideration of the
screening effect, in which calculated orbital radii a~'s of
the bound state in a H in such metals are tabulated in
Table II. Apart from the magnitude of the cross sections,
the phase of oscillation is in good agreement with the
values' suggested empirically. In the high-energy region
E)200 keV/amu, the well-known Z2 oscillations in 5 +
have been reported by several authors and, in addition, the
difference in SH+ calculated both by the atomic LEDM
and by the solid one is very small for solid targets How-.
ever, at low energies the atomic LEDM yields both un-
reasonably large stopping cross sections and incorrect en-
ergy dependences. ' These discrepancies come from the

TABLE I. Orbital radius a I in the screened Coulomb potential (2.3) of ZI ——2 (He), and the calculat-
ed stopping ratio S + /S + for solids (also see text).

Element

8

r b

(ao)
S +/S

48e

2
1.822
0.599
1.12

3
1.537
0.619
1.15

12Mg

2
2.515
0.570
1.07

I3Al

3
1.985
0.590
1.10

3IGa

3
2.009
0.589
1.10

32Ge

4
1.973
0.590
1.10

49In

3
2.056
0.587
1.10

'The number of free electrons per atom.
In this case„r, values are a bit smaller than those obtained from a free-electron gas model, since the

spatial region allowed for free electrons is a bit smaller by the inner volume of the %'S cell if the same

u~ values are used.
'S + and S„+ are the stoppings for a He+, inclusive of and exclusive of the screening effect, respec-

tively. These ratios are constant without respect to U in U & U0.
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TABLE II. Orbital radius a
&

in the screened Coulomb poten-
tial (2.3) of Z~ ——1 (H).

10keV Element 3Li llNa )9K 2oCa 37Rb asSr
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FIG. 3. Calculated stopping cross sections for a H+ (O ) and
for a H (8) vs Zi number at 10 keV together with the empiri-
cal values (Ref. 1) for a H+ (L).

a

( ao)

1

3.151
1.579

1 I
3.736 4.443
] AAA 1 351

2
2.958
1.647

1 2
4.517 3.162
1.334 1.575

'See comments a and b in Table I.

tail part of the local electron density of a neutral atom.
The electron density is so dilute there that the statistical
model breaks down. Moreover, the ion velocity is, howev-
er small it is, regarded as "high" compared with the local
Fermi velocity Up(r) f =[3&p(r)]' ) in the tail. In other
words, this is caused by the fact that there is no excitation
threshold appearing in the atomic LEDM, as was pointed
out. ' On the other hand, the solid LEDM actually has
the excitation threshold corresponding to the resonance
frequency co~. This difference is significant in obtaining
reasonable stopping cross sections, especially at low ener-

gies. An important question regarding the solid LEDM is
how to define the excitation threshold reasonably for
solids. As concerns simple metals, this task is easy be-
cause the observed co& corresponds well to the theoretical-
ly predicted mz. For nonsimple metals, however, the situ-
ation is converse. As an example, the stopping cross sec-
tion of a noble metal Ag for a proton is shown in Fig. 4,
where the effective number of free electrons per atom,

E30
O

C)

E20

I I I I I I I I I l I I

102
E ( keV/amu )

10 10

FIG. 4. Stopping cross sections of Ag for a H+: the present results ( for co~ =25.0 eV, ———for 20.76 eV, ——for 18.83
eV, —"—for 16.75 eV, and ~ for 14.58 eV) and the experimental results (0, Ref. 20; 'P, Ref. 24; 8, Ref. 25; +, Ref. 29; g,
Ref. 30; C3, Ref. 32; , Ref. 33; g, Ref. 34; Q, Ref. 35;+, Ref. 36; X, Ref. 37}.
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N ff is treated as a parameter. The calculation was per-
formed for five cases such that N, rf 1——(co~ = 14.58 eV), 2
(16.75 eV), 3 (18.83 eV), 4 (20.76 eV), and 6.56 (25.0 eV).
The figure shows that the variation of N, fr yields a
dramatic change in 5 + around the stopping maximum
located at about 100 keV/amu. In contrast to such ener-
gies, there are not differences as large appearing in the
higher- and the lower-energy regions. To explain this sit-
uation qualitatively, it is convenient to consider the local
Fermi velocity UF(r) schematic forms of which are drawn
in Fig. 5. At a high velocity U~, the local Fermi velocity
UF(r) is smaller than U& in almost all WS space. There-
fore, even if we change the excitation threshold a bit, no
sensitive variation can be brought in S + ~ Conversely, at
a low velocity Ui, UF(u) is always larger than Ui without
regard to N, ff more than 1 . Then the result is also insens-
itive to N, ff. At an intermediate velority U, however,
the variation of N, rr affects greatly the size of the spatial
region where the condition uF(r) ~ U [or UF(r) & U ] is
satisfied. Consequently, 5 + varies very much with N, ff
at intermediate velocities. For a Ag target, the condition
co~ =25.0 eV seems to bring a curve fit to experimental
data. ' ' ' ' ' Here, we find the following prob-
lem: There is a discrepancy between a recommended jeff
and the inherent valency of silver (N, rr —1). One —practi-
cal explanation to reconcile these two is that in the outer
region of the WS cell, there exist extra electrons, e.g. ,
bonding electrons or a part of core electrons except a free
electron, which cause the pile of the electron density in
the outer region. Since this is a qualitative discussion, a
quantitative one is necessary to get a more detailed under-
standing. Anyway, if we use the observed co~ data to
determine N, ff, the application of the solid LEDM to
nonsimple metals often provides good agreement.

So far, we have two types of the LEDM. Figure 6 is
drawn to show how many differences there are in the
mean excitation energy I by using two LEDM's. Here I
is expressed as

Z2lnI = r 4mr p r ln @co& r (3.1)

ergy calculated by Dehmer et al. ' in the framework of
the oscillator strength formalism. Our calculation is per-
formed for y =2' since the purpose is only to estimate
the difference in I. According to Fig. 6, the solid LEDM
yields, on the whole, greater values than the atomic one,
and the difference is marked especially for light elements.
This increase in the low- Z2 region is consistent with the
other's calculation. Note that crosses and open circles in
the figure denote the results for N,p's obtained from the
observed

cubi'
data and for N, rf =2, respectively.

Returning to Eq. (2.1), the CSD inside matter is in-
dispensable in obtaining the stopping powers S for ion
beams. Conversely speaking, the master curves of the
stopping S reflect the CSD inside solids although the
post-foil effect and the surface effect should be discussed.
In this paper the case is considered where incident parti-
cles pass through solids at relatively high velocities so that
the interaction time with the surface is very short. Thus
the surface effect can be neglected here. It is widely ac-
cepted that the post-foil process is important in the CSD
for heavy ions. Actually, once the Auger deexcitation
process occurs, the net charge of the emerging particle in-
creases by + 1 because one electron is ejected from it.
%%en such a process takes place, at least, both one inner-
shell vacancy and two excited electrons must exist in the
emerging ion. In the case of light ion beams such as H or
He, this condition is hardly satisfied except at low veloci-
ties We. attempt to predict the CSD from the master
stopping curve around the energy where the stopping
power is maximum. Therefore, the post-foil effect can
also be neglected.

Figure 7 shows the stopping cross sections of Al for
He+, Hez+ and helium-ion beams. Using two sets of the
empirical master stopping SH (Ref. 1) and the theoretical
stoppings S + and S 2+ (=4S + ) at two different en-

ergies, we propose the charge fraction ratio PH +/PH, + in

where y is a constant which takes into account the pair
excitation as well as the collective excitation. Both Lin-
dhard and Scharff and Chu and Powers have used
y=2'~2, while Wilson et al. adopted y= 1.2 since this
approximation reproduces the atomic mean excitation en-

20-

1 8
x",

I

Y= 21/2

1 2-

10-

V

FIG. 5. Schematic representation of the local Fermi velocity
u+ ( r ) for two eases. The velocities u~, u, and uq denote exam-
ples of the low, the middle, and the high velocities of the ion,
respectively.

i i

20
Z2

I

30
I

50

FIG. 6. Calculated mean excitation energy I vs Z2 number:
the atomic LEDM ( ), the solid LEDM using the observed
sp (Ref. 24) (-- &( —), and the solid LEDM using S,ff =2 ( O ).
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FIG. 7, Stopping cross sections of A1 for He: the present results ( for He-ion beam using the proposed CSD, - - - for He-ion

beam using the observed CSD (Ref. 44), =—for a He+ ion, and --- for a He2+ ion) and the experimental results (Q, Ref. 26; C3,

Ref. 45;~, Ref. 46; p, Ref. 47; 8, Ref. 48; 0, Ref. 49; +, Ref. 50; +, Ref. 51).

the form (2.5), where A =0.31 and 8=1.88 are obtained
and E is measured in units of MeV. Experimentally, the
charge fraction ratio was obtained as PH +/PH 2+

=0.38E ' in the energy range 0.6&E &2.0 MeV. A

neutral particle Heo can be ignored due to the screening.
The average charge obtained from the present CSD differs
from the observed average charge, at most, by 0.04 in the
measured energy range. This procedure to propose the

10 1 I 1 I I 111 1 1 1 1 1 1 1

v'
Pv

H beam-

O

U

C)

P4

I I I I I I I II I I I I I I I I I

102
E ( keV )

I I I I I sass

FIG. 8. Stopping cross sections of Li for H: the present results ( for H beam using the proposed CSD, --—for a H+ ion,—for a H without the screening effmt, and —- for a H including the screening) and the experimental results (h„Ref. 52; o, Ref.
53; 4, Ref. 54).
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FIG. 9. Calculated effective charge of He beam in Be, A1, Si, Ge, In, and Sb and that of H beam in Li, together with the experi-

mental results {o in C, 0 in Al, and T in Si) (Ref. 29). The arrows indicate the scales of the vertical axes.

CSD is partly supported by the following fact: In the

low-energy and the high-energy regions, the calculated

SH + and S &+ values are in good agreement with the

data, '~s s' respectively. This implies that almost all

helium ions edith low energies in solids are singly ionized,
and all helium ious are fully stripped in the energy region
E&2 MeV. The screening effect on a He+ does not
change the proposed CSD appreciably. The charge frac-
tions PH, + and PH, + fill the role of predicting the stop-

pings reasonably between —100 keU and a few MeU.
In alkali metals a proton can bind an electron because

of their high r, values. As an example, the stopping cross
section of Li is shown in Fig. 8. In a similar way to the
He case, the charge fraction ratio for the H case is deter-
mined as P~/PH+ ——5.87)&10 E z, where E is mea-

sured in MeV. The screening effect on a H is significant
and resultantly enhances the stopping cross section S~ by

a factor of 2 up to u-uu. The extended radius of the
bound state in a H in Li is given as a i ——1.579ao, and for
other alkali metals, calculated values are presented in

Table II. Although there are not enough data, the
calculated result in the low energies connects smoothly
with that in the high energies and is, therefore, expected
to give a successful result. Referring to neutral fraction
data of a proton, the fraction tI)~ of a hydrogen emerg-

ing from Li is greater than that from such metals as C,
Al, Cr, Ni, and Au, while the energy dependence of P~
from Li is nearly equal. The feature of the stopping of Li
is expected to be vahd for other alkali metals.

The formula (2.1) clarifies the problem of how the
mean charge of helium-ion beams obtained from the CSD
in matter is connected with the effective charge in the
stopping. In Fig. 9 the calculated effective charge for

He-ion beams, qgff in Be, Al, Si, Ge, In, and Sb and that
for a proton beam, q,rr, in Li are shown, where q,~r' and

q,"tr are defined as

q,"&=(P„,+S„,+ /S„+++„,'+)' ' (3.2)

at energies considered. For low-energy He-ion beams, q,ff
directly reflects the square root of the stopping ratio, i.e.,
S +/S +, since PH+ -—1. The overall feature of qgff

with respect to energy is consistent with the data' except
that experiments give a bit larger q,fr values. The in-
equality SH + &SH+, being valid over all energy ranges,
comes from the size effect of a He+ ion. This causes a
weak Zq dependence of q,fr. ' As regards q,ff, it is less
than unity in the low-energy region since hydrogen atoms
can exist in Li metal. There, due to the screening effect,

ff is increased by 40% in comparison with a no-
screening case. These remarks ~ill be valid, in general,
for alkali metals.

IV. CGNCLUSIGN

The stopping cross sections and the related quantity of
solids for protons and helium ions are investigated

comprehensively, where the dielectric-function method

and the local-electron-density models are used. As mell as

for point charges H+ and He +, the stopping cross sec-

tions for a partially stripped ion He+ are obtained over a

wide energy range. The stopping ratio S +/SH+ shows

a remarkable behavior with respect to specific energy, as

shown in Fig. 2. In spite of treating in a simple form, the
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screening effect on the stopping for a H is much more
significant than for a He+. The main point of the paper
is to include the CSD in matter and to treat particles with
the bound electron. Such a procedure as based on Eq.
(2.1) already appeared in Ref. 56, where the upper and the
lower bounds of the effective helium-ion charge are taken
into account instead of the CSD and the size effect of a
He . When we consider qd~ in the stopping, the ion size
plays an important role as well as the CSD, resulting in
the relation q,ttpq (q is the average charge) for He-ion
beams. ' Using the theoretical stoppings for H, H+ (and
He +), and He+ particles, the equilibrium CSD of H and
He beams is proposed. In comparing the present CSD
with the measured CSD, the post-foil effect and the sur-
face effect are neglected. This neglect is valid for light
ion beams with high velocities. As for heavier ions, the
above effects will have to be considered. Except for a

nonequilibrium charge state, energy losses accompanied
by the charge-exchange process, and excited states of ions,
the formula (2.1) is also regarded as the starting equation
in analyzing the stopping for heavy ion beams. At this
stage, Eq. (2.1) is an extension of the procedure used in
Ref. 9, where the spatial distribution of the bound elec-
trons of the projectile is determined in a statistical model
with the velocity criterion.
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