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The classical-trajectory Monte Carlo method has been used to determine the cross section for

stripping of H in collisions with p. The calculations were done for relative velocities from 0.015ac
0

to 1.0ac. A maximum cross section of about 40 A is found, somewhat smaller than previous esti-

mates.

I. INTRODUCTION II. EFFECTIVE POTENTIAL

As an extension of the low-energy antiproton ring
(LEAR) project at CERN, a scheme of corotating p and
H beams has been proposed. ' By means of electron
cooling, the momentum spread of the particles in the
beain needs to be reduced to bp/p —10 so that it will

be possible to produce pp atomic systems in Uacuo by the
Auger process. For evaluating the feasibility of such a
scheme and determining optimal machine parameters, it is
important to study electron detachment of H, since this
process is the main source of H beam loss.

We focus here on beam-beam interactions, i.e., the reac-
tion

%'e describe H as a single-electron system interacting
with a polarizable atomic core. The effective potential
can be written

~.fr = —~~:+Vp i . (2)

The first term, describing the interaction of a point charge
with the frozen core, is

l
~core = + l

r
(3)

The second term, which is due to induced polarization of
the core, is

H +p~H+e +p, (la) 1 2
Vpol t +H I Eeff I

(4)

at relative velocities U„~ &0.lac, corresponding to the
operating conditions planned for LEAR. Interest in reac-
tion (la) and in the similar process,

H +H —+H +H+e (lb)

stems from the fact that they can limit the usable beam
intensity. Experimentally, beams as intense as possible are
desirable for pp production. On the other hand, the beam
tends to destroy itself through reactions (1) if it is too in-
tense (see Ref. 4 for a discussion of the H beam life-
time). Several estimates of the cross section for reactions
(1) have been given in Ref. 5. In that work stripping
probabilities were derived analytically by resorting to a
WKB approximation in the framework of an effective
single-particle scheme.

In the present work a quite different approach is taken.
Based on the successes of the classical-trajectory Monte
Carlo (CTMC) method in the studies of ionization in pro-
ton and negative-muon collisions with the hydrogen
atom, a similar method is applied to the H stripping
problem. The dynamics of one electron and the antipro-
ton are calculated in the field of a polarizable neutral
atomic core. Cross sections for reaction (1) are obtained
and compared with the previous estimates.

where a& is the polarizability of the hydrogen core, equal
to —, in atomic units, and Eeff is the effective electric
field on the core.

At large distances the electric field created by the outer
electron is just

E=r/r (5)

We assume that the effective potential at any distance can
still be expressed by Eq. (2) taking

E,ti(r) =E(r)exp( ro/2r ), — (6)

where ro is a suitably chosen constant. The exponential
factor in Eq. (6) removes the unphysical singularity of the
polarization term as r~0, and at the same time Eq. (6)
reduces to Eq. (5) as r~ 00. We determine the parameter
ro by the condition that the potential in Eq. (2) has a sin-
gle quantum mechanically bound state with the correct
binding energy, Eo 0.754 eV, th—e elec——tron affinity of
the H atom. By numerical integration of the Schrodinger
equation we find ro ——1.596ao. From the corresponding
single-particle density we obtain the expectation values
(r ) =3.1 and (r ) = 14.1, which may be compared with
the accurate values' (r) =2.7 and (r2) =11.9. Another
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FIG. 1. Coordinates for the effective three-body system H-

e -p.

reason for the choice of the particular cut-off function
used in Eq. (6) is that the resulting potential is very simi-
lar to the adiabatic potential (discussed below) at r & 2ao
where adiabatic response of the core might be expected.

The effective potential for the H +p system (see Fig. 1

for notation) is then constructed from Eq. (2):

Vtot(r~~~p) = Vcore(r) Vcore(R)+
P

—
g ctH

I
E.tt(r)+E.tt(R) I

'

The terms in Eq. (7) have an immediate interpretation.
The first two terms represent the interaction of the elec-
tron and antiproton, respectively, with the frozen atomic
core, and the third term is the Coulomb repulsion between
e and p. The last term accounts for the polarization of
the H core resulting from the vector sum of the electric
fields of the two charged particles e and p. Equation (7)
is exact in the limit of large distances (r, R »1), but there
is some arbitrariness in using it over all space. Calcula-
tions performed with possible variants of the effective po-
tential are also made and compared in Sec. IV with the re-
sults obtained using Eq. (7).

III. METHOD OF CALCULATION

The techniques used in the paper are quite similar to
those described in Refs. 7 and 11, so we shall only outline
the procedure here.

(i) The initial r and p values are selected randomly from
uniform distributions in (O, rme„) and (O,pm, „). These
values can be immediately rejected if E= —,'p + V(r) is

greater than zero.
(ii) We define a function

'2'
f(E)=exp —10 —1

Eo

which represents a numerical approximation to the on-
the-energy-shell microcanonical distribution. The func-
tion

tc(r,p)=16' r p f(E)
is evaluated and compared to a random number
XE(0,tJ „) where ta,„ is the maximum value of the
function tc in phase space. If w (r,p) &g, then r and p are
accepted as initial conditions; otherwise the selection pro-
cess returns to step (i). The values of r,„and p,„ in (i)
are chosen large enough that tU (r,p) is negligibly small for
r~r,„or p&p,„. %'e found r =3 and p,„=4.5
adequate for H . This procedure of selecting the initial
conditions of the target avoids the necessity of predeter-

mining the distribution of each variable used in specifying
initial conditions.

(iii) The cosine of the angle a between the vectors r and

p is randomly selected from a uniform distribution in
( —1, 1) since f(E) is independent of a.

(iv) The vectors r and p, until now arbitrarily situated
in the yz plane, are rotated by random Euler angles uni-
formly distributed as —ir&t)It&m, —1&cos8&1, and
—K & 'g & K.

(v) The impact parameter b is selected at random from
a uniform distribution of b G(b;, ,b; ) and b; is in-
creased until the cross section converges.

(vi) Forces are calculated by numerical differentiation
of Eq. (7) using a two-point central-difference formula.
This procedure is more efficient than analytic differentia-
tion since the latter involves more expressions to be
evaluated. For potentials other than Eq. (7) the differen-
tiation was done analytically.

(vii) The numerical integration of Hamilton's equations
of motion for the three-particle system (H, e,p) is per-
formed using the sixth-order Gear hybrid method.

(viii) The final-state determination is as depicted in Fig.
1 of Ref. 7 (the factor y there, used to compare internal
energies with the external potential, was set to 0.6).

(ix) Except at the two lowest velocities, enough trajec-
tories were run to reduce the standard deviation of the
calculated cross section to about 10%.

IV. RESULTS AND DISCUSSION

Results obtained using the effective potential in Eq. (7)
are summarized in Table I. The relative H —p velocity
is denoted by U„~, 6"",„ is the largest impact parameter
where H ionization actually occurred, b,„denotes the
largest impact parameter sampled, E„, is the total num-
ber of trajectories integrated, and X;,„ is the number of
these trajectories that resulted in ionization. Finally, the
error bars correspond to one standard deviation.

Qualitatively, one notices small cross sections at the
lowest velocities, where dominance of the Coulomb repul-
sion prevents H and p from approaching closely enough
for ionization to occur. The cross section reaches a max-
imum of about 40 A at U„t-0.05 and then slowly de-
creases with increasing velocity, corresponding to the fact
that the shorter interaction times are less effective in dis-
turbing the electron motion.

We now consider the sensitivity of the results to the
choice of the potential. Although there is some arbitrari-
ness in the form of the polarization term introduced in
Eq. (7), it is important to realize that polarization has to
be taken into account. For example, if the polarization
term is neglected in the description of H, then the poten-
tial V= V„„(r) has no quantum mechanically bound
state. Furthermore, one sees from Table I that the typical
distances important for H ionization are R =b"",„=Sao.
At these distances, the magnitude of the polarization term
in the H-p interaction is

l V~t I
= t'aH+ 10 a.u

which is much larger than the core term
V, „e ~-10 a.u. To demonstrate the importance
of core polarization in ionizing collisions, we have per-
formed calculations replacing Eq. (7) with a potential V„',
given by the frozen core (fc) terms only:
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TABLE I. CTMC results for H +p stripping obtained utilizing the vector-polarizable H core.'

E, (eV)

2.81
5.00

11.25
31.24

125.0
499.9

1999.7
4499.3

12498.0

u~{ac)

0.015
0.02
0.03
0.05
0.1

0.2
0.4
0.6
1.0

b loll

2.22
5.68
7.27
8.09
9.29
9.56
9.19

10.62
8.02

b (ap)~

6.124
9.798
9.798

11.314
11.314
11.314
11.314
12.649
11.314

75
75

150
200
200
200
200
500
400

&IOn

1

18
59
71

61
60
94
68

o.; (10 ' cm )'

0.4+0.4
20.3+4.2
33.2+2.8
40.0+3.8
37.7+3.8
34.3+3.7
33.8+3.6
26.5 J2.5
19.1+2.1

'Our "standard" potential. See Eq. (7).
b is the largest impact parameter sampled; b"",„is the largest impact parameter at which ionization

actually occurred.
a; =(¹,„/X„,)~b . The error estimate is statistical only (1 standard deviation):

«-=&0.[i&t.~ —W~l&&~ot&; ]'"

TABLE II. CTMC results for H +p stripping obtained utilizing the frozen H core.'

E, (eV)

125.0
499.9

1999.7
4499.3

12498.0

u„)(ac)

0.1

0.2
0.4
0.6
1.0

b"" (ap)

6.52
6.88
8.83
8.29
9.93

bm «p)

9.798
9.798

11.314
11.314
12.649

150
150
200
400
500

&ion

37
38
37
78
66

o;,„(10 '6 cm2)

20.8%3.0
21.4%3.0
20.8+3.1

22.0%2.2
18.6+2.1

'See Table I for notation.

TABLE III. Adiabatic potential for a hydrogen atom perturbed by a point negative charge. '

R(ap)

0.65
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30

eb (a.u.}

0.423 361 46 X 10
0.435 83069X 10
0.364 670 82)& 10
0.148 748 15y 10-'
0.10246670 X 10-'
0.33967021''10-'
0.77101411' 10-'
0.14001299&&

10-'
0.220371 11' 10-'
0.314672 88 ~ 10-'
0.419240 10X 10
0.53072841 ' 10-'
0.646 32408 ~ 10-'
0.763 772 86& 10
0.88133121'10-'
0.997 689 36' 10-'
0.111 189073
0.122 325 867

R(ap)

2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00

eb (a.u. )

0.133 133415
0.143 582 491
0.153656 482
0 163 348 210
0.172 657 447
0.181 589 014
0.190 151 316
0.227 850 157
0.258 293 782
0.283 095 228
0.303 548 343
0.320 631 695
0.335 075 034
0.347 423 847
0.358 089 580
0.367 386 204
0.375 556 298
0.500 000 000

'From Ref. 12. eq is the electronic binding energy; V, =0.5 —eq —R
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Vf', (r,R,p)= —V „(r) —V„„(R)+—. (10)
1

p

The results, presented in Table II, show values of the cross
section that are systematically and significantly smaller
than obtained in our calculations including polarization.
Comparison with Table I shows that polarization effects
are enhanced at the smaller velocities, as expected.

In order to examine the sensitivity of the cross section
to the treatment of the potential, we consider a few other
alternatives to Eq. (7). A simple change is made by linear
superposition of the p and e polarization terms rather
than the vector sum. The corresponds to an effective po-
tential given by

V,".', (r,R,p) = —V,.„(r) V,.„(—R)+-
p

00

-0.2
CQ

tX: -0.4
LIJz
LU

-0.8

-E.O

R(a )

2 ciHlE ff(r)+E ff(R)l

Another possibility is to use the adiabatic potential,
which is well defined theoretically, for interaction of the
hydrogen atom with a point negative charge. The exact
adiabatic (Born-Oppenheimer) potential has been calculat-
ed by Baird' at R & 8ao with the results given in Table
III, which we fit by a cubic spline. At larger distances the
adiabatic potential can be evaluated using the asymptotic
series expansion of Dalgarno and Lewis' for p+H (with
the signs of odd-order terms reversed). The truncated ex-
pansion that is adequate at R ~ 8 is given by

y 9R 4 15R 6 213 R 7 7755R —8
a 4 2 + 4 64

FIG. 2. Comparison of one-electron potentials: polarized
core ( ), frozen core (———), adiabatic (——), and modi-
fied adiabatic (————). The horizontal line segment indicates
the energy of the bound state in the polarized-core and
modified-adiabatic potentials.

and at R =2 the potential and its derivative continuously
become identical to the purely adiabatic potential.

For comparison with the calculations utilizing a polar-
izable core, cross sections for collision velocity 0.1 were
also calculated using the total potentials

17'73 ~ 9 2835 ~ JQ (12)
V'„,(r,R,p) = —V, (r) V, (R)+——

P

As can be seen in Fig. 2, this potential is close to the
polarized-core potential at R )Zao. However, at small
distances the completely adiabatic potential clearly overes-
timates the attraction. One consequence of this excess at-
traction is that an electron is quantum mechanically
bound in this potential by 1.82 eV, more than twice the
true binding energy. An ad hoc fix of this defect can be
made by modifying the short-range part of the potential.
We achieved the correct binding energy by defining a
"modified-adiabatic" potential that is more repulsive than
the adiabatic potential at small R. This modified poten-
tial has the form

V, =0.875 —0.344582R+0.056508R ——for R &2,
R

(13)

V„', (r,R,p) = —V (r) V, (R)—+-
p

(15)

The results are given in Table IV. One notices that the
second, third, and fifth lines correspond to potentials that
(a) yield the quantum mechanically correct binding energy
and (b) describe correctly the H pinteraction -at large
distances. These three potentials yield results for the
cross section that are consistent within statistical errors.
On the other hand, the first and fourth lines, correspond-
ing to potentials that do not satisfy conditions (a) and/or
(b), show rather smaller results. ' In conclusion, confi-
dence in the results of Table I is gained from the stability
of the cross sections as the potential is varied without
violating physically relevant conditions.

TABLE IV. CTMC results for H +p stripping at U =0.1, obtained using different treatments of
the H core.

Frozen core (10)
Vector polarization (7)
Linear superposition
of polarization (11)
Adiabatic (14)
Modified adiabatic (15)

&"" «o)

6.52
9.29
9.42

6.16
8.44

b (ao)

9.798
11.314
11.314

9.798
11.314

150
200
200

150
200

o;,„(10 " cm')

20.8+3.0
37.7+3.8
40.0+3.8

23.6+3.1

37.2 %3.7

'The equation number of the potential is given in parentheses.
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In coinparison with Ref. 5 the present results are simi-
lar in shape but are about a factor of 4 smaller than the
"best estimate" of that work (other estimates were even
larger). Part of this difference may be due to the micro-
canonical distribution, which does not allow the target
electron to be initially at large nonclassical distances froin
the nucleus; however, this effect is not expectant to be too
serious at the low collision velocities considered since the
charge density is significantly perturbed even in collisions
at impact parameters much larger than the initial size of
the target. Our sensitivity studies suggest that the uncer-

tainty due to the arbitrariness in our choice of the
polarized-core potential is considerably less than a factor
of 2. Hence we believe that the true stripping cross sec-
tion actually is somewhat smaller than found in previous
calculations.
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