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A unified description for anisotropic near-threshold excitation in terms of statistical O(4) mul-

tipoles is presented. It is shown that a single set of multipole parameters can characterize both the

angular distribution of low-energy electron emission and the nonstatistical population of high Ryd-

berg states. Relations between multipole moments of the bound-state charge cloud and of multipole

moments of the velocity distributions are derived. The formalism is applied to electron capture to
the continuum and into Rydberg states for 8++He using the continuum distorted-wave approxima-

tion. Comparison is made with recent experimental data.

I. INTRODUCTION

Cross sections for electron emission in inelastic ion-
atom collisions show a strong enhancement at electron ve-
locities v, approximately equal to the projectile velocity
v&. This gives rise to a cusp' in the experimentally ob-
served doubly differential cross section (DDCS) do/dv, .
Two different processes contribute to the cusp: target ion-
ization [i.e., electron capture to continuum (ECC)] and
projectile ionization [i.e., electron loss to continuum
(ELC)]. In both cases, the final electron states lie in the
low-energy continuum (u~O) of the projectile, where
v= v, —v~ denotes the electron velocity in the rest frame
of the projectile.

A theoretical explanation for the occurrence of a cusp
was first given by Macek and Rudd, who pointed out
that ECC can be visualized as a smooth continuation
across the ionization limit of capture into excited bound
states with increasingly larger orbits such that the cap-
tured electron finally becomes unbound.

Recent experiments and theories for both ECC and
ELC show a large variety of anisotropies and asymmetries
to be present in DDCS. A detailed analysis of nonisotro-
pic structures has become feasible since recent experimen-
tal advances permit measurements of the two-dimensional
electron distribution. s'6 Concurrently, the formation of
Rydberg states in ion-atom and ion-solid collision has
gained considerable interest. Recent experiments pro-
vided clear evidence for a nonstatistical and partially
coherent population of high n levels.

It is intuitively clear that the population of low-lying
continuum states and high-lying Rydberg states should be
strongly related to one another (Fig. 1). The transition
amplitude l; f for capture (or excitation) of an electron
from a deeply bound initial state (i) into highly excited fi-
nal state (f) is expected to be a smooth function of f as
the ionization threshold is crossed since this amounts only
to a slight change in the electronic energy transfer (b,e)
during the collision.

The goal of this paper is to establish a direct quantita-
tive relationship between anisotropy parameters character-
izing the nonstatistical coherent excitation above thresh-
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FIG. 1. Energy-level diagram for electron capture as seen in

the target frame.

old (cusp electrons) and those characterizing similar exci-
tation processes of manifolds just below the ionization
threshold (Rydberg electrons).

The Coulombic final-state interaction between the pro-
jectile ion and the ejected electron plays a decisive role not
only for the occurrence of the cusp but also for the aniso-

tropy of near-threshold excitation. According to Wigner's
threshold law' all partial waves are present in the zero-
velocity (u~O) continuum at threshold in the specific
case of an attractive Coulomb field unlike the case of
final-state interactions of short range. The cusp anisotro-

py may be described in terms of the partial-wave popula-
tions and of coherences between different partial waves.
Our analysis employs therefore the dynamical O(4) sym-
metry group of the Coulomb problem. It will be shown
that a set of O(4) multipoles originally" introduced to
classify bound-state coherences is well suited to also
describe continuum-state coherences. The anisotropy pa-
rameters in the DDCS for electron emission can be ex-
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pressed as expectation values of O(4) multipoles.
The plan of the paper is as follows. In Sec. II we brief-

ly review the density-matrix description of bound-state
coherences in terms of expectation values of O(4} opera-
tors. Their Rydberg limit and the connection with the or-
bital parameter of Kepler orbits is investigated in Sec. III.
In Sec. IV we relate the multipole expansion for cusp elec-
tron emission' devised by Meckbach, Nemirovsky, and
Garibotti with multipoles for coherent Rydberg excitation
and derive explicit formulas to express the cusp cross sec-
tion in terms of coherent continuum and bound-state exci-
tation [Eqs. (36) and (40)].

The present method facilitates the theoretical deter-
mination of anisotropy parameters for excitation into the
continuum by smoothly extrapolating equivalent bound-
state excitation parameters across the threshold. As an il-

lustrative example, we will study in Sec. V the ECC pro-
cess H++ H~H(n) + H in detail using the continuum
distorted-wave' (CDW} approximation. The present ap-
proach permits also direct quantitative comparison of see-

minly different data such as extracted from electron emis-
sion studies and from photon emission studies, elucidating
thereby the common underlying physics. As an example
we analyze experimental data far charge transfer
H++He~H(n)+ He+ in Sec. VI. Atomic units are
used unless otherwise stated.

II. DENSITY-MATRIX DESCRIPTION
FOR BOUND-STATE EXCITATION

Due to the nonadiabatic nature of inelastic ion-atom
collisions the final electronic state is, in general, a
coherent mixture of atamic substates. The coherent exci-
tation is most completely described by the density ma-
trix' which contains an ensemble average over all un-
resolved degrees of freedom in a given scattering process.
If, for example, the scattering angle of the outgoing pro-
jectile is not detected, the density matrix is given in terms
of the transition amplitudes, t; „t (K), by

the time evolution under the influence of the isolated
atomic Hami ltonian,

&f I
~«) if'&=exp[i«ef ef)]&f I

~(o}If' &

extinguishes final-state coherences in the ensemble. An-

gular momentum coherences will play a crucial role for an
understanding of anisotropies in the low-energy continu-
um.

As the number of nonvanishing off-diagonal elements
in an angle-integral measurement rapidly increases in a
Rydberg series like -n, the problem of finding a con-
venient and physically sensible basis in the Liouville space
of density-matrix elements arises. In general, a basis con-
sists of set operators I 0; J;z i whose expectation values
Tr(o0;)lTro parametrize the density matrix for a given
manifold. Apart from the requirement for the operator
set to form a complete basis with respect to the manifold
under consideration, one has a wide freedom in selecting
an appropriate operator set. For example, the operators
0; need nat commute with the Hamiltonian of the ab-
served atomic subsystem. One may seek a convenient rep-
resentation that allows an expansion af the density opera-
tor in terms of only a few, physically meaningful expecta-
tion values. It is clear that the actual choice depends on
the underlying excitation mechanism. For example, a
standard basis in Liouville space, the operator set

I ~
nbn &&n'i'n'

~ ], whose expectation values are just the
density-matrix elements in the standard basis [Eq. (1}],is
certainly complete with respect to an n manifold. Howev-

er, it does not provide a simple and transparent represen-
tation of the density operator when many different ~!m &

states are coherently populated in the collision process.
A well-suited representation taking explicitly into ac-

count the 1 mixing in (nearly) degenerate manifalds can be
found by exploiting the dynamical O(4} symmetry ("su-
persymmetry") of the Coulomb problem. The O(4) sym-
metry is related to the existence of two constants of
motion, the angular momentum L and the Runge-Lenz
vector A,

ni'm'& = ', fd'Z t,'„,~ (K)t, „,~(K)
(2n) U~

A= —,'(pXL —LXp) —Z~ —. (3)

X5(K.v~+ b,e) . (1)

The momentum transfer during the collision is denotai by
K and b,e is the change in the electronic energy. The den-
sity matrix is diagonal in m because the momentum
transfer integral (1) extends over all scattering angles.
Notice that the quantization axis is chosen along the axis
of the incident beam. The density matrix is, however,
nondiagonal with respect to 1. Equation (1) contains the
maximum information on the collision amplitudes avail-
able in an angle-integrated experiment. The usual sub-
state cross sections corresponding to diagonal elements in
(1), on the other hand, do not completely specify the
final-state population. Off-diagonal elements of (1)
describing coherences between different substates are ob-
servable only for (nearly} degenerate manifolds. For
larger energy splittings and experimentally limited time
resolution the average over rapid phase oscillations due to

In a classical picture, A points from the nucleus to the
"perihelion" of the electron orbit and defines its principal
axis (see Fig. 2).

~

A
~

is proportional to the eccentricity e
of the orbit (

~
A

~
=Z~e, where we have approximated the

reduced mass of the electron by unity). It can be shown"
that the two generators of the dynamical symmetry group,
L and A, give rise to a complete set of multipole opera-
tors whose expectation values provide a unique parame-
trization of the density matrix for a given n shell. This
particular choice has several decisive advantages: all basis
elements are constants of motion of the atomic Hamil-
tonian (or approximate constants of motion when relativ-
istic corrections are taken into account) and are directly
related to the (quasi)degeneracy [Eq. (2)] which, in turn, is
a prerequisite for an experimental observation of coher-
ences; their expectation values have a simple physical in-
terpretation; all relevant matrix elements can be simply
expressed in terms of angular momentum coupling coeffi-
cients; and this representation provides a direct decompo-
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sition of the density operators into different components

according to their tensorial rank, parity, and time-reversal

symmetry. The latter is of particular importance when

the collision process leads to a selective excitation of a
certain subspace of the Liouville space (for example,
predominantly low-order multipoles). In Sec. III we will

discuss one example in more detail.
The density operator can be expanded in terms of a

basis set of spherical statistical O(4) multipoles, "
cr= g o()(ll, k],k2}[U()(Il,k],k2}], (4}

II,k, kI, k2

k) &k2

where

(Tq(II k] k2) Tr[0'Uq(II k] k2)] (5)

For the sake of simplicity, we have restricted the mul-

tipole expansion in (4} to spherical components with q=0
in accordance with the axially symmetric density matrix
(5 ) in an angle-integral density matrix. The quantum

number II=0 (1) characterizes the even (odd) parity of the
statistical multipole. A generalization to q&0 is straight
forward. " The operators U" in (4) are defined as

e/ectl'OA(

FIG. 2. Classical orbits for the Coulomb problem. States
near threshold (c=O) correspond to parabolas. At large dis-

tances from the nucleus v becomes (anti)parallel to A.

] ]+ 2 [(2k] + 1)(2k2+ 1)]]/2
Uq P(11,k],k2) =

[.2(1+4,,k, }l'"&Jllj 'llj&&jllj 'Ilj&

&& g &k]k2q]q2 Ik0&[(j'")q'(j"')q'+( —»"(j"')q'(j'")q'] (6)

in terms of two commuting pseudospin operators j" '. The latter are given in terms of L and the normalized Runge-
Lenz (RL) vector a=(n/Z&) A by

j(1,2) ] (L—
a) (7)

In (6), &j~ (j ~ ~j & denotes the reduced matrix element of the spherical multipole of rank k for the pseudospin operator
j(') and

2j+1=n .

With use of the fact that L is odd and A is even under time reversal, it can be shown" that U has a well-defined time-
reversal quantum number

k)+k2+Il

The set (6) forms an orthonormal basis set in the sense of the trace metric in the Liouville space, ' '
Tr[ Uq(11 k] k2) Uq' (11 k ] k2 )]=Bkk''5qq'~]], ]]''5k, k '~/ k

(10)

Finally, the expectation values of O(4) multipoles can be related to the density-matrix elements in the standard basis with
the help of some straightforward angular momentum algebra:"

4

.kl+k2 —k j j
(T()(n, II,k],k2)=, / g [(2k]+1)(2k2+l)(2]+l)(21'+1)]' [(—1) +(—1)'+']'j j k2 pq(I, l')

[2(1+4,,k, )l'" ],] =p
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with

X (nlm
~

a
~

nl'm') .

The usual state multipoles' are denoted by p&. Since we

will later study the limit n ~ ooof (11) in detail, we have

explicitly displayed the n dependence of oo. As we will

discuss in subsequent sections, the decisive advantage of
the O(4} basis set is to clearly exhibit the physical mean-

ing of coherence parameters by relating them to orbital
parameters such as ( A, ) that have a simple classical ana-

log for Kepler orbits.

description of the most important and characteristic
features of the shape of the coherently excited charge
cloud. This conjecture is supported by a classica1 orbital
picture that should become increasingly valid as n tends
to infinity (more precisely, as n, l +—oo). In the classical
limit, a few orbital parameters suffice to characterize the
Kepler orbit completely.

%e explore this conjecture by studying the Rydberg
limit of the O(4) multipoles. In Eqs. (11) and (12) both
the density-matrix elements (nlm

~

cr
~

nl'm ) and the ex-
pansion coefficients [through j =(n —1)l2 in the 9j sym-
bol] are n dependent. While the n~oo limit in the
density-matrix elements depends on the excitation mecha-
nism under consideration, the expansion of O(4) mul-
tipoles in terms of standard density-matrix elements can
be drastically simplified in the limit j~ oo ( n ~ oo ) under
the assumption

III. RYDSERG LIMIT OF BOUND-STATE
MULTIPOLES I, l'&&j, (13)

The set of statistical multipoles, Eq. (11), is expected to
be particularly useful for highly excited n manifolds.
While the number of density-matrix elements
(nlm

~

a
~

nl'm) increases dramatically as n~ ooand a
determination of all individual matrix elements becomes,
theoretically as well as experimentally, a formidable task,
a few statistical multipoles should provide an adequate

i.e., that only a narrow band of low final l states signifi-
cantly contributes. For most of the collisional excitation
mechanisms known to date' (direct excitation, electron
capture, and ion-solid interaction), population of I values
is restricted to 1&20, and Eq. (13) is certainly satisfied
for high n states (say, n ) 100).

In the limit j~ oo ( n ~ oo ) we find'

'+ i l I' k ki kik
( —1) .2000 0 0 0+'"j2j+111' k

(14)

The statistical multipoles are then given by

.kI +k2 —k ki k k2
cr ( 0InI k ),k2) =

)~i ( —1) [(2k ] + 1)(2k'+ 1)] () () ()( &+5k, k,
}'"

00 1 k 1'
&& g ( —I)'v'(2l+1)(2l'+1) [(—1)"+( —I) + ][pc(l,l')]

l, l'=0
(15}

where po denotes now the Rydberg limit of Eq. (12) to be
discussed in Sec. V for the spix:ific case of an electron
capture process. The 3j symbols in (15) lead to a drastic
reduction of the number of contributing multipoles. oo is
nonzero only if

l+l'+II=even,
1+1'+k =even, (16b)

k&+k2+k =even . (16c)

Equation (16a) reflects the well-known fact that mul-
tipoles of odd parity require angular momentum coher-
ences of odd parity (i.e., l+l' odd, for example, s-p

coherence). Combining (16a) and (16b) we have
II+k=even, i.e., multipoles of even (odd) rank possess
even (odd) parity. Finally, with the help of (16c) we find

k]+k2+H=even . (16d)

In view of Eq. (9) this implies that only multipoles even
under time reversal contribute in the Rydberg limit to
leading order. The Rydberg limit of (11) projects the
complete density matrix onto the Liouville subspace de-
fmed by the selection rules [Eq. (16)]. This part of the
density matrix is expected to be most important for near-
threshold excitation. The occurrence of selection rules
can be understood by considering the Rydberg limit of the
pseudospin operators [Eq. (7)]:
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{1,2) 1 A I
+ +—

2 Zp Pl
(17}

1
lim j""/n =+

nice 2Zp
(18)

The two pseudospins are no longer independent of each
other but become directly proportional to the Runge-Lenz
(RL) vector itself. Equation (18) also ives rise to the
linear dependence in Eq. (15) of all crp with different

As n —+ ao, the eigenvalues of A/Zp (the eccentricity) and
ofj" '/n approach finite values while L/n tends to zero
since the l values are restricted to a finite range [Eq. (13)],
and consequently

(ki, kz) but equal k. We note that the selection rules (16)
are one important example for the above-mentioned
reduction of the density operator when the underlying ex-
citation mechanism displays a certain selectivity. In this
case the relatively weak assumption about the population
of only low and intermediate l states [Eq. (13)] leads to a
drastic restriction of the density operator to a subspace of
the Liouville space which is spanned up by multipoles of
the Runge-Lenz vector alone. While alternative choices
for a basis are certainly possible, this fact underlines the
particular convenience of the O(4} basis.

Without loss of generality one may choose for simplici-
ty k2 ——0 in Eq. (15) and the final expression for statistical
multipoles in the Rydberg limit then reads

1
k CO I k l'

crp(n, li, k, O)= (2—5i, p)' g ( —1) V'(2l+l)(21'+1) 0 0 0 pp(l, l') as n co .
Pf I,I'=0

(19)

n

Zp
(20)

The equivalence of the pseudospins and the RL vector in the Rydberg limit [Eq. (18)] furthermore permits an interpreta-
tion of the statistical multipoles [Eq. (19)] in terms of multipoles of the Runge-Lenz vector. Using (6) and explicit ex-
pressions for reduced matrix elements, ' one can find

(2—5t, p)(2k + 1)(n —k —1)!
U,"(II,k, o)=-

n [(n +k)!] Ao as n~co .

For later reference we note that for k= 1, Eq. (20) is exact for all n. Expectation values of the RL vector can be deduced
from the unnormalized density matrix as

( 3p ) =TI'(crA p )/TI'o'

The statistical multipoles and the expectation value of the RL operator are therefore related to each other by
'k

crp(n, II,k, O)/crp(n, 0,0,0) = [(2k + 1)(2—5t, p)]' (At ) as n ~ oo,
Zp

(21)

(22)

where we have used that

crp(n, 0,0,0)=—g (,nlm
~
o

~

nlm ) =Trcr/n .
n I

Equation (22) deterinines multipoles of the RL vector in a
Rydberg manifold. The latter correspond to the dipole
moment, quadrupole moment, etc. of the ch qa, e cloud of
a Rydberg electron. It should be noted that the usual
Pano-Macek alignment Parameters P (for examPle, (Lp ) )
do not give direct information on the alignment of the
charge cloud in the I-mixing regime but describe the
alignment parameters of the angular momentum uector
which are, in general, statistically independent observ-
ables.

IV. MULTIPOLE EXPANSION OF THE CUSP
ELECTRON DISTRIBUTION

Meckbach, Nemirovski, and Garibotti' have devised a
double series expansion of the doubly differential cross
section (DDCS) for emission of low-energy electrons that

has proven to be very useful for an apparatus-independent
analysis and presentation of the experimental cusp data.
In the projectile rest frame the DDCS is expanded as

;B" Pu(ic so8),Jv v ok=0
(24)

where u is the radial velocity of the electron and 8 the po-
lar angle of emission. A cusp shape is uniquely character-
ized by a set of expansion coefficients B;". For low-energy
electrons (u~O) only a few terms (i =0, 1,2, . . . ) in the
radial expansion contribute. The leading term (i=O) pro-
vides the well-known cusp singularity ( —1/u).

We restrict ourselves in the following theoretical
analysis as well as in the comparison with data to the
leading multipoles of the angular distribution (-Bp).
These terms clearly dominate the cross section at thresh-
old and are the ones that possess a direct connection with
bound-state multipoles. There is, in addition, a conceptu-
al difficulty that makes a meaningful comparison between
experiment and theory questionable for higher-order
terms (-B;, i & 1) in the expansion (24). To illustrate
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this point we consider the first-order Faddeev expan-

sion ' ' for electron capture to continuum. As first

poined out by Macek the transition amplitude can be
written as a coherent superposition of a direct ionization
amplitude, t;„(with a target-centered continuum final

state), of a genuine ECC amplitude, t; „(with a
projectile-centered continuum final state) and of a plane-

wave counter term, t; „,asP%

The genuine ( u ~0}DDCS for ELC or ECC can be ex-

pressed in terms of the isotropic cross section (ro and the
anisotropy coefficients Pk as

do &0 g PkPk(cos8),
dV U k 0

where

I P% ECC+t;„ (25)
00'p =80U (28a)

Neglecting, for the moment, (Coulomb) phase factors, the
amplitudes t and t are expected to be smooth func-
tions of u, at large u, in the vicinity v, =vz, allowing for
a Taylor expansion in u =

~
v, —v~ ~. The amplitude

tEcc, on the other hand, possesses an algebraic singularity
u

'~2 originating from the normalization of the continu-
um wave function. i Therefore, the u expansion of the

transition probability, and hence the cross section, reads

ap a], I /2
~t, „~ = +, +a2+aiu + (26)

Equation (26) contains terms with algebraic singularities
at threshold -u"~, n =—1, 1,3, . . . , not included in the
expansion (24). The latter represent interference terms be-

tween an ECC process and direct ionization. Determina-
tion of all higher-order coefficients is equivalent to a

proper treatment of the so-called "background" which is,
in fact, an integral part of the ionization process. The
fitted values for higher-order terms 8;" (i & 1) in Eq. (24)
may therefore be distorted by the lack of additional in-
terference terms in the expansion. The leading term with
the strongest singularity (u '), on the other hand, should
be basically unaffected. It represents the genuine ECC or
ELC process and is independent of interferences between
different partial amplitudes [Eq. (25}] in the Faddeev ex-
pansion. %'e note that taking into account Coulomb
phases, one may expect in addition terms -log, (u) in the
expansion (26}. Since relative phases of partial amplitudes
are generally only poorly represented by low-order Fad-
deev approximations, ' ' a reliable calculation of correc-
tion terms in the u expansion is difficult. This problem
can be circumvented rather than solved by restricting to
the physically most important singular part from the on-
set.

Pk =&o ~&ok 0 (28b}

Pursuing the idea of continuity of all excitation parame-
ters across the ionization limit, we relate the expansion
coefficients (28) with the statistical O(4) multipoles for
Rydberg excitation. To this end we first expand the
DDCS in terms of the density matrix for coherent
partial-wave excitation in the continuum. Using a
partial-wave expansion of the wave function, one finds to
leading order U

P+(r) &+iy g ( 1)((/2((1+()lit
I (r)[I'&m(v)]e

f

(29a)

2

rU

' ]/2

~2(+i [(8Zt &)'"l I'( «» (29b)

( —1)'+' &P(v)[&P (v)]'
I, m, I'm'

X(ulm
(

cr
~

ul'm')5 (30)

where (ulm
~

(T
~

ul'm ) denotes the partial-wave density
matrix which again is diagonal in m because of axial sym-

metry. The phase factor refiects the incoming boundary
condition for the continuum wave. With the help of the
addition theorem for spherical harmonics, 23 Eq. (30) can
be cast into the form

where + ( —) denotes the outgoing (incoming) Coulomb
wave, Jk is the Bessel function, and Zp denotes the
charge of the projectile. y denotes a divergent but (l, m)-
independent Coulomb phase which does not contribute to
the ELC or ECC density matrix. Inserting a complete set
of partial waves in (27) leads to

g (2k+1)Pk(cos8) g [(21+1)(21'+1)]'~i
k=p f, f', m

1 )t +('—m
1 k I' I kh'

(ulm ~(T ~ul'm ) . (31)

In analogy to (12) we may define spherical state multipoles for continuum excitation,

pq(l, l')= g ( —1) Y2k+1 (32)

Inserting (32) in (31) yields
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II

g v'2k + 1Pk(cos8)( —1)"g ( —I )'[(2l + 1)(21'+ I )]'~ pp(1, 1') .
dv 4m k E, E'

(33)

Equation (33) can be further simplified by introducing statistical multipoles for continuum excitation similar to Eq. (11),
h

II

ap( uli, k, 0)=( —1)"(2—5k p)'~' g ( —I)'&(2I+1)(2I'+1)
() () () pp(l, l'),

E, E'=0

to give

da
dv

' 1/2
1 " 2k+1

ap(u, II,k, O)Pk(cose) .
4n k p 2 —5kp

(35)

Here, as in Eq. (11), we have explicitly displayed the u

dependence of ap. By comparing (35) and (27}, the expan-
sion coefficients of the DDCS can be expressed in terms
of statistical multipoles as

ap= lim Op(u, 0,0,0)
u 0 4m

1/2

pk= lim
2k+1 k p

ap(u, ti, k, 0)/ap(v, 0,0,0) .
5kp

(36a)

(36b}

where

D(n) = n /Zp (38a)

D(u}=v (38b)

denote the density of states of given angular momentum
(Im) below and above threshold, respectively. With Eqs.
(19), (34), and (37) we find

4

lim ( apIIu, k, O)= lim
2 ap(n, II,k, O)

v-+0 n~ao UZP
(39)

Obviously, the statistical multipoles for Rydberg bound
states [Eq. (19)] and for low-energy continuum states [Eq.
(34)] are related to each other by continuity across the ion-
ization limit. The continuity of the density matrix im-

plies

lim [D (n)( nlm
~

0
~

nl'm ) ]= lim [D (u) (ulm
~

a'
~

ul'm ) ],
n~cc U~O

(37)

pk(ii = ~)=

It is crucial that the Runge-Lenz vector as a constant of
motion has a well-defined meaning over the whole spec-
trum and facilitates a unified interpretation of anisotropic
excitation above and below threshold. The usual picture
of velocity anisotropy has no obvious meaning for bound
states, at least for low-lying states for which a semiclassi-
cal description ceases to be valid. Conversely, electrostat-
ic multipoles of the bound-state charge cloud frequently
used to interpret bound state coherences ' diverge in the
Rydberg limit and for continuum manifolds. Their use
would require appropriate renormalization on a case-by-
case basis. For the dipole moment, the renormalization
factor will be given below [Eq. (44)]. The obvious advan-
tage of the multipole set Ap is that all expectation values
remain finite over the whole spectrum owing to finite
eigenvalues of A.

(c) The cusp asymmetry parameter, pi, which plays a
major role in unraveling second-Born effects in ECC pro-
cesses2 ' can be related to the dipole moment of a bound
state. The dipole operator (d) and the Runge-Lenz vector
are related to each other for a given n shell by

cients, pk(n}, into the range of bound states with finite n

Equation (36) and (40) is the desired parametrization of
the cusp cross section in terms of O(4) multipoles. Several
interesting physical implications are worth mentioning.

(a) The DDCS for cusp electron emission can be calcu-
lated by taking the Rydberg limit of certain bound-state
multipoles. An illustrative example will be discussed in
the next section.

(b) Cusp multipoles and Rydberg multipoles possess a
common physical interpretation in terms of multipoles of
the RL vector. According to Eqs. (22) and (40) we have

k

(2k+1}(Ap) . (41)
P

and consequently
3 nd=—
2 ZP

A. (42)

n'
ap ——lim

2 a(n, 0,0,0)
4mZp

(40a) Taking the expectation value for an axially symmetric
matrix yields

2k+1pk= lim
n ~ 2 —5gp

ap(n, II, Ok) / (anp, , 0, 0)0. (40b)

3 n

2 ZP

2

(Ap) . (43)

For later reference we reinark that Eq. (40) together with
the definition of ap(n, II,k, O) for finite n [Eq. (11)] per-
niits a continuation of the "angular distribution" coeffi-

With the aid of Eqs. (20) and (40) [recall that Eq. (20) is
exact for arbitrary n in case k = 1] (d, ) can be expressed
in terms of pi(n) for bound states of principal quantum
number n as
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A cusp skewed to the low-velocity side, P&(n =- ac ) ~ 0, im-

plies a positive dipole moment in Rydberg manifolds, i.e.,
the electron lags behind the projectile as expected. For
n~oo the dipole moment diverges quadratically. As
mentioned above, a renormalized finite dipole moment

can be defined by (d, ) = (d, ) /n (n 1—)'~ . A numerical
application of (44) will be discussed in the next section.

V. THE n DEPENDENCE OF O(4) MULTIPOLES

We investigate the n dependence of the statistical O(4)
multipoles for the electron capture process

H+ +H( is) —+H(n) +H+ (45)

at Up
——2 a.u. using the continuum distorted-wave (CDW)

approximation.
'The CDW approximation has the attractive features

that it treats the distortion in the entrance and exit chan-
nel symmetrically and provides the T matrix element in
analytical form for arbitrary hydrogenic final states
(nlni). Recent investigations have displayed, however,
several conceptually unsatisfactory features of the CDW
approximation. Among these are a "dip" in the differen-
tial capture cross section at the critical angle Hz for Tho-
mas double scattering, an order of magnitude overesti-
mate of the capture cross section into Rydberg states '

with large angular momenta I & 1, and the lack of certain
on-shell portions of the double-scattering contribution.
While the CDW results are not expected to be accurate, its
relatively simple analytical structure permits a systematic
investigation of the n dependence of the density matrix
over a wide range of n Our num. erical results serve pri-
marily illustrative purposes. Nevertheless, many of the
conclusions regarding the observed n systematics are ex-
pected to be valid despite the shortcomings of the CDW
approximation.

Figure 3 depicts the behavior of the three low-order
multipoles oz, P&, and Pz as a function of n (the bind-

ing energy). The threshold values [Eq. (40)] are accord-
ingly given by the points where the extrapolated curves in-

tersect with the ordinate. Higher-order multipoles (k&2)
are generally small for ECC. The convergence as a func-
tion of the number of I substates (or, partial waves in the
continuum) is displayed by indicating partial sums for the
statistical multipoles [Eq. (11)] including angular momen-
tum states up to a certain I value. The convergence is
slower the higher the rank of the multipole, as expected.
From Eqs. (21), (38), and (39) it can be easily seen that the
Oppenheimer n rule for the shell capture cross sec-
tion would correspond to a constant o.o as a function of
the final-state binding energy. The small but finite slope
indicates deviations from an exact n behavior for finite
n which is not surprising at relatively low velocities. The
actual value of the slope might be, in addition, slightly ex-
aggerated by the CD%' approximation since cross sections
for higher I states (and increasing statistical weight) are
generally overestimated. ' The finite value at threshold
indicates, however, that the n rule becomes valid for

asymptotically high n.
The leading anisotropy parameter, P, (n), describing the

forward-backward asymmetry of the charge cloud is re-

markably insensitive with respect to variation in the bind-

ing energy, in full agreement with a smooth behavior of
the density matrix along a Rydberg series. This can be ex-
ploited to determine the dipole moment of a collisionally
formed Rydberg atom for arbitrary n to a very good
degree of approximation by simple interpolation. Equa-
tion (44) gives the dipole moment as a product of a
strongly n dependent but purely geometrical factor
[—n(n 1)' /—(2Z&)] times P&(n), which contains all
the dynamical aspects of the excitation process but is al-
most n independent. For H(n=-100), for instance, the
CDW approximation predicts a value P& =-0.32 and there-
fore a dipole moment of (d, ) =1570 a.u. corresponding
to an electron lagging behind the proton by about 830 A.
Experimental data" indicate that P&(n) and therefore
the dipole moment is even larger. %Rile the CDW ap-
proximation very likely underestimates the value of P&(n),
the weak n dependence and the simple interpolation pro-
cedure should be valid for a more advanced charge
transfer theory like the distorted-wave Born (DWB) ap-
proximation.

The convergence behavior of P2 as a function of includ-
ed I substates displays directly the infiuence of different

0, 3-

0.2-

-0.2-

FIG. 3. Statistical inultiples ciao, P~, and Pz as a function of
n (binding energy of final state} for H+ + H{l s)
~H(n) + H+ ( vp ——2 a.u. ) in CD%' approximation. , sum
over all I states; ———,partial sums.
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dashed line represents experimental data for total bound-
state cross section converted into rr, using Eq. (40) and an
n rule for excited-state cross sections. The agree-
ment between the CD% calculation and the data above
100 keV (vp ——2 a.u.) is reasonably good, while at lower
energies the lack of normalization of the CDW wave

FIG. 7. Monopole term 0, =acro of the cusp cross section as
a function of the projectile energy for ECC: H+ + He
~(H++e )+ He+; , Rgdbro and Andersen (Ref. 44);
Dahl (Ref. 45); ———,Barnett et al. (Ref. 43);,CD%'.

leads to a systematic overestimate.
In Fig. 8 we compare various experimental' '

and theoretical ' results for the dipole P~ for both
continuum-state and bound-state excitation. A direct
quantitative comparison of these seemingly different mea-
surements becomes possible when expressed in terms of
the common expectation value (A, ). We note the good
agreement between the cusp data (n~ ae) of Andersen
et al. and Dahl with bound-state dipole data ( n =3) of
Havener et al. , supporting our conjecture of a weak n

dependence of Pt(n). The experimental data of Meckbach
et a1. ' are in disagreement with a11 other data. The
source of this discrepancy is not yet known. The weak n

dependence over a wide range of projectile velocities is
also displayed by the CDW results for n =3 and n = ae.

While CD% approximation reproduces the vq depen-
dence of data better than the asymptotic second Born (B2)
approximation, ' the magnitude of P((n) is systematically
too small. At higher velocities, the impulse approxima-
tion ' (IA—post form) seems to be in better agreement.
However, since the post form of the IA is valid only for
asymmetric systems with the projectile assumed to pro-
vide the stronger of the two potentials the agreement for
proton-helium scattering might be fortuitous. We note
that in a recent calculation using an extended VPS ap-
proximation, nonvanishing values for P~ have been
found only when the internuclear potential was included.
This is inconsistent with the fact that angle-integral cross
sections as well as coherence parameters should be in-

dependent of the internuclear potential [up to corrections
of the order of (electron mass/nucleus mass)]. The vp

dependence of the quadrupole moment Pz of the cusp
electron distribution as predicted by the CDW approxima-
tion is displayed in Fig. 9. Experimental data for compar-
ison are presently not available, except for the observa-
tion that for other systems Pz is relatively small in quali-
tative agreement with Fig. 9.

-0.8 —.07$

-O.I+-

-0.1

0.2

0.'l

3 4 5 6 8
Vp( CLU. )

FIG. 8. Dipole term P& for H+ + He~H(n) + He+ as a
function of projectile velocity; , Havener et al. (Ref. 34)
(n =3); V, Andersen et al. (Ref. 36) ( n = 00 ); 5, Dahl (Ref. 45)
(n =ac); +, Meckbach et al. (Ref. 12) (n =(x));
asymptotic 8& approximation (Ref. 21) (n =oo); . , IA
(Ref. 21) (n =an); ———,CD% (Ref. 35) (n=3);
CD& ( n = oo ).

3 0 S 6
vp(a. U.)

FIG. 9. Quadrupole term P2 for H+ + He~(H+
+ e )+ He+ as a function of the projectile velocity in CD%'

approximation.
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VII. CQNCI. UDING REMARKS

We have introduced a unified description of anisotro-
pies for near-threshold excitation in a Coulomb field in
terms of statistical O(4) multipoles. It has been shown
that a common set of parameters, the multipoles of the
Runge-Lenz vector A, can represent both the multipoles
of the velocity distribution in the low-energy continuum
and of the charge cloud distribution in Rydberg mani-
folds. Calculations employing the CDW approximation
have displayed a remarkable smooth n dependence of
these statistical multipoles.

Several future applications may be envisioned: Experi-
mental data and the CD%' approximation show a large
ECC cusp forward-backward asymmetry. Smooth extra-
polation of Pi predicts a large dipole moment in Rydberg
orbits produced by electron capture. This dipole moment
should be experimentally observable as a directional
dependence in the field ionization of Rydberg electrons
produced in charge transfer collisions.

In the medium —to—high-energy range coupled-channel
calculations are most reliable. They are, however, diffi-
cult to apply to cusp electron emission, because of in-
herent difficulties, to adequately represent the near-
threshold continuum. The smooth n dependence of the
O(4) multipoles suggests a practical method to circumvent
this problem. Calculation of statistical multipoles for a
few medium n states (above the most probable n shell)
within a coupled-channel code and smooth extrapolation
to threshold should suffice to reliably estimate the cusp

cross section.
In this paper we have applied the description of

coherent Rydberg-state excitation in terms of O(4) vari-
ables to hydrogen ~hose nonrelativistic Hamiltonian
possesses the O(4) supersymmetry. Formally, this
description may be generalized to nonhydrogenic systems.
Since the O(4) variables form a complete set for the n

shell density matrix, this set can also be used to describe
coherent one-electron excitation in nonhydrogenic systems
(e.g. , alkali atoms). However, its specific intuitive signifi-
cance compared to any other complete basis sets depends
on the Hamiltonian of the atomic subsystem under inves-
tigation. For Rydberg series with small but finite quan-
tum defects or relativistic corrections, A is no longer a
constant of motion but precesses with frequencies given

by the energy splittings within an n shell. The present
description of the collisionally prepared density matrix is
therefore expected to be meaningful as long as the col-
lision time is short compared with the inverse precession
frequency.
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