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The physics of elementary atoms, i.e., Coulomb bound states such as positronium, pionium, etc. ,
is briefly presented. The formulas for cross sections of elementary-atom interactions vrith an exter-
nal field are evaluated in the nonrelativistic and Born approximations. The numerical calculations
of the total, elastic, and excitation cross sections are performed for seven elementary atoms and five

typical targets. Atomic form factors are discussed in detail.

I. INTRODUCTION

The history of elementary atoms, i.e., the Coulomb
bound states of two elementary particles, ' started soon
after the discovery of the positron. In 1934, Mohorovicic
suggested the existence of the bound state of an electron
and a positron. Positronium was experimentally found by
Deutsch, who studied positron annihilation in gases. The
existence of other elementary atoms was more or less ob-
vious; however, the observation of the atoms of unstable
particles was very difficult. Nemenov showed that atom
generation occurred in particle decays. For example, the
kaon decay E ~trav may provide an A „atom. (A,b
denotes the elementary atom of positively charged particle
a and negatively charged particle b. The atom of particle
and antiparticle c and c is denoted by A2, .) Indeed, in
1976 the A~ atom was discovered in the study of kaon
decays. Eight years later the ultrarelativistic positronium
(with a Lorentz y factor of 10~—104) coming from the
processes m ~e+e y was detected. ' Then a very in-
teresting proposition was made to check the theory of re-
lativity at such large gamma factors. It was suggesteds
that measurements of the atoms such as A2„and Att
could provide the unique information on meson-meson in-
teractions at low energy. However, it was concluded in
Ref. 8 that the registration of such atoms was beyond ex-
perimental possibilities. Recently the problem has been
reviewed. Nemenov has argued that high-energy
proton-proton or proton-nucleus collisions are the effec-
tive sources of elementary hadron atoms. Mesons abun-
dantly produced in the collisions may form the atoms due
to final-state interactions. It has been shown that the
detection of these atoms is possible at currently available
facilities.

For future experiments, knowledge of the interaction
cross sections of elementary atoms with matter is needed.
On the other hand, the problem is of theoretical interest.
Nemenov has observed' that the destruction probability
of ultrarelativistic positronium in matter may differ from
the well-known exponential law since positronium col-
lisions with atoms of matter are not independent. The
point is that for a sufficiently fast elementary atom the
characteristic time of its internal motion can be much
longer than the time interval between successive collisions.
Superpenetrability of ultrarelativistic positronium has

been argued. ' Lyuboshits and Podgoretsky have shown"
that for targets thick when compared with the mean free
path, the probability for observing the positronium in the
bound state is inversely proportional to the target thick-
ness and can be greater by some orders of magnitude than
that coming from the exponential formula.

Dealing with elementary atoms coming from the decays
of relativistic particles, we are faced with the well-known
difficulty of the quantum field theory of the proper rela-
tivistic treatment of bound states. It should be stressed
that this difficulty is of practical importance here, and
different approaches can be confronted with the experi-
mentally measurable process.

There are, to our knowledge, three papers' ' where
the cross sections for elementary atom interactions with
an external atomic field have been calculated. In one pa-
per, ' the old formulas of Bethe and Manlier were used to
study the interaction of A „. However, the author' has
not noticed that these formulas, evaluated for the hydro-
gen atom, have been valid under the assumption that one
particle of the atom has been much heavier than the other.
This is, of course, not the case for the A „atom. There-
fore, the results of the paper' are incorrect. Dulian, Kot-
zinian, and Faustov' have employed the so-called pseudo-
potential technique for calculation of the dissociation
cross section of relativistic positronium. As Dulian and
Kotzinian have observed in their next paper, ' the results
of Ref. 13 were erroneous since the cross section was
dependent on positronium helicity. The cross section cal-
culated for zero helicity has been claimed to be correct
and to be valid for all helicity states. This paper, ' how-
ever, needs some comments. In this' paper the quantiza-
tion axis of an atom orbital momentum has been chosen
in a very unfortunate way. Usually this axis coincides
with the momentum transfer vector. Then, there is a very
simple selection rule. The transitions are allowed when
the third magnetic quantum number m remains un-
changed in the collision (see Appendix). To obtain the re-
sults independent of the choice of quantization axis, one
has to summarize the transitions of different magnetic
quantum numbers. However, if the quantization axis is
chosen in the standard way the summation is trivial since
there is only one nonvanishing transition probability. In
the paper' the quantization axis is chosen along the beam
axis. In such a case there is no simple selection rule, there
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are complicated expressions for atomic form factors, and
one has to summarize a few cross sections to obtain the
result independent of the direction of the quantization
axis. ' Besides the problem presented above, the cross sec-
tions called break-up cross sections in Ref. 14 are, in fact,
equal to the total cross sections. The integration over the
relative momentum of the components of the ionized
atom is equivalent to the summation over the complete set
of wave functions if the plane waves are used for descrip-
tion of the ionized atom.

We intend to study systematically the whole problem of
elementary-atom interaction with matter. In this paper
we perform nonrelativistic calculations in the Born ap-
proximation. We discuss the total cross sections and the
transitions to the discrete states. Dealing with nonrela-
tivistic approximation, we want to elucidate peculiarities
of the problem and to make the basis for relativistic calcu-
lations.

II. GENERAL FORMULAS

The matrix element for the atom interaction with an
external field U(r) in the Born approximation reads

Sjf— ie2ir6(—E; Ef ) I d—Kid f2'�(ri,rz)

X [U(r, ) —U(r2)]ij;(r;, r2), (1)

where E; and EI are the energies of an initial and final
state, and g; and gI describe the initial and final state of
the atom. We use units where c =%=1 and e equals the
fine-structure constant e =- „', . In the nonrelativistic ap-
proximation the atom's wave functions can be expressed
as follows:

The atomic form factors FI are discussed in detail in the
Appendix. The cross section of the atom excitation from
the state denoted by the quantum numbers ( n, t, m) to the
(n', I', m') state is

d~".i' =, I
U(q)

I

'
I
F."i' (gq} F—."i ™(kq}

I

'q dq
2&U

(3)

where v is the initial atom velocity in the rest system of
the external field, q is the momentum transfer, and

q:—
I q I

. The values of the minimal and maximal
momentum transfer are the following (P; =—

I
P;

I
):

q;„=P; [P—+2M(e„—e„)]'~',

q,„=P;+[P;+2M(e„—e„)]'~,
where e„,e„are the binding energies of the initial and fi-
nal atom states. When mi —m2, formula (3) can be
rewritten in the form

I —I'

~".i' =, I
U(q) I'IF."i' (-,'q} I'q dq

7TU

because

( —q) = ( —1)' ' F„"i„(q).

It is seen that the cross section differs from zero (in the
Born approximation) when 1 —I' is an odd number. In
other words, the interaction occurs when parities of the
initial and final states differ. ' In particular, the posi-
tronium does not interact elastically.

The cross section of ionization of the atom initially be-

ing in the (n, l, m) state reads

—iP
g

R
P;&(r„rz)= ~ e ' p; J(r), (2)

«'7 =
(2m) v

where P;I is the initial (final) atom momentuin and
V '~ is the normalization coefficient related to the
volume of the system. The plane wave in the formula (2)
describes the motion of a center of mass of the atom while

g; I is the wave (Coulomb) function of the relative motion
of atom components;

7Tl ir]+Pl zlzR= r=r) —rz,

where m& z and M are the masses of the atom com-
ponents and the atom as a whole. It is assumed that
m ~+mz ——M because of a small value of binding energy
of the atom. Substituting (2) into (1},one finds, after sim-

ple operations,
e

S,/ = — 2m.5(E, —EI ) U(q—)[F;&(gq .}—F,I(gq) ],

q=PI —P;, g= &/mM, i) = —m2/M, g —i) =1,

U(q) = f d r e'~'U(r),

F&(q)= I d e'~'qy(r)y;(r} .

F I (rIq) —F.'i (4 )
I
'q dq d 's»

where p is the momentum of the atom components in the
atom's center of mass. For the ionization process the for-
mulas for q;„and q,„coincide with (4), however, e„
has to be substituted for by p /2p, where p is the reduced
mass of the atom.

The applicability of the Born approximation has been
widely studied in the past; see, e.g. , Ref. 17. Here we use
the practical and safe criterion that

pz

To calculate the cross section, we have to integrate the
formulas (3) and (5) with respect to the momentum
transfer. Because of the condition (6),

—E'
N llq;„—:— ~0 as P;~0(. ,

q,„=2P; oo as P; oc,

so the lower limit of the integral can be shifted to zero,
while the upper limit can be shifted to infinity, since the
function under the integral strongly decreases when q goes
to infinity. Then all cross sections found in the Born ap-
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proximation can be written in the form

where o is the cross section independent of initial energy.
It is well known that the form factors satisfy the fol-

lowing sum rule:

where the summation is performed over the complete set
of final states. Considerations, which are very similar to
those leading to Eq. (8), provide the sum rule for elemen-

tary atoms:

~
F~f (rlq) —F'f (gq) ~

=2—2 ReF;;((g—i))q)
f

=2—2E;;(q) .

Let us observe that the result of the summation over the
complete set of states is of the same form for all elementa-

ry atoms (does not depend on g and r) ). With the help of
the sum rule (9) one can calculate the total cross section,
where the incident energy dependence is that of the for-
mula (7),

(10)

III. NUMERICAL RESULTS

To calculate the integrated cross sections, we have used
two forms of the electrostatic potential.

(1) The screened Coulomb potential"

U ( )
4rrZe

q

where Ze is the charge of the target-atom nucleus and the
screening length parameter is found on the basis of
Thomas-Fermi model,

b, '=m, e Z'

where m, is the electron mass.
(2) The so-called Thomas-Fermi-Molier potential'

3

U(q)=4nZe g 2,
i=i q +Pi

with

m, b;

121

bj ——6 0, b2 ——1.2, b3 —0 3,
a~ ——0.10, a2 ——0.55, a3 ——0.35 .

Both forms of the potential have been used to check sensi-
tivity of the results, however, the second potential is, of
course, much more realistic.

The values of the cross sections o found by numerical
integration of the formulas (3} and (10) are collected in
Tables I—V. Seven elementary atoms and five target
atoms of matter have been considered. The respective
form factors are given in the Appendix. The upper num-
bers relate to the screened Coulomb potential, and the
lower ones to the Thomas-Fermi-Molier potential. The
zeros mean that the cross sections vanish in the Born ap-
proximation.

Let us discuss the content of the tables. It is seen that
the results obtained for both potentials differ significantly
for positronium while there are very small differences for
pionium. The reason is the following. Both potentials are
very similar for small (when compared with the screening
length} distances from a nucleus, where the potentials are
close to Coulombic. At large distances the potentials
differ significantly. Because of a small value of the posi-
tronium binding energy (6.8 eV), collisions with large
impact-parameter values contribute to the cross sections.
Such collisions give no contribution for the interaction of
pionium, the binding energy of which is 1.9 keV. Because

TABLE I. a (in cm ) with C as the target atom. .

-tot
& 1OO

-el
O 1OO

—200& 100

—210& 1OO

—310
1OO

—tot+ 210

—e1& 210

3.4x10-"
4.6x 10-"
0
0
0
Q

2.0X10-"
6 1x10—2o

0
0
5.4x10-"
1.Sx 10-"
8.3x10-"
8.0x10-"
0
0

2.6X10-"
3.0x 10-"
1.0X10-"
9.9x10-"
2.2X10-"
4.2x 10
5.2X10-"
1.6x 'JQ —2o

S.6x10-"
1.0x10-"
3.7x10-"
3.8x10 "
8.5 x10-"
7.5x 10-"
4.7x 10-"
4.1x10-"

2.6x 10-"
3.0x10-"
1.0X 10-"
9.9X10-"
2.2X 10
4.2X10-"
5.1X10 "
1.6x 10-"
5.6x10-"
1.0x 10
3.7x 10-"
3.8x10-"
8.5 x10-"
7.5x1.0 "
4.7x 10-"
4.1x 10-"

5.6X10-"
5.1X10-"
0
0
0
0
2.8 x 10-"
2.5 x 10-"
0
0
4 7x10
4.3x 10-"
8.0x10-"
6.5x10-"
0
0

4.4x 10-"
4.0x 10-"
7.6X 10-"
7.5x 10-"
1.8 x10-"
1.8X10-"
2.2X10-"
2 Qx 10—22

3.7x10-"
3.7x10-"
3.9x 10-"
3.4x10-"
6.3 x10-"
5 2X1Q—21

2.4x10-"
2.3 x10-"

3.3 x10-"
3.1 x 1Q

0
0
0
0
1.6X10-"
1.5 x 10-"
0
0
2.8 X 10-"
2.6x10 "
4.7x10-"
4.Ox 10-"
0
0

1.4X 10—2~

1.3x10-"
3.4x 10-'4
3.4x10-"
7.4x 10-"
7.3X10 2'

6.6x10-"
6.2x10-"
1.5 x 10-"
1.5 X10-"
1.1 x 10-"
1.1x10 2'

2.0X10-"
1.8 x10-"

X
9.9x10-"
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TABLE II. cr {in cm ) with Al as the target atom.

-tot
1OO

—el
O 100

—200& 100

-210O'
1OO

—3000 100

—310& 1OO

tot
O'210

1.0x10-"
1.5x 10-"
0
0
0
0
4.0x10-"
1.5 x10-"
0
0
1.1x10-"
3.9X10-"
2.3x 10-"
2.2x 10-"
0
0

8.2x 10-"
l.ox 10-"
3.4X 10-"
3.6x 10-"
4.8 X 10-"
1.2 x 10-"
1.1X10-"
4.0X10-"
1.3 x 10-"
3.0X10-"
8 3X10
1.0x 10-"
2.4x 10-"
2.2x10-"
1 3X10-"
1.2X 10-"

8.2x 10-"
1.0x10-"
3.4X10-"
36x10 "
4.8 X10-"
1.2X10 '0

1.0X10-"
3 9x10
1.3 X10-"
3.0x 10-"
8.2x10 "
1.0X10-"
2.4x10-"
2.2x 10-"
1.3x 10-"
1.2 x10-"

2.5 X 10-"
2.2X 10-"
0
0
0
0
1.2X10-"
1.1X10-"
0
0
2.1X10-"
1.9X 10-"
3.6x10-"
2 8X10 2o

0
0

2.0X10-"
1.8 X10-"
3.5x10-"
3 5X10
8.3 x 10-"
8.2X10-"
9.6X10-"
8.6x10-"
1.8x 10-"
1.7x10-"
1.8x10-"
1.5 X 10-"
2.8 x10-"
2.2x10-"
1.1X 10-"
1.1 x 10

1.5 x 10-"
1.4x10-"
0
0
0
0
7.4X 10
6.7x 10-"
0
0
1.3x10-"
1.2x 10-"
2. 1 x 10-"
1.7x 10-"
0
0

6.5 x 10
6.1X10-"
1.6x 10-"
1.6X10-"
3.5 x 10-'4
3.4X10-"
3.0X10-"
2.8X10-"
7.0X10-"
7.0X 10-"
5.3x 10-"
4.8 X10-"
9.3 X10-"
8 1 X10—2'

4.7X10-"
4.6x10-"

TABLE III. o (in cm ) with Cu as the target atom.

—tot& 1OO

el& 1OO

-210
O 1OO

300
O 1OO

—310
O 1OO

-tot
O 210

-el0 21O

3.1X10-"
4.7x10-"
0
0
0
0
7.7 x10-"
3.8 x 10
0
0
2.2X 10
9 9X10-"
6.7x10 "
6.4x10-"
0
0

2.7X10-"
3.5 X10-"
1.2x10-"
1.3 x 10-"
1.0x10-"
3.4X 10-"
2.1X10-"
9.9 X 10-"
2.8 X10-"
8.5 x 10
1.8 x 10-"
2.6x10-"
6.9x10-"
6.5 x 10-"
3.7 X10-"
3.5 x 10-"

2.6x 10
3.4x10-"
1.2 X10-"
1.3x 10-"
1.0x 10-"
3.4x 10-"
2.1 x 10
9.8 x10-"
2.8 x10-"
8.6x10-"
1.8 x10-"
2.5xlo "
6.9 x 10
6.5x 10-"
3.7x10-"
3 6X10-"

1.1x10-"
1.0x 10
0
0
0
0
5.4X10-"
4.9x10 "
0
0
9.4X 10-"
8.5 X10-"
1.6x 10-"
1.2X 10-"
0
0

9.0x10-"
8.2 X 10-"
1.7 X10-"
1,8 X10-"
4.1x10 "
4.0x10-"
4.4x 10-"
3.9x10-"
8.7X10 "
8.5 X10-"
8.3 x10-"
6.8x10-"
1.3 x 10
9.9x10-"
5.4X 10-"
5 2x10

7.0X10-"
6.4X10-"
0
0
0
0
3.4X10-"
3.1x 10-"
0
0
5 9X 10—22

5 3X10
1.0x 10
7.8x10-"
0
0

3.2X 10-"
2.9X10-"
8.0X10 "
8.0x10-"
1.7 X10-"
1.7 X10-"
1.5x10-"
1.3 X10-"
3.5 x10-"
3.5 x10-"
2.6X 10-"
2.3X 10-"
4.5 X10-"
3.8X10-"
2.3 x 10—2'

2.3 x 10-"

TABLE IV. o {in cm ) with Ag as the target atom.

—tot
10O

-el0 10O

-2000 100

—300
O 1OO

—310
O 1OO

—tot
O 210

-el
O 210

5.9x10-"
94x10 's

0
0
0
0
1.1 x 10-"
6.3 X10-"
0
0
3 3X10-"
1.7x 10-"
1,3 x 10-"
1.2 X 10-17

0
0

5.3 X10-"
7.2x10 "
2.4x 10-"
2.8x 10-"
1.6 x 10-"
6.1X10 "
3.2X 10
1 7x10
4 3x10
1.6 X 10-20

2.8 x 10-"
4,4x 10-"
1.3 x 10-"
1.2 x 10-"
6.8X 10-"
6.8 x 10-"

5.3 X10-"
7.2x 10-"
24x10 "
2.8 x 10-"
1.6x 10-"
6.1X10-"
3.1 x 10-"
1.6x 10-"
4.3 x 10-"
1.6x 10-"
2.7 x 10-"
4.3X10 '0

1.3X10 "
1.2 x 10-"
6.8 x 10-"
6.7 x 10-"

2.8x 10-"
2.5 x 10
0
0
0
0
1.3x 10
1.2x 10-"
0
0
2.3 x 10-"
2.1 x 10-"
3.9X 10-"
2.9x 10-"
0
0

2.2 X10-"
2.0x 10
4.6X10-"
4.6x 10-"
1 l X10
l.lx10 "
1.1x 10
9.7 x 10-"
2.3 x 10-'4
2.2 x 10-'4
2.1 X 10-"
1.7 x 10-"
3.2x 10-"
2.4x 10-"
1.4x 10-"
1.3 x 10-"

1.8 x 10-"
1.6X10-"
0
0
0
0
8.5 x10-"
7.6x 10—"
0
0
1.5 x 10-"
1.3xl0 "
2.5x lo-"
1.9x 10-"
0
0

8.1X10 2'

7.4X10-"
2.1X 10-"
2.1x10-"
4.5 X10-"
4.5 X 10-"
3 7X 10—21

3.3x10 "
9.2 X 10-'4
9.1 x 10-'4
6.7X10-"
5.7 x 10—"
1.2x 10-"
9 4X10 20

6.1x 10-"
5.9x 10-"
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TABLE V. o (in cm ) with Pb as the target atom.

-elo ioo

200
ioo

210
ioo

300

310
4 100

-tot0 210

-e1
& 210

1.3 x 10-"
2.1x 10-"
0
0
0
0
1.7x 1O-"
1.1 x 10-"
0
0
5.0x 10-~
3.0x 10-"
2.6xlo "
2.5xlo "
0
0

1-2x 10
1.7 x 10-"
5.3 x 10-"
6.7X 10-"
2.5 X 10-"
1.2x 1O-"
5.3xl0 "
2.9x 1O-"
6.9X 10-"
3.0x 10-~
4 5X 10-2o

7.8x 10-"
2.7X 10-"
2.6x 10-"
1.4x 10
1.4X 10-"

1.2 x 10
1.6X 10-"
5.3x 1O-"
6.7x lo-"
2.5 x 10-"
1.2X 1O-"
49X10 2o

2.9X 10-"
6.8x 10-"
3.OX 1O-"
4.4X 10
7.7X 10-"
2.7X10-"
2.6x 10-"
1.4x 10-"
1.4xlo "

7.7x 10-"
7.2x10-"
0
0
0
0
3.6X 10-"
3.3 X 10
0
0
6.4x 1O-"
5.9x 10-"
1.1x 10-"
8.0X 10
0
0

6.3X lo-"
5.8X10 "
1.4X 10
1.4x 10-"
3.3X 10-"
3.2xlo "
3.0X 10 2o

2.7x 1O-"
6.9X 10-"
6.7x 10-'4
6.0X10-"
4.8x 10-"
8.9X 10
6.6X 1O-"
4.3 x 10-"
4.0x 10-"

5.0x 10-"
4.5 X10-"
0
0
0
0
2.4x 10-"
2.2x 1O-"
0
0
4.2x 10-"
3.8x 10-"
7.1 x 1O-"
5.3x lo-"
0
0

2.4x 10—2o

2.1X 10
6.4x 10
6.3x 10-"
1.4x10-"
1.4x 10-"
1.1x 10-"
9.6X 10-"
2.8xlo 2'

2 8X 10—23

2.Ox 1O-"
1.7x 10-"
3 4x 10-"
2.7x 10-"
1.9x 10-"
1.8x 10

the Bohr radius decreases when the atom's reduced mass
increases, the cross sections of positronium are much
larger than these of pionium.

One observes that the most probable transitions from
the ground state are those to the 2p states. More general-
ly, the most important are the transitions to the p states.
This property is connected with the behavior of the atom-
ic form factors at small (when compared with the inverse
Bohr radius) momentum transfer. If one expands the in-
elastic form factor in the series of powers of the momen-
tum transfer, the linear term occurs for the transition to
the p states only. Therefore, the excitations to the p states
can proceed in collisions of very small momentum
transfer. Because the transitions from the ground state to
the 2p state are the most important, we have calculated
the elastic and total cross sections when the atom's initial
state coincides with the 2p state. It is seen that the ratio
of the total cross sections for ls and 2p states essentially
depends on the atom's reduced mass. This ratio is about
0.5 for positronium and less than 0.1 for pionium.

Our last remark concerns the contribution of the excita-
tion cross sections to the total cross sections. It is seen
that for the atoms of small reduced mass, the ionization
cross section gives the dominant contribution to the total
cross section, while for atoms of heavier components the
excitation cross sections are comparable with the total
cross sections.

IV. DISCUSSION AND CONCLUSIONS

Let us discuss the results presented in this paper. The
calculated cross sections have been found in the nonrela-
tivistic approximation. However, the cross sections listed
in Tables I—V coincide with those found in the relativistic
approach for the atoms with U =1, if one neglects the
magnetic part of interaction. In fact, the electric part of
interaction gives the dominant contribution to the cross
sections.

In our calculations the target has been represented by
the external static potential. This means that target recoil
effects have been neglected. On the other hand, the

target-atom excitations have not been taken into account.
For sufficiently heavy targets the cross sections for the
processes associated with the target-atom excitation are
much smaller than the cross sections without the excita-
tion. The point is that the probability for the target-atom
excitation is, loosely speaking, proportional to Z, while
the interaction without excitation (coherent process) is
proportional to Z . For light targets the incoherent pro-
cesses can be important, particularly for the elementary
atoms with small reduced mass. The total cross section
for the positronium interaction with a carbon target is 2
times greater than that calculated in this paper if one
takes into account the carbon target excitations. '

The processes of the elementary-atom interaction with
an external field associated with photon radiation have
been considered in our paper. It has been shown that
the cross sections for such processes are smaller by at least
5 orders of magnitude than those of the analogous pro-
cesses without radiation.

We conclude as follows. The calculations presented in
this paper provide a realistic basis for the estimation of
elementary-atom mean free paths in matter, however, the
extension of these calculations and some improvements
are desirable.
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APPENDIX: ATOMIC FORM FACTORS

Let us calculate the form factor

Fioo(q)= J d r e' 'y„'~ (r)pirN(r), (A1)

where qr&oo and p„i are the wave functions of the hydro-
genlike atom in the ground state and the excited state
denoted by the quantum numbers (n, l,m) We choose .the
quantization axis of the atom orbital momentum along
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the momentum transfer vector. Then, the integral (Al) is
nonzero for m =0 only. The wave functions present in

(Al) are the following: '

where jl+, /2 is the Bessel function and 5 is the Kroneck-
er symbol. Integration over the polar angle has been made
with the help of the formula

%100(r ) f dx e Pl(x) =
1/2

™l2JI+ '/2
' 1/2

1 (n +1)!(21+ 1)
n'+'(21 + 1)! ~(n —1 —1)!

pl+1
F lilt@ ( ) (30

n + (21+1)!

' 1/2
2m(21 +1)(n +1)!

q (n —1 —1)!

Xeils/2 f d„ I+3/2e —r(n+I)/nj

XF( n+—1+1,21 +2, 2I In ), (A3)

X (2r)ie '/"F( n—+ I +1,21 +2,2r/'n)

xP, (cosa),

where F is the hypergeornetric confluent function and Pl
is the Legendre polynomial. The wave functions and the
form factors calculated in this Appendix are written in
atomic units, where the Bohr radius of the atom equals
unity. Substituting (A2) in (Al) and performing integra-
tion with respect to the solid angle, one finds

Then we use the integral representation of the hyper-
geometric confluent function '

z 1 r(1 —&)r(y)
2~I r(y —~)

X c te" —t '1—t~- -', (A4)

Finally, we make the contour integration using the Cau-
chy formula. In this way one gets

where I is the Euler gamma function. For y a positive
integer number, C is the contour circulating the points
t =0 and 1. Substituting (A4) in (A3), one can perform
integration with respect to variable r using the formula

2p(2c)"I'(v+ —,
'

)
dx x "+'e l'"j „(cx)= 2 2 +3/2vm(p +c )"+

Film( ) ( 1)n —I —lgo eila/222!+3nl+ I(1+1)i100 q
' 1/2

21+1 I
d" ' ' (n —2x+1)(1—x)"+'

(n +1)!(n 1 1)! d nx—I —I [(n 2x + 1)2+n2q2]1+2
(A5)

Similar calculations of the form factor have been per-
formed in Ref. 14, where the quantization axis has been
chosen along the beam axis.

Another analytical formula for the atom form factor
was found many years ago by Massey and Mohr. Their
result is also not very good for practical usage since the
form factor (A 1) is expressed through the Gegenbauer po-
lynomials.

In Table VI we give explicit formulas for ten form fac-
tors of the lowest energy states.

Fnlm( ) gO ilw/2221 + 3 (1 +
(21 +1)!n'+

' 1/2
(21 + 1)(n +1)

(n —I —1)!
—l —4 (A6)

From the formula (A5) it is easy to obtain the form fac-
tor in the limit q~ 00 (momentum transfer much greater
than the inverse Bohr radius),

TABLE VI. Form factors E~oo (q).

16
(4+q2)2

2
2&7/z

(9+4q 2)3
4 7/p(16+27q )q

(16+9q )

2" (768q~+1056q +375)q
3 {25+16q')'

i 215/23
(9+4q )

~ Ii/~ 3 (16+27q')q
(16+9q )

i2"5'/'23 (256q'+352q +125)
(25+ 16q')'

2

{16+9q )

2)g (3+4q )q

{25+ 16q')'

i 21851//2

(25+16q )
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In contrast to formula (A5), formula (A6) allows a practi-
cal usage.

It is much more complicated to find the form factor in
the limit q~0. This limit, which is often called a dipole
approximation, can be realized by substituting the Fourier
multiplier in formula (Al) by 1+iq r . The master calcu-
lations of the atomic form factors were performed by
Bethe, who found a simple analytical formula. Howev-

er, the atom states were described by parabolic quantum
numbers. Bethe also found the form-factor module
squared summarized over the parabolic quantum numbers
ni and n2 at fixed main quantum number n B.ecause
this sumination is equivalent to that over the orbital quan-
tum number I, one can write

Let us now observe that the form factor (AS) is nonzero
for l = 1 only because of orthogonality of the Legendre
polynomials. Thus, only the form factor with l = 1 con-
tributes to the sum in (A7). Finally, comparing formulas
(A7) and (A5), one obtains the form factor in the sinall
momentum transfer limit

3i/2 ( + 1)a+5/2

To complete our discussion we give the formulas for
the form factor F2io and the form factor which occurs in
the considerations of atom ionization processes,

I=-@+1

PS ( 1)zn —5

(A7)

2
F210( )210 q

(1 2)4+g

Ffoo(q) =
l 1+(q—p)'I'

(AS)

where n & 1. Except for Fioo, the form factors in the di-
pole approximation are

Floo('q) t f d r qrf' I (r)f'loo(r)+0(e

The ionized atom has been described by a plane-wave
function. p is the atom component momentum in the
center of mass of the atom.

'Permanent address: High Energy Department, Institute for
Nuclear Studies, Hoza 69, 00-681 Warsaw, Poland.

'%'e do not take into account a hydrogen atom. Later on we
also do not consider the atom of a muon and a proton. The
interaction with matter of very slow positronium which is
formed when a positron from a P+ decay is slowed down in a
gas is also not discussed. For all these subjects there is a very
extensive literature.
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