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The spin-adapted reduced Hamiltonian theory has been applied to calculate the energies and the
first- and second-order reduced density matrices for the isoelectronic sequence of beryllium up to ar-
gon in the singlet symmetry. The projection on the spin symmetry has been performed in two ways:

by considering the space spanned by the eigenfunctions of S2and §, or by considering the space

spanned by the §z eigenfunctions. Several approximations for calculating the reduced density ma-
trices are analyzed and discussed in detail. The results obtained with two of the approximations
considered are highly encouraging when compared both to experimental data and to the total energy
values obtained with the full configuration-interaction method.

I. INTRODUCTION

In a recent series of papers (referred to here as I-III,
Refs. 1—3) one of us has reported the spin-adapted re-
duced Hamiltonian (SRH) theory. The eigenvectors of the
SRH matrix generate a set of matricial projectors which
yield a good approximation of the reduced density matrix
(RDM). The preliminary calculations which served to
check the value of these approximations were performed
on the beryllium atom. Here we describe the results ob-
tained for 14 isoelectronic ions of the beryllium atom.
These and other calculations which are being carried out
in our laboratory are needed in order to test the reliability

of the approximations described in IIIL

Another aim of the present paper is to study the influ-
ence on the results of considering an m-electron subspace
of mixed spin symmetry and one of pure spin symmetry.
Indeed, the spin adaptation of the SRH can be performed
either in the subspace spanned by the eigenfunctions of
the S$2 and §, operators for a given symmetry or in the
space spanned by the eigenfunctions of just the 3‘, opera-
tor. In order to distinguish them, the labels S 2,§,) or
(§,) will point out the procedure considered. The prelimi-
nary results reported in III were limited to the (S 2,§,)
case for the singlet symmetry. In this paper we have ex-

tended the calculations to the (§,) case (for the same sym-

TABLE L. Energies of the ground state of the Be isoelectronic sequence (a.u.).

Relativistic
Ion IQG (53,8,) IQG (5,) correction Expt.®
Bel —14.6697 —14.6749 —0.0022 —14.6685
B1I —24.3586 —24.3618 —0.0062 —24.3533
ClIll —36.5257 —36.5274 —0.0141 —36.5458
N1V —51.1958 —51.1964 —0.0280 —51.2463
ov —68.3641 —68.3639 —0.0503 —68.4552
FVI — 88.0466 —88.0363 —0.0838 —88.1756
Ne VII —110.2229 —110.2124 —0.1319 —110.4096
Na VIII —134.9003 —134.8900 —0.1983 —135.1602
MgIX —162.0771 —162.0665 —0.2871 —162.4323
AlX —191.7531 —191.7418 —0.4028 —192.2298
Si XI —223.9302 —223.9186 —0.5505 —224.5568
P XI1I —258.6069 —258.5948 —0.7355 —259.4189
S X111 —295.7875 —295.7765 —0.9637 —296.8211
CIX1v —335.4636 —335.4516 —1.2413 —336.7702
ArXv —377.6410 —377.6287 —1.5750 —379.2497
2The conversion factor used was 1 eV=0.036750272 a.u. consistent the value

R =1.097373x10° cm~! and the data given in Ref. 12.
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TABLE II. Total energies obtained for the three lowest states using different approximations (a.u.).

Ion State® FCI HPH' (§38,) HPH' (§,) IQP SCF®

[1212) —14.5872 —14.6081 —14.6063 —14.5632 —14.5724
Bel |1213) —14.3014 —14.3472 —14.3483 —14.3168

[1313) —13.9851 —13.9776 —13.9854 —13.9701

|1212) —24.2484 —24.2775 —24.2737 —24.2247 —24.2376
BII [1213) —23.3397 —23.3632 —23.3621 —23.3888

[1313) —22.5253 —22.5067 —22.5138 —22.6088

|1212) —36.4149 —36.4441 —36.4398 —36.3908 —36.4085
Ci1 |1213) —34.8018 —34.8131 —34.8102 —34.8710

[1313) —33.3162 —33.2974 —33.3043 —33.2988

[1212) —51.0858 —51.1130 —51.1083 —51.0590 —51.0823
NIV |1213) —48.5165 —48.5167 —48.5123 —48.6081

[1313) —46.1177 —46.0991 —46.1057 —46.0998

[1212) —68.2520 —68.2809 —68.2758 —68.2263 —68.2577
ov [1273) —64.5337 —64.5265 —64.5211 —64.6474

[1373) —61.0227 —61.0039 —61.0104 —61.0042

[1212) —87.9479 —87.9577 —87.9460 —87.8805 —87.9340
FVI [1213) —75.2689 —75.1803 —75.2777 —75.4347

|1313) —62.5764 —62.5505 —62.5749 —62.5578

[1212) —110.1248 —110.1342 —110.1223 —110.0571 —110.1110
Ne VIl [1273) —94.2570 —94.1680 —94.2696 —94.4500

[1313) —78.4042 —78.3766 —78.4008 —78.3851

[1212) —134.8022 —134.8118 —134.8001 —134.7357 —134.7884
Na vIII [1213) —115.5444 —115.4473 —115.5107 —115.7645

[1313) —96.3372 —96.3099 —96.3332 —96.3178

[1272) —161.9798 —161.9888 —161.9769 —161.9124 —161.9661
Mg IX [1273) —138.6710 —138.5805 —138.6808 —138.9181

[1313) —115.4321 —115.4019 —115.4267 —115.4124

[1272) —191.6576 —191.6650 —191.6524 —191.5867 —191.6440
AlX [1213) —163.5592 —163.5104 —163.8435 —163.8332

[1313) —135.5338 —135.4941 —135.5268 —135.5135

[1272) —223.8356 —223.8422 —223.8294 —223.7632 —223.8221
SixXI [1273) —190.8604 —190.8334 —191.3134 —191.1614

|1313) —157.9752 —157.9285 —157.9674 —157.9545

[1272) —258.5138 —258.5191 —258.5059 —258.4391 —258.5003
PXII |1273) —219.6957 —219.9563 —222.5476 —220.0242

[1373) —180.9653 —180.8478 —180.9567 —180.9444

[1272) —295.6922 —295.7000 —295.6877 —295.6236 —295.6786
S X111 [1213) —252.3861 —252.3362 —252.6663 —252.7419

[1373) —209.2285 —209.1806 —209.2207 —209.2079

(1272) —335.3705 —335.3761 —335.3630 —335.2970 —335.3570
CIXIV |1213) —285.1763 —285.3502 —287.5259 —285.5593

[13T3) —235.1187 —234.9620 —235.1097 —235.0975

[1212) —377.5489 —377.5536 —377.5402 —377.4738 —377.5355
Arxv |1213) —320.3636 —321.1531 —328.7836 —320.7741

[1313) —263.3168 —255.5566 —263.3073 —263.2955

“Each state is represented by its dominant configuration.
YReference 11.
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metry), and so an analysis of these two cases has been
made.

The results obtained are compared with those of a full
configuration-interaction (FCI) treatment and, in the case
of the total energy of the ground state, a comparison is
also made among the self-consistent-field Hartree-Fock
(SCF-HF) method, the experimental values, and our re-
sults. Section II contains a brief outline of the different
approximations used here. Section III presents the results
obtained and finally some comments are given in Sec. IV.

II. METHOD OF EVALUATION
OF SECOND-ORDER REDUCED DENSITY MATRICES

Let us consider a basis of M spin orbitals {i}. A basis
{A} is defined in the two-electron space where |A) is a
bielectronic Slater determinant formed with these spin or-
bitals. The monoelectronic basis also determines an m-
electron space spanned by the functions {A}. Here we
will focus on the singlet symmetry. Therefore, the {A}
considered will be either eigenfunctions of the §, operator
(Slater determinants) or eigenfunctions of both S2and 3’,
operators for the chosen spin symmetry.

It has been shown (I and II) that a reducing mapping
can be applied to the block of the desired spin symmetry
of the FCI Hamiltonian matrix. This mapping yields the
SRH matrix, which will be denoted H' when it is
represented in the two-body space.

An important feature of our development is that the
matrix H' can be evaluated without explicit determination
of the FCI Hamiltonian matrix (I and II). Indeed, a direct
calculation of H' is performed taking as data the numeri-
cal coefficients of the many-body Hamiltonian written in
terms of bielectronic operators* or, equivalently the matri-
cal representation of the well-known reduced Hamiltoni-
an.>~° This initial data matrix will be denoted H. Re-
cently, a totally general and efficient algorithm computing
H'’ for any m, any M, and any total spin quantum num-
ber S has been developed.!”

In III several approximations to obtain the second-order
reduced density matrix (2-RDM) were examined using the
beryllium atom as a test example. Here we will report
some results obtained using three of these approximations
which seemed to be the most promising. It may be neces-
sary to start by clarifying the procedure involved in two
of these approximations, as only a very brief description

TABLE III. Second-order reduced density matrix for the ground state of the BII ion.

[1T) |2T) |31) |22) |23) Approximation
0.995 0.017 0.033 — <1073 —0.001 FCI
0.922 0.023 0.048 <107} 0.001 IQP
B 0.986 0.043 0.063 <1073 —0.001 IQG (§3,8,)
(11] 0.985 0.042 0.064 <10~} — <10~} 1QG (8,)
0.991 0.029 0.050 — <1073 <103 HPH' (§%5,)
0.991 0.029 0.052 <107? <1073 HPH' (§,)
0.801 —0.394 0.015 0.028
0.821 —0.378 0.019 0.040
(12 0.752 —0.421 0.002 0.024
0.753 —0.425 0.003 0.025
0.780 —0.409 0.011 0.029
0.782 —0.409 0.013 0.031
0.197 —0.006 —0.015
0.177 —0.009 —0.018
(T3 0.252 —0.011 —0.009
0.251 —0.011 —0.010
0.220 —0.008 —0.014
0.219 —0.009 —0015
0.633 —0.327
0.679 —0.313
= 0.748 —0.300
(22 0.753 —0.297
0.672 —0.315
0.667 —0.316
0.171
0.147
0.121
(32 0.118
0.149

0.151
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of them was given previously.

The physical model on which they are based is that of
the independent pair of electrons. Indeed, the study of an
m-electron system is substituted by that of (3') systems of
independent pairs of electrons, or, as we call them, quasi-
geminals. The states of these independent pairs of elec-
trons are the eigenvectors of the second-order SRH matrix
H'. This model can be easily described by explicitly writ-
ing our first assumption: The second-order reduced densi-
ty matrix can be approximated by the formula

DYY =S (L BB | L)) |=3ai |I)I],
I I

(1)

where |.Z) is the m-electron state in which we are in-
terested (not necessarily the ground state) and {|/)}
denotes the eigenvectors of the matrix H'.

This formula for the 2-RDM leads to a total energy of
the form

E'{: ZG}LIII (2)
1

which at first sight appears to be the same as that used by
other authors.”~’ However, the values taken by H ;; are
different from theirs as we use the eigenvectors of H’
while they use those of the initial H. Moreover, we shall
determine our a,-f by a procedure, to be explained
presently, which differs from that based on looking for
bounds to the energy.’ ™’
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At the basis of our evaluation of the a ,‘f is a general-
ized concept of the occupation number operator. It is well
known that for a spin orbital i the occupation number
operator is n,-=b,-fb,-. Now, the occupation number of a
bielectronic state A of the Slater determinant type can be
defined as

.
NAZB;‘B;‘=bI]b;'2bA2bMZHAIHAZ y (3)
where B} [0)=b] b} [0)=|AA;)=|A) with A, <A,

Of course, |A) represents a state of the Slater deter-
minant type |A(1)A,(2)|. This concept can be general-

ized as

N,=B/B, , 4)
where B} = ELCIAB;' That is,

II>=§CM|)~> (5)

is a correlated bielectronic state. In our case, {|I)}
denotes the eigenvectors of the H' matrix; therefore, the
coefficients {c;3} are those obtained when diagonalizing
this matrix. It is important to note that, in this general
case, N, is no longer a simple product of monoelectronic
occupation number operators, i.e., Ny=n;n;.

Let us now consider a Slater determinant state (or an
eigenfunction of S2 and S,) of m electrons | A) and the
bielectronic operator N,. The expectation value

(A|N,|AY=(A|B}B,|A)=a® 6)

TABLE IV. First-order reduced density matrix for the ground state of the BII ion.

1) [2) [3) [4) Approximation
0.998 0.017 0.033 0.025 FCI
0.996 0.023 0.048 0.032 IQP
0.996 0.023 0.042 0.030 IQG (8§38,)
(1] 0.996 0.023 0.044 0.030 1QG (8,)
0.996 0.022 0.043 0.030 HPH' (§2,8,)
0.996 0.023 0.045 0.030 HPH' (S,)
0.803 —0.395 —0.016
0.824 —0.379 —0.016
2 0.813 —0.381 —0.016
0.815 —0.381 —0.016
0.803 —0.396 —0.017
0.803 —0.397 —0.016
0.198 0.009
0.178 0.009
3 0.189 0.009
0.188 0.009
0.199 0.010
0.200 0.010
0.001
0.001
0.001
(4] 0.001
0.001

0.001
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can always be obtained. The next step is to consider the
expectation value,

(LN | LY=L |B}B;| &) =a" , (7)

which is what appears in (1). The values a,j are un-

known; therefore, we will introduce our second assump-
tion: Let |y ) be the dominant bielectronic configuration
in |I) [ie., cy in the larger coefficient in (5)], and let
| A) be the dominant configuration in | . ). We will as-
sume that

a,Y:a? .

Equation (1) shows that the probability of occupancy of
pair | I) is the diz_lgonal element {.¢ | B}B;| £). Asno
contribution to D<¥ comes from | I){J | for Is£J, the
set {I} behaves as if it was eigengeminals of the 2-RDM
(natural geminals) for any eigenstate |.#) of our m-
electron system. It is important to realize that no kind of
pair condensation is implied by our physical model of in-
dependent pairs. Indeed, the eigenvectors of H' describe
independent pairs only in an averaged sense. The approxi-
mation just described will be called IQG’s (independent
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quasigeminals) and the 2-RDM obtained with it will be
denoted Dng.

Let us now describe the approximation which is denot-
ed HPH' (Hamiltonian projected in a given H' subspace).
The idea behind this approximation is that the Diqg is a
zeroth-order approximation which may be used as a pro-
jector for the initial H before the mapping transformation
(MT) algorithm is applied. In this way a second SRH ma-
trix denoted H" is obtained. With the eigenvectors of H"
one proceeds as in the IQG. An important characteristic
of this procedure is that if, with the new D, one repeats
the cycle, then the new H'' thus obtained has the same
eigenvectors as H''. That is, this is a self-consistent ap-
proximation. Our physical interpretation of the HPH' ap-
proximation is that most of the contribution from the
unwanted states is removed from the initial H. The MT
applied subsequently to the projected H would allow it to
take again an N-representable form.

Since the eigenvectors of H' are slightly different de-
pending on whether the selected m-electron subspace is
spanned by the eigenfunctions of the S?and 3‘, operators
or simply by the eigenfunctions of the 3’,, the IQG and
HPH' approximations have been considered in both cases.

TABLE V. Second-order reduced density matrix for the ground state of the CIII ion.

[1T) | 2T) |3T) |22) [23) Approximation
0.997 0.013 0.031 — <10} —0.001 FCI
_ 0.994 0.018 0.044 <10-3 <103 IQP
(11 0.990 0.031 0.056 — <107} —0.002 1QG (828,
0.990 0.030 0.058 — <1073 —0.001 1QG (8,
0.993 0.021 0.046 — <1073 — <103 HPH' (§2,8,)
0.993 0.022 0.047 — <1073 <1073 HPH' (§,)
0.854 —0.350 0.012 0.027
0.864 —0.338 0.015 0.038
(2| 0.819 —0.378 0.003 0.024
0.821 —0.379 0.004 0.025
0.838 —0.365 0.010 0.029
0.840 ~0.363 0.011 0.031
0.145 —0.004 —0.011
0.135 —0.006 —0.015
(3| 0.184 —0.009 —0.008
0.182 —0.009 —0.009
0.162 —0.005 —0012
0.161 —0.006 —0.013
0.725 ~0.307
0.751 —0.294
= 0.802 ~0.276
(22 0.804 —0.275
0.749 —0.295
0.745 —0.296
0.131
0.117
- 0.096
kp)
(32 0.095
0.118

0.119
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In order to distinguish them, the labels S 2,§,) or (§z)
will follow the symbol denoting the approximation con-
sidered.

The last approximation considered here is the “indepen-
dent quasiparticle” (IQP) one. It builds the {|I)}] as
Slater determinants formed with the eigenvectors of the
first-order SRH, A'. As this approximation is identical to
that applied by Absar and Coleman,®® given that it can be
shown that i and A’ have the same eigenvectors, we will
not say any more about it here.

III. TOTAL ENERGIES AND REDUCED
DENSITY MATRICES OF THE ISOELECTRONIC
SEQUENCE OF BERYLLIUM

The three approximation procedures for the 2-RDM
described in Sec. II were used in the calculation of the Be
(18) isoelectronic sequence up to ArXv. The basis func-
tions used were those of Clementi et al.,'' except in the
cases in which the number of functions given by these au-
thors was five (BeI—OV). In these cases we omitted the
2s function which was reported to contribute less to the
SCF-HF orbitals.!!

As the energy calculated with the IQG approximation
compares well with that obtained experimentally by add-
ing up all ionization potentials,’> we give these energies
together in Table I. In Table II we report the HPH' and
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IQP results together with the FCI and SCF values with
which these results can be compared, respectively. The
FCI results have been obtained by us with the same basis
set and the SCF-HF ones are those given by Clementi
et al.'! In Table II we also report the energies of the first
two excited states (except in the SCF-HF case).

The results of Tables I and II do not need, in our
opinion, much comment. Indeed, although more calcula-
tions for other symmetries, and with a wider basis set of
functions, should be performed, it seems that the IQG
reproduces rather well the experimental values. If the to-
tal relativistic energy corrections, as determined by Fraga
et al.,'3 which we report in the fourth column of Table I,
are taken into account, the agreement is excellent for all
the ions considered. The FCI results are approached by
the HPH', while the SCF ones are comparable to the IQP.
An interesting question is whether, when the basis is suffi-
ciently large and the FCI approaches the experimental
values, the HPH' approaches the IQG. This point will be
investigated in the future.

From the values given in Tables I and II it is also clear
that as far as total energies are concerned the difference
between the (S 2,§,) and (§z) spin adaptations does not
appear to be very significant. However, it should be noted
that the error on IQG (8 2,§,) with respect to the experi-
mental values is exaggerated in the same direction in the
IQG (§z), except for the cases of N1v and OV, where the
difference between IQG (§,) and IQG 8 2,§,) is less than

TABLE V1. First-order reduced density matrix for the ground state of the CIII ion.

|1) [2) [3) [4) Approximation
0.998 0.013 0.030 0.019 FCI
0.997 0.018 0.044 0.025 IQP
0.997 0.017 0.039 0.023 IQG (§2,5,)
(1] 0.997 0.017 0.040 0.023 1QG (8,)
0.998 0.017 0.039 0.023 HPH' (§2,5,)
0.997 0.017 0.041 0.024 HPH' (5,)
0.855 —0.350 —0.014
0.867 —0.339 —0.013
2 0.860 —0.341 —0.013
0.861 —0.341 —0.013
0.853 —0.352 —0.015
0.854 —0.352 —0.014
0.146 0.006
0.135 0.006
3 0.141 0.007
0.141 0.006
0.147 0.007
0.148 0.007
<1073
<1073
<1073
<4 | < 10«3
<1073

<1073
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6x10~*a.u.

In the case of the HPH', the (S,) treatment gives results
extremely close to the (S 2,§,) one and when compared
with the FCI values it seems that those obtained in the
(S;) treatment are slightly better. Although the general
algorithm for (S2,S,) recently developed'® is extremely ef-
ficient, there is no doubt that the (§,) treatment is very
interesting since its algorithm is given in terms of simple
combinatorial numbers.? Thus the fact that the energy re-
sults corresponding to the (§z) subspace are better than
those of the (S 2,§z) in these approximations is rather
satisfying.

Although we do not report in the Tables the IQG ener-
gy values for the excited states of the sequence, these have
been calculated, and it should be noted that for the third
period the agreement with FCI values is better than with
those of the HPH'.

As it would be awkward to report here the second-order
RDM and first-order RDM for all the ions studied and as
those of Be have been given in (SRH-II), we will just give
here the RDM’s for B1I and C1il. In the case of the 2-
RDM only the most relevant elements will be given.
These density matrices are given in Tables III—VI.

All the results obtained are satisfactory as far as the
sign and order of the values taken by the different ele-
ments are concerned, but what is noteworthy is the agree-
ment between the FCI and the HPH' values, particularly
in the first-order RDM. This agreement exists for the rest
of the sequence. Starting at NIV the values of the RDM
elements become closer either to 1 or to 0, which shows a
tendency towards the determinantal form of the states.
As can be seen, the RDM results do not show any differ-
ence between the (§ 2,§,) and 3‘, calculations.

IV. FINAL COMMENTS

The results which have been presented in Sec. III are
clearly very encouraging. It seem that the reproduction of
experimental results is better achieved with the IQG ap-
proximation, while the agreement with the FCI results is
remarkable all through the sequence for the HPH' ap-
proximation. In the future an expanded basis will be used
in the calculation of this sequence so as to test among oth-
er possible consequences of the basis if the HPH' and IQG
results approach each other. Although the IQP approxi-
mates the SCF-HF results and has a conceptual interest,
we think that it can be disregarded given that besides its
restricted accuracy it involves more elaborate calculations
of the RDM.

Another feature that renders the IQG and HPH' still
more interesting is that the energies obtained with both of
them are invariant with respect to a unitary transforma-
tion of the monoelectronic basis. This property has not
been demonstrated in a formal way, but we have
transformed the initial H to the basis which diagonalizes
h, and not only the eigenvalues of H’ are invariant (which
was to be expected given that the MT employs two map-
pings which are not dependent on the basis used'*'?), but
also the E1gg and Eypy remained identical. Turning our
attention now to the comparison between the 8 2,§z) and
(§z) calculations, it is clear that as far as total energies
and RDM are concerned, there is no substantial difference
between both procedures. For other symmetries this situ-
ation may change, but for singlets, if one is interested in
total energies and densities, it seems that the choice be-
tween a (S 2,§,) and a (§z) treatment can be left open to
convenience.

IC. Valdemoro, An. Fis. 79, 106 (1983).

2C. Valdemoro, Phys. Rev. A 31, 2114 (1985).

3C. Valdemoro, Phys. Rev. A 31, 2123 (1985).

4C. Valdemoro, 5th Seminar on Computational Methods in
Quantum Chemistry, 1981. Gronningen. Ed. Max Planck In-
stitut fir Physik und Astrophysik, Institut flir Astrophysik.
Karl Schwarzschils Strasse 1-8046 Garching bei Munchen.

SF. Bopp, Z. Phys. 156, 348 (1859).

6T. B. Grimley and F. D. Peat, Proc. Phys. Soc. London 86, 249
(1965).

F. D. Peat, Can. J. Phys. 48, 147 (1970).

8. Absar and A. J. Coleman, Chem. Phys. Lett. 39, 609 (1976).

91. Absar and A. J. Coleman, Int. J. Quantum Chem. X, 319
(1978).

10), Karwowski, W. Duch, and C. Valdemoro, Phys. Rev. A (to
be published).

HE. Clementi and C. Roetti, At, Data Nucl. Data Tables 14,
428 (1874).

12C. E. Moore, Ionization Potentials and Ionization Limits De-
rived from the Analyses of Optical Spectra, Natl. Bur. Stand.
(U.S.), Natl. Stand. Ref. Data Ser. No. 34 (U.S. GPO,
Washington, D.C., 1970).

13S. Fraga, J. Karwowski, and K. M. S. Saxena, Handbook of
Atomic Data (Elsevier, Amsterdam, 1976).

14A. J. Coleman and I. Absar, Int. J. Quantum Chem. XVIII,
1279 (1980).

16H. Kummer, J. Math. Phys. 8, 2063 (1967).



