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Test of density-functional approximations in an exactly soluble model
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We consider an exactly soluble model consisting of two electrons attracted to a common center by
harmonic-oscillator forces with mutual Coulomb repulsion between the electrons. The exact wave

function and energy for the singlet ground state is obtained by separating the Schrodinger equation

in center-of-mass and relative coordinates and numerically integrating the relative-coordinate eigen-

value equation. The exact Kohn-Sham (KS) orbital for the two equivalent electrons with opposite

spins is constructed from the exact density, and the Kohn-Sham equation is inverted, yielding the

exact exchange-correlation potential as a function of position. The exact correlation potential, as a
function of position, is then obtained by subtracting the exact exchange potential from the exact
exchange-correlation potential. The exact ground-state energy, exchange potential, correlation po-

tential, KS single-particle energy eigenvalues eKs, exchange energy, and correlation energy are com-

pared to the results given by density-functional theory employing the local-density approximation

(LDA) plus correction terms and the exact KS orbitals for values of the harmonic-oscillator spring

constant that vary over 4 orders of magnitude. We find that although total energies are accurately

given by LDA plus correction terms, the values of e~s are significantly in error. We show that this

is mainly due to errors in the exchange potential. In addition we show analytically that in a singlet

ground state of a two-electron system, the exact expectation value of the exchange potential equals

the exact exchange energy, whereas the LDA expectation value of the exchange potential is only 3

the LDA exchange energy. Furthermore, we show that although the gradient expansion approxima-

tions for the exchange energy are significant improvements over the LDA, neither of these approxi-
mations significantly decreases the error in the LDA for the expectation value of the exchange po-
tential. Both the correlation energy and the expectation value of the correlation potential in the

LDA plus corrections are significantly in error when compared with the results of the exact calcula-

tion, the most accurate results being given by the LDA with self-interaction correction.

I. INTRODUCTION

In the Hohenberg-Kohn-Sham' (HKS) theory of the
inhomogeneous electron gas, the exact ground-state ener-

gy of the interacting system is calculated from single-
particle orbitals describing noninteracting electrons mov-
ing in a local effective potential, i.e.,

——,
' V' P;(r)+ Iv,„,(r)+vH[n(r)]

+u„,[n(r)] I/;(r) =e;ttt;(r)

with

n(r) = g ~
P;(r)

~

where the electron density n(r), calculated in this fashion
is identically equal to the electron density of the interact-
ing X electron system.

Here v,„,(r) is the external potential present in the in-

teracting problem, vH[n(r)] is the Hartree potential and

~„,[n(r)]=5E„,[n(r)]/5n is the exchange-correlation po-
tential which is the functional derivative of the exchange-
correlation energy and is a universal functional of n(r).
The total energy of the system can be written

E= g e;+E„,[n(r)] —I o„,n(r)dr

n(r)n(r') drdr' .
/r —r'

It is clear that knowledge of this universal functional
E„„and consequently its functional derivative ~„„is of
primary concern. However, the theory merely provides
for the existence of such a functional but does not
prescribe for its construction. Therefore there has been
much effort devoted toward developing accurate function-
als, often incorporating the result of the uniform electron
gas as a starting point.

In light of the above we note that if we could solve a
problem for the wave function of the interacting system
which included the electron-electron interaction exactly,
we could then obtain both the electron density and the
ground-state energy as well. Furthermore, because of the
simple relationship between n(r) and the single-particle
wave function (P;) of the equivalent Kohn-Sham (KS)
Schrodinger equation, if we were dealing with a system of
only two particles of opposite spin, we could then obtain
the Pt. This could then be used, by inverting Eq. (1), to
find the exchange correlation functional c.„,as a function
of r:

u.„,(r) =e; —4(r)+ —,
' V' P; /P;(r) .
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This can then be compared to the values obtained in vari-

ous local and nonlocal approximations to ~„,[n(r)).
In seeking improvements to the local-density approxi-

mation {LDA) the early belief that the e~s were not physi-

cally significant led to a relative neglect of the examina-

tion of the accuracy of the ~„,. The total energy as calcu-
lated using E„, was considered to be the test of the accu-
racy of the functional, while u„, was simply taken as its
functional derivative.

However, recently Perdew et al. have argued that the
exact (eels),„=E(N)—E(N —1) where E(M) is the ex-
act ground-state energy of the M electron system. Thus
(eKs),„ is the negative of the ionization energy of a sys-
tem of E electrons to the totally relaxed state of the
remaining (N 1)-ele—ctron system.

Thus the calculated (@its),„provided by Langreth and
Mehl can be compared to experimental and self-
consistent calculations of the ionization energy of the
atoms they treat. For helium, we find that their (eKs),„
is more than an eV too large in magnitude even though
their total energy for the helium atom is within only
-0.1 eV of the exact value. Similar results obtain for the
(eKs},„ofother atoms calculated by them, i.e., their cal-
culated (cits) are greater than the exact value with an
error significantly larger than the error in the total energy
of the atom.

It thus appears that it would be useful to test the validi-

ty of the various density functionals that have been pro-
posed for cr„, not merely by seeing whether they produce
accurate total energies and good electron densities, but to
actually compare the exact values of o„,(r} necessary to
give the exact density with that given by the functional,
i.e., in a given case a o„, that is considerably different
from the exact one might give good overall agreement for
n (r) and E because the external potential plus the Hartree
term is so large as to make the error in ~„, unimportant.
However, when this same c „,[n {r}]is used in another cal-
culation where the v,„, plus Hartree term is small, these
errors in u„,[n] may lead to substantial errors. Moreover,
even for the former calculation the KS eigenvalues must
be investigated to see how well they are reproduced.

It would therefore be useful to construct an exactly
soluble model so this program of comparison could be im-
plemented. Such an analysis of o, has already been per-
formed by Jagannathan, who considered the two-electron
atoms H, He, and Li+ and compared his results to the
LDA. The densities he employed were obtained from
configuration interaction (CI) wave functions that mini-
mized the energy. However, such analysis on two-electron
atoms suffers from certain inherent limitations. Firstly, it
is not possible to adjust the nuclear charge Z to make the
density arbitrarily slowly varying, because H is barely
bound relative to H + a free electron and any further de-
crease in Z (if we allow nonintegral nuclear charge, while
maintaining exactly two electrons) leads to a physically
unbound state. Secondly, when only integral values of Z
are employed, the density varies significantly froin one
atom to the next, which makes it more difficult to under-
stand the trends in the comparison of the exact and ap-
proximate u„,. Thirdly, when a variational calculation is
used to obtain a wave function for a two-electron atom it

is always possible to add an additional term of the form
—a(r&+r2)

Ae ' ' where u is smaller than any other such a in
the expansion. Normally, unless this is added to the exact
solution, minimizing the energy will result in A&0. Thus
as r~00 the asymptotic density will be determined by
this term which can be quite arbitrary unless one knows
what the asymptotic density is prior to starting the calcu-
lation. Thus the variational solution can lead to the
~rong asymptotic density. As we will show below the eKs
are related to the asymptotic density and thus this will
lead to incorrect eKs and c „,(r).

Since the validity of the density-functional theory is not
limited to having U,„, given by the Coulomb potential due
to protons in nuclei, we are free to use any U,„, that gives
rise to an exactly soluble model. Such a model would be
most useful if the U,„, contained a parameter which would
give rise to a whole family of exactly soluble problems
with densities which vary as slowly or rapidly as we wish
to study. Such a model is presented in the next section.

Within the framework of the model to be presented we
can investigate total energies and their constituents (i.e.,
exchange, correlation, etc.) as well as the exact eigenvalues
and eigenfunctions of the Kohn-Sham equation along
with the corresponding expectation values of constituents
of the potential (i.e., (Nits I ~x I PKs) (II}res I

~c
I {{}Ks)).

The exact values which can be obtained for this prob-
lem will then be compared to those obtained by evaluating
approximate functionals which are in current use, using
the exact electron density.

We will demonstrate that although total energies for the
system are in quite good agreement for the entire range of
densities considered, the corresponding Kohn-Sham eigen-
values are significantly worse. We attribute this to error
in the exchange potential functional, and thus conclude
that if improvement is to be made in the approximations
of density functionals, then the expression for E„[n(r)]
must be changed in a manner that will not affect the ener-

gy much, while making a considerable correction to its
functional derivative c.„[n(r) ].

We have shown analytically for our model, without
resorting to the theorem recently proved by Perdew and
co-workers, that the energy of the highest occupied
Kohn-Sham orbital is of significance, in that it represents
the difference in energy between the ground state of the
two-electron system and the ground state of the one-
electron system including all relaxation effects. Thus, in
our case where the only e~s is that of the "highest occu-
pied orbital, " it is reasonable to use this energy as a test of
the efficacy of various functionals.

II. THE MODEL

To this end we consider two electrons attracted to a
force center by a harmonic-oscillator potential. This
model has been employed previously by Kestner and
Sinanoglou, using the variational principle, to study elec-
tron correlation in heliumlike atoms. Thus

H = — (Vi+ Vq)+ —,
' k(r, +r2)+
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where r; are the coordinates of electron i (i = 1,2).
The constant k is a measure of the strength of the at-

tractive center and thus can be adjusted to model an entire

range of "physical" situations —from dominance of the
electron-electron interaction down to the case where the
electron-electron interaction is negligible.

Converting to center-of-mass and relative coordinates,
and separating variables, yields

2M
Vg+kR g(R) =E, g(R),

n(r)=2
~ P; ~

i~P;=[n(r)/2]'~'.

Since we know n(r), we have p; as well and can use Eq.
(3) to find ~„,(r), where 4(r) is as defined above, and
u,„,(r)= —,'kr .

From Eq. (3) for ~„,(r) it is clear that the Kohn-Sham
single-particle eigenvalue e~s enters into ~„,(r) as an addi-
tive constant at all values of r. However, the condition
that ~„,~0 as r~ ~ is sufficient to determine the ebs
without actually solving the KS equation. In fact, it can
be shown analytically that ebs ——E„,~ by assuming the
same condition on ~„,. '

V, + ,' kr2+ —— f(r) =e„&f(r), (6) III. EXACT DENSITIES, EXCHANGE,
AND CORRELATION FUNCTIONALS

where M is the total mass and p, is the reduced mass of
the two electrons. Here the total energy E is given by the
sum of E, and e„~. We may obtain the ground state of
the system by finding the ground-state solution of both
Eqs. (5) and (6). Then g(R) is the ground state of the
spherical harmonic oscillator and f(r) is also an S state
since it is the ground state of a spherically symmetric po-
tential.

The density may be obtained from

n(ri) =2 f I 4(ri ri)

Then making use of the oscillator wave function, employ-
ing a change of variables, and integrating over angles, we
obtain (in atomic units)

—qr22

n(rz)=A f f (r)e &' ~ (e ' e—')rdr,
f72

(7)

where q=(4k)'~ .
The normalization factor A is obtained from the con-

dition n r r=X where %=2 is the number o elec-
trons.

Once Eq. (7) is evaluated using the numerical solution
of Eq. (6), we are in possession of an exact electron densi-

ty for a problem with an electron-electron interaction.
Because of the simple nature of this problem we can ob-
tain c.„„the exchange and correlation potential of the sys-
tem. We recall that the same densities would result if we
were to solve a system of noninteracting electrons moving
in an effective potential 4(r)+ c „,[n(r)], where

4(r) =u,„,(r)+ f n(r'}/
~

r —r'
~

dr' . (8)

Thus we need merely solve the single-particle
Schrodinger equation

I
——,

' V' +4(r)+~„,[n(r)]]P;(r)=e;P;(r)

with

Figure 1 shows n(r )/nk(r ) vs k '~ r for three values of
k, where nk(r ) is the electron density of two particles in a
harmonic-oscillator potential with the same spring con-
stant but with no e-e interaction. From these figures we
see the effect of the e-e interaction on the density profile.
%'e observe that as k decreases, i.e., the relative strength
of the e-e interaction increases, the e-e repulsion causes a
spreading out of the electron distribution increasing the
density at large distances, while dropping the value of the
central density in order to conserve the number of parti-
cles. This is evident in Fig. 1 as well, since as was to be
expected the smaller k values show a larger deviation
from the harmonic-oscillator density since it is for this re-

gion that the e-e interaction is important. In fact, in the
limit kazoo we would expect no deviation at all. For
k'~ r =2.6, the end point of the plot, the ratio of n(r ) to
the maximum density, n(0) for k=100, 1, and 0.01 is
0.0015, 0.0024, and 0.0081, respectively. The density for
k =10 corresponds to the "physical range" since if we de-

fine an average r, by

(r, },„s
—f n(r)r, (n)dr,

3.0

n (r)

nk {r)

K = 100(—-)

n(r)= g ~P;(r) (
I

0.5
1

1.0
I

2.0
I

2.5

X the number of electrons.
In our case %=2, and we have two equivalent electrons

(with opposite spin); therefore,

Kl /4

FIG. 1. Scaled density vs k ' r for k =0.01, 1, and 100.
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1.8
0,40 0.80 1.20 the external potential and the Hartree potential are ob-

tained exactly from the exact density. Thus we are actual-

ly testing the functional forms of exchange-correlation en-

ergies and potentials.

A. Exchange only

1.0

0.6

0.4

r (a. u. )

1.2 2.0

Because correlation makes a contribution to the total
energy which is never more than —5% for our model, a
first approximation of interest is to consider exchange
only.

(a) LDA. The LDA (Ref. 1) treats exchange by taking
the energy density at each point in space as if there were a
uniform electron gas of the local electron density, i.e., the
exchange energy density, e„=——,'(3nlm)'~3:

E,[n]= f e,n(r)dr= ——,(3/m)' f n'' (r)n(r)dr,

and since
FIG. 5. Ratio of LDA to exact exchange potential for k = 10.

E„,[n(r)]=E ge;+ f—u„,n(r)dr

n(r)ri(r')
d d,+2 dr dr' (12)

and obtain E„, exactly. Moreover, for the two-particle
case it follows from Eq. (10) that

which gives the total energy of the interacting N electron
system in terms of the single-particle eigenvalues and
various functionals of the derived density.

For our model system E is known exactly, as is e~s,
n(r), u, [n(r)], and c,[n(r)]. In fact, we can invert the
preceding equation to write

o„=SE„ /5n(r ) = [ne„],
de

in the local approximation

~,(r ) = —[3n (r )/n ]' ' .

(b) ¹nlocal. LDA with gradient-energy expan-
sion' " (GEA):

E [„) ELD& C f I

P~
I

z„4ndr+. . . —

C„=7m'(3n )
~ /144=0. 001667 a.u. ,

and the corresponding potential term is

4 I«I'
Z Z Z 3 7/3 4/3n ll

J

(c) Nonlocal. LDA plus Langreth-Mehl' ' approxima-
tion (LM):

E, =E„" a( —, +18f ) f—
I
Vn(r)

I
n ~ dr,

~ f f n(r)n(r')
d d,

I

r—r'I
(13) where a =n/[16(32) ~ ]=2.144X 10 3 a.u. and we used

f=0.15 as suggested by LM.

enabling us to obtain E„[n] and E,[n]=E„,[n] E,[n]—
exactly.

We wish to investigate the accuracy of various approxi-
mate functionals in predicting energies and related poten-
tials. One approach would be to use these approximate
functionals for the potential, u„„in the Kohn-Sham equa-
tions and solve for the density n(r ) and the corresponding

egg. These could then be used to obtain total energies as
well.

An alternative approach —the one which we employ —is
to evaluate the approximate functionals using the exact
density, n (r )'", generated by the solution of the
Schrodinger equation, to obtain potentials (as projected on
r space), energies, and potential-energy expectation values
to be compared to the corot ones. We note that if we

use this second method the only terms in which error can
be introduced (in considering energies) are E, E„
&'PKs

I
~

I
q'zs& and &'PKs

I
~e

I
Pres), since the other

terms are exact, i.e., the eKs and the expectation value of

B. Exchange and correlation

1. Local

Here, E„,[n]=E„[n]+E,[n], where exchange is given
by LDA [as in condition (a) above] and E, has a local
form as well, i.e.,

E, = f n(r)e, ( )drn,

where e„ the correlation energy density per electron, is
given by the parametrization of Perdew and Zunger' of a
form due to Ceperley and Alder

A ln(r, )+B+Cr, ln(r, )+Dr„r, (1
y/[1+ f3(r, )'~ +P2r, ], r, (1

where 4(~r, )/3=n
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2. Xonloea1

Here we have

[ ] gLDA+gRPA+ HELM+ g~LM

In this case it is necessary to use the random-phase ap-

proximation (RPA) parainetrization of the Ceperley-Alder

parametrization as given by Cole and Perdew. ' This is

because LM has been derived within the RPA scheme:

The parameters used can be found in Table I. In this
case, because there is only one particle with spin up and
one with spin down, exchange is given exactly and thus
the only source of error is in the approximation for corre-
lation. In our case of two electrons of opposite spin this
reduces to

&c n

LDA+g n
— 3 2p F+ j8 n r

a and f are as noted previously [see condition (c) above]
F=b

i
Vn(r)

i
/[n(r)], where b =(9n')' f

=0.2618.

—f [e,( n/2, 0)+e, (0,n/2)] —,
' n(r)dr

n r —2 ~n r n 2 dr

e,"n —,n 2 nr r.

C. Self-interaction correction (SIC}

We employ a local spin density (LSD) formalisin in this
instance. This is designed such that for a two-fermion
system the exchange cancels half the Hartree term, thus
ensuring that at least in this simple case there is no elec-
trostatic self-interaction remaining.

In this formalism, we define g=(n„n~)—/n, as the de-

gree of polarization (where u and d denote spin up and
down, respectively). Then (=0 corresponds to an unpo-
larized system, while (= 1 corresponds to a completely
polarized configuration. For intermediate polarizations
(0&g& 1), the interpolation formula of von Barth and
Hedin' is employed:

In the next section we consider the following quantities

to ascertain the efficacy of the various approximations:

E„= n re„n r,

E, = nrem, n r,

~ =('pcs
I I

'pKs&

Et.t =(~t.t —~-)'""'+& '

e, (i„g)=e,"(r, ) +f(g)[e,'(r, ) e,"(r,)], -
where

f(g) = [(I+g)'"+(I—g)'"](2'"—2) .

(14)
eras=(&res —I' )'""'+I"

V. RESULTS AND CONCLUSIONS

We implement this using the Ceperley-Alder form for e, .
The expression for the self-interaction-corrected correla-

E = 6' n„,nd n r — E' n ,0 n r r .

(15)

We recall that over the range of k values under con-
sideration, the central density varies by a factor of almost
2000. While in r space the densities evolve with increas-
ing k, from slowly to rapidly varying, the criterion for ap-
plicability of the LDA or the GEA expansion based on
the local Fermi wave vector,

i
Vn

i
/(kFn) «1, is never

satisfied for our model. However, since this is the case

TABLE I. Parameters used in the Ceperley-Alder form of the correlation energy density as given by
Perdew and Zunger {Ref. 13) and Cole and Perdew {Ref. 15). {U denotes unpolarized, while P denotes
completely polarized. )

Parameter

0.0311
—0.071

0.0021
—0.0078
—0.2044

1.5023
0.0916

RPA
P

0.015 55
—0.0499

0.0005
—0.0020
—0.1104

1.1102
0.0170

U

0.0311
—0.048

0.0020
—0.0116
—0.1423

1.0529
0.3334

Ceperley-Alder

0.015 55
—0.0269

0.0007
—0.0048
—0.0843

1.3981
0.2611
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for other systems as well in which LDA has achieved
some success, we will apply it here as well. Various argu-
ments have been proposed to explain the success of LDA
and GEA in such systems where the aforementioned cri-
terion is not satisfied.

A. Total energy and Kohn-Sham
single-particle eigenvalues

50

20-

Vi
I

1
O lo-
CP

0~0

.Qfj17
I 1

2 230 4.058 6.090 ) 7.449

60/ 5QQQ

50/

l 1 )

3.730 7.058 l0.834 32.449
Et0t

2/0—

O
L

0~0

20/

-4%-

-5%-

Figure 6 compares the total energy of our model sys-
tem, for a series of k values, calculated exactly and within
various approximations. The total energy E„, is given
along the top border of the figure, and each curve
represents the percentage error in the calculations of E„,
using the stated approximation. As can be seen by refer-
ence to the figure, the discrepancies in the total energy are
quite small —wn the order of hundredths of a.u. (i.e.,
-5%) in the worst case (k =0.01) and in the range of
1% or better over the remainder of the range.

That is, for the entire range, any approximation we use
for exchange-correlation is quite good for the calculation
of the total energy. Referring to the figures on exchange
and correlation energies (Figs. 8 and 10), we see that
exchange-correlation ranges from 8% to 48% of the mag-
nitude of the total energy. Thus the good agreement of
E„„irrespective of the approximation for E„„cannot be
attributed to exchange-correlation being a small com-
ponent of the energy in this problem

Note that using a strictly local [(LDA)„,] approxima-
tion the error is always on the order of 1%. Of course
SIC yields even better results since it eliminates the error
in exchange and thus limits the introduction of error to

SlC

Q
2 Io io'

I I

4 Io
I

Io

FIG. 7. Percentage error in the Kohn-Sham eigenvalues.

B. Exchange

Figure 8 shows the negative of the exchange energy and
the percentage error in the calculated values for each case
and approximation.

Before examining these displays we digress to make an
observation with regard to the LM and GEA approxima-
tions. If we refer to Sec. IV in which we define the dif-
ferent approximations, we find that both LM and the
second-order gradient-energy expansion for exchange can
be written as

the correlation term alone, which only varies from 0.2%
to 5.8% of the total energy.

We next consider the Kohn-Sham eigenvalue e'Ks (Fig.
7). Figure 7 shows the percentage error in the calculation
of the eigenvalue within the given approximations. From
the values of eKs listed along the top border we can see
that the discrepancy in E~s can be comparatively large-
on the order of 1 a.u.

We observe that although the SIC gives remarkable
agreement (0.2% or better, -0.1 a.u. or better), all the
other approximations, both local and nonlocal, are quite
poor. That is, for high k where the error in the total ener-

gy is —1%, the error in the corresponding eKs is & 5%,
while for low k where E«, is in error from 1—5% de-

pending on the approximation employed, eKs is in error
by approximately 20—30%.

This clearly demonstrates the following: Although a
given approach may yield highly accurate total energies,
this does not ensure the accuracy of the corresponding
Kohn-Sham eigenvalues. We now endeavor to obtain an
understanding of this phenomenon by investigating the
exchange and correlation terms (the only terms which are
being approximated) individually.

]0 2
i

IQO

K

I

io' io2 E„'=E„+C„'f f

V'n
f

n ~ dr,

FIG. 6. Percentage error in the total energies. where i equals GEA or LM. Thus the correction to LDA



148733 TEST OF DENSITY-FUNCTIONAL APPROXIMATIONS IN AN. . .

42.2 /o

-E„/
50 0%

l 1 i

20 0 /o l2.6 /o

}5.2 /o

I

?.6%

-37.2-

60.3 /o 46.6% 33.5% 26.5 /. 22.4/.

x
4J

0
4)

0~O

-10—

&C

-39.2—
O

-40,0-
4~O

-42.0-
LDA

-15-
LDA

-43.2
10 2 10-1 10' I02

FIG. 9. Percentage error in the exchange potential expecta-
tion values.

IQ IQ IQ' 10

K

I

102

FIG. 8. Percentage error in the exchange energies.

the total energy for the corresponding k vak value within the
same approximation (LM).

Some of the points which have been touched upon in
the discussion of results for exchange can bebe understood
with a little analysis:

afforded by each of these differs only through the multi-
plicative constant C, i.e.,

HELM CLM g( 7 +18f2)
x x

4/3hE C 7m/[144(3m ) ]x x

where a =m/[16(3m )
~ ], thus

= —,'( —,
' + 18f ') = 1+ ',"f ' = 1.521

gF GEA

f r f=0.15 the value given by LM.
Fi ure 8 shows the percentage error .or—~ r —E . Along

the upper border is the percentage o «„ in
figure s

d h t E represents. This is not an alternate scale x
axis} for the plot, but only shows the values we

d be sed at most as a guide to determine
t e iven k re-the relative importance of exchange for the given re-

b rve that in the I.DA the exchange energy is
14% less than the exact value throughout. e

overcompensates, slightly yielding values between 0.2%

—V, the%%en considering the companion quantity —„, e
n we see a very.k; ..d:t th.t th. ..t f the expectation value o c „n, we

different picture. Figure 9 makes it evi en
change potential is not being mode

i is —43%f the LDA the percentage error is -43 othat or t e
throughout (as compared to 14% or „,an

h GEA d the I.M improve E„considerably t ey
much smaller effect on the expectation valuehave a muc sma er e

~~ter the corrections isIn fact, the percentage error even ~ter e
never less than 37% as compared to roughly l%%uo error in

a E" =85% of E'~" for the entire range of k
values.

(b) V„:— o o=—57%%u' f V'"'" for the entire range of k
values.

n(r) n(r')

xact Eexact
x x

However in the LDA
1/3

ELDA 3 3
x 4

' 1/3
3

f n'"(r)dr,

LDA
~x n '~ (r}

(17}

Two questions present themselves here. y1) Wh does
LDA (and its corrections) work so well for the energy E„

f r V? (2) Why does LDA give approximatelybut not or
a e of the exactth me value —i.e., the same percentage o e

ave cn-answer —over the entire spectrum of densities we a
vestigated7

The second question can be answered y re e
Fig. 5, which shows that for the region of space where the
quan i yt t 4mr n(r) is substantial, the ratio o, to o-,'""' is
-0.6. In addition, we shall present a calculationion which
should make this plausible on analytic grounds as well.

To address the first question, it follows from Eqs. 10
and (13) that
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so
1/3

J n"'(r)«
2 m

Therefore

VLDA & ELDA
Z 3 Z (18}

and

V /V'"=0 570

In addition,

b E„'=[27(3na/2)' /2' ]C'

where i equals LM or GEA; then the correction term due
to LM or GEA is

AE /E'"=0 0972 while hE" /E'"=0 1478

6 V' = —[9(3na/2)' X2' ]C„',

6 V„ /V„'"=0.0648 while 6V„ /V„'"=0.0985 .

The analysis above shows that for large k (or to first or-

Thus comparing Eqs. (17) and (18), it is evident that if the
LDA is a good first approximation for E„,as it is in heli-

umlike atoms, it is necessarily poor for the exchange po-
tential V„. (It is interesting to note that the Slater ex-

change, i.e., —,
'

e „,will give very good results for the ex-

change potential in the case of two-electron atoms, when

LDA is a good approximation for the exchange energy. )

This points out the inadequacy in attempts to improve
LDA by addressing the issue of the energy alone. It is

clear that merely seeking a correction to E„which is
assumed small without reference to ~„will not necessarily

lead to improvement in the Vz, thus leaving a major
source of error in the calculation of e~s.

Some light may be shed on the second question through
consideration of limiting cases. First, let us consider two

electrons in a spherical harmonic-oscillator potential with

no e-e interaction. This can be thought of as the k~ cc

limit, or alternatively we can think of it as a first approxi-
mation to our model where the e-e term 1/

~

r
~

is treated
as a perturbation. Then

lit(rt, r2)=(a/n} exp[ ——,'a(rl+r2}],

where a=k', and

n (r ) =2(aim )
/ e

Then a calculation of the exchange energies and potentials
yields

Eexact
( 2 l )

1/2 Vexact
X

= — O'& = Z

E„=——,', (6/~)' (3a/n )'

V, = —
g

(6/1r)' (3a/7r)'

Thus
1/3 '

& 1/2

ELDA/Eex 0 855
16 m 2

der for all k), the LDA will give 85.5% of the correct ex-

change energy. This explains why we find a percentage
error of approximately 14% + throughout regardless of
k. In addition, it shows that when GEA is taken for the
correction, the energy is then 95%%uo of the correct value,
while LM yields approximately 100.3%, which is con-
sistent with our findings.

In a similar manner, we find that for the expectation
value of the exchange potential the LDA is 57.0% of the
exact valut -corresponding to the —43% error we found
in our calculations. For the V„we see that the GEA only
brings us to 63.5% and the LM to 66.9%%uo of the exact re-

sult. Thus we see that the exchange potential is not as
well given as the exchange energy. It is interesting to note
that the correction to the expectation value of the poten-
tial as calculated deviates from the limiting value to a far
greater extent than is the case for the energy.

%e can also consider another two-electron model in
which the e-e interaction is negligible compared to the
strength of the central potential; i.e., a heliumlike ion in
the limit of large Z:

0= ——,
'

it'1 ——,~It'2 —Z( 1 lr 1 + 1/r2) .

Then

tlt(rl, r2) =(Z /n ) exp[ Z(r 1 +r2)]—

n(r)=2(Z /m)e

Then a calculation of the exchange energies and potentials
yields

Eexact & Z Vexact
Z 8 Z

ELDA at (31/3/22/3) 2/3z
x 7r

V = —27(3' /2' )m Z

Thus

31/3

V„" "/V„'"=0.5718 .

In addition,

~E' = —[27(~/2)' ']C,'Z,

g Vt 9(~t/321/6)Ci Z

where i equals LM or GEA. Then the correction term
due to LM or GEA is

/E„'"=0.0837 while hE„" /E„'"=0.1274,

t5 V„ /V„'"=0.0333 while b, V„" /V„'"=0.0507 .

In this case as well, the LDA exchange energy is 85.8% of
the exact exchange energy, and GEA and LM bring that
value to 94.4% and 98.5%, respectively. For the ex-
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TABLE II. Hartree-Fock (HF) and Kohn-Sham (KS) exchange energies for a series of atoms and the

percentage errors (relative to Kohn-Sham) of the local-density (LDA), second-order gradient-expansion

(GEA), and Langreth-Mehl (LM) approximations for the exchange energy ( —E„). All entries except
LM were obtained from Ref. 9.

Atom HF
Exact values (a.u. )

KS LDA
Percentage error

GEA LM

H
He
Ne
Ar
Kr

0.3125
1.03

12.13
30.30
94.63

0.3 1.25
1.03

12.10
30.16
93.78

—14.2
—13.6
—8.8
—7.5
—5.4

—5.9
—5.3
—4.6
—4.2
—3.2

—1.6
—1.0
—2.4
—2.5
—2.1

change potential the percentages of the exact expectation
value for LDA, GEA, and LM are 57.2%, 60.5%, and
62.3%, respectively. These values are similar to those ob-

tained in the exact calculations and our other model cal-
culation as well. The LM value of 62.3% is indeed what

we find in the exact calculation over almost all of the
range. The results of these two limiting cases substantiate
the reliability of the numerical calculations. It also shows
that for a totally different central potential we get similar
results. Thus, our results cannot be considered as merely
an artifact of the harmonic-oscillator potential, as we see
it persists for the physical Coulomb attractive center as
well.

The above results for two electrons are examples of a
more general conclusion that large errors in the expecta-
tion value of the functional derivative

are not inconsistent with accurate total energies. The "ex-
act" functional derivative as defined here is evaluated
from the electron-deficient side of the integer electron
number. Because of the derivative discontinuity discussed
in Ref. 3 the functional derivative from the electron-rich
side "exceeds" this "exact" value by a positive constant C.
Continuous approximations such as LDA, GEA, and LM
represent averages over this discontinuity.

We observed earlier that second-order GEA and LM
differ only in the constant used in the correction term.
For all our two-particle model systems the LM coefficient
yields far more accurate results. We investigate this fur-
ther by looking at results for real systems as well. Table
II is a display from Ref. 9 of the exact Kohn-Sham and
Hartree-Fock exchange energies and the percentage errors
obtained when calculating the E„ in the LDA or GEA.
(The values were obtained from various sources as noted
in Ref. 9). Exact in this context means exchange only
Kohn-Sham. Expanding the table we have added a
column labeled "LM." This is the percentage error an
LM calculation would have resulted in for these noble
atoms. The method of obtaining these values was

LM=LDA+(GEA —LDA)C, /C„

C. Correlation

350
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The contribution to the total energy due to correlation
is shown in Fig. 10. The correlation as a percentage of
the total energy is given inside the upper border for each
of the points actually calculated. We see that correlation
varies from 0.2% to 5.8% of the total energy, and thus it
is a significantly smaller percentage of the total energy
than is exchange. However, it is worth noting that with
the exception of the SIC none of the approximations for
correlation gives reasonable results —the errors varying
from 50% to more than 300%. Among these the
RPA + LM is best in that its error ranges between —50%
and +80%. This is because the sign on the LM correc-
tion for correlation is opposite that of all other terms, and
for large k the correction term is even greater in magni-
tude than the RPA value. Furthermore, the error in
correlation is 2 orders of magnitude worse than that in ex-
change for the LM, therefore the relative success of LM
does not indicate that it is a satisfactory approximation.

Even the SIC which does give better results is not very
promising. For low k the error is on the order of 6%, but
this grows with k until at k =100 it is on the order of
70%. However, as we have noted previously this will not
affect the very fine results for total energy because SIC
treats exchange exactly for the two-particle problem and

Once again we see LM yielding results superior to GEA. FIG. 10. Percentage error in the correlation energies.
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0~O
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O poli case—the energy was consistently underestimated. Thus,
the errors in exchange and correlation being of opposite
sign cooperate to give very good results for total energy
through large cancellation. It also becomes clear that if
correlation, although small, was given accurately, then the
error in total energy as given by LDA would increase ap-
preciably, while the LDA + LM result would improve.

D. Summary

-50
(00 I02

FIG. 11. Percentage error in the correlation potential expec-
tation values.

the correlation energy for k =100 is only 0.2% of the to-
tal energy. Figure ll gives the results for —V, . The
upper border of the figure contains —V, as a percentage
of the Kahn-Sham eigenvalue. Unlike exchange, the ex-
pectation value of the correlation potential is more accu-
rate than the correlation energy, though when dealing
with such large errors it is doubtful whether there is any
significance to this at all. It is evident from these results
that neither E, nor V, is modeled satisfactorily by any of
the functionals.

However, we do now have an explanation for the excel-
lent agreement for the values of total energy. Referring to
the figures, we see that the correlation energy is overes-
timated by large relative amounts (which are not large in
absolute terms since correlation is only a small part of the
total energy). For exchange exactly the opposite is the

In summary we collect the results in a concise manner.
Total energies and exchange energies are obtained to good
accuracy in the LDA along with standard correction
schemes. On the other hand, Kohn-Sham maximal ener-

gy eigenvalues, expectation values of both exchange and
correlation potentials, and correlation energies are given
very poorly by these same approximations. The SIC gives
good results for the exchange-correlation potential and
thus for the Kohn-Sham eigenvalues as well.

The results quoted above lead us to conclude the fol-
lowing.

(1) Total energies are not an adequate measure of the ef-
ficacy of an energy functional. The functional derivative,
i.e., the potential functional, must be considered as well.

(2) From the large errors in exchange potential expecta-
tion values we infer that improving correlation alone will
not cure the difficulties of density-functional theory, but
rather improvement of exchange potentials is still the first
priority.
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