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Standard theory predicts that the familiar exponential decay law must be modified at long times,
a result that was recently challenged by Mittleman and Tip, who claimed, in the context of a model
problem, that the modification was strongly attenuated if the artificial assumption of an interaction
that is suddenly switched on is replaced by a gradual onset. We have studied the same question, and
find that while this reduction is present, it is of a different form than that predicted by Mittleman
and Tip, and could be negligible in certain cases. We suggest that their model might actually be a
promising candidate problem for an experimental investigation of departures from exponential de-

cay.

It is well known that if an interaction, suddenly
switched on and constant thereafter, has the property of
coupling an embedded bound state to a continuum, the
survival probability of the initial bound state evolves, to a
very good approximation, according to the exponential de-
cay law P;=exp(—yt), where y is given by Fermi’s gol-
den rule. Theory further predicts departures from the
dominant exponential behavior at very long and very
short times, and the questions whether these deviations
are real and, if so, what their experimental implications
are and what their precise functional forms are have re-
ceived renewed attention in recent years.!~> The present
paper examines the decay law for times ¢ >>1/y, where
the standard theoretical result®® gives a survival probabil-
ity that behaves like an inverse power law, ¢ ~", where the
precise value of n is specific to each particular problem.

Ordinarily, the changeover from exponential to power
law is not predicted to occur until the signal has decreased
to a value so minute that it is completely unobservable.?
An exception might occur if the decay were to take place
at a nominal energy just above the threshold for the con-
tinuum, and these processes might be the best candidates
for an experimental search for long-time breakdown of
the exponential decay law. Recently, however, Mittleman
and Tip® have presented a calculation in the context of a
model photoionization problem which indicates that the
size of the correction to the exponential that is predicted
by the usual theory may even be too large. Their con-
clusion is that if the artificial choice of a sudden turn-on
for the interaction is replaced by the assumption that the
onset occurs gradually, the correction term becomes a
function of the smoothness of the switching, and is
J

strongly attenuated in general. If their ideas are correct,
any residual chance of seeing the long-time, nonexponen-
tial decay would be virtually eliminated. This work was
undertaken to check their results in a general way, i.e.,
without recourse to any specific model. Our conclusion
proves only to partially agree with Mittleman and Tip.}
We find that while a nonzero rise time can reduce the
power-law term, it need not. This disagreement occurs as
a consequence of differing results for the function that at-
tenuates the correction to the exponential decay law.

We begin our analysis by rederiving the law of decay in
a form that is independent of the details of the turn-on.
Assume a nondegenerate continuum-embedded bound
state |0) to be coupled to that continuum | k (wg)) by an
interaction whose matrix elements are given by
Hy =urf(t). The preparation function f(#)—0 as
t— — o, and approaches unity as t—+ o, and is
characterized by a rise time T, assumed to be <<1/7. Us-
ing a system of units where #i=1, the equations of motion
for the state amplitudes ag,a; are

iay =p f(texpliogt)explet)ay , (1a)

iag= fwf(t),u;:p(a)k Jexp( —iwgt +et)dwray , (1b)
n’!h

where p(w;) is the continuum state density, where the
zero of energy is that of the initial bound state, and the
energy threshold ., <0. The convergence factors of
exp(et) are inserted to facilitate integration by parts, and
do not affect the results in the implied limit e—~0. We
may formally integrate Eq. (1a), and substitute in Eq. (1b)
to obtain an expression for a, alone, namely,

do=— [ dlowlexpl—iogt +enf(doy [ f(taglt expliogt’ +et')dt’,
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where ¢(w; )= | ux | *p(wy ). Integrating by parts with respect to t’, we obtain

Go=i [ fn“h ((wr )exp(2eDLf () ao(t) /wy —i€) }day

. ¢(wk)f(z)exp(—iwkt+ez)dwk/(wk_ie)f' exp(ia)kt’+et’)(d/dt')[f(t')ao(t’)]dt’] . 2)
th —®

The second term on the right-hand side of Eq. (2) van-
ishes if one evaluates it in the Weisskopf-Wigner (WW)
approximation, i.e., extends the lower limit of the w; in-
tegration to — oo and treats ¢(wy ) as a constant. The jus-
tification for this ansatz is obvious—the integrand is large
only near w; =0, so that we expect our result to be insens-
itive to its form in the wings. Our task later will be to
calculate the leading nonvanishing contribution to this
second integral.

To see that the WW approximation causes this integral
to go to 0, perform the w; integration in the complex
plane, using a contour that extends along the real axis be-
tween V¥, with ¥— «, closed by a semicircular arc in
the lower half-plane. The contribution from the arc van-
ishes, since ¢ >t’, while the contour has no singularities
except for a simple pole in the upper half-plane. Thus,
within the WW approximation, we immediately have
J

[
do=— [m(0)~iP [ $lp)der /o |t @ Paoto
t!

or
ao=exp [~(y/2+4i8) [*_1rpar |, 3

which reduces to the standard ag=exp[(—y /2+iS)t] for
the case where f is a unit step function. The parameter S
is the shift induced by the interaction.

We note in passing that the analysis leading to Eq. (3) is
also valid if f(t)—0 as t— + oo, i.e., if the interaction is
a pulse. Thus, Eq. (3) may be interpreted as a generalized
WW approximation for time-dependent couplings.

We shall now calculate the dominant contribution to
the second integral in Eq. (2) for the case of finite Q,;, and
variable ¢. It will be sufficient to evaluate the integral

I=—i f:h[nt(wk)f(t)exp(—iwkt+€t)/(cak—i6)]dcok f' expliogt' +et')d/dt' ) f(t')ay(t')]dt’
t —

to lowest order in ¢. If, in addition, we assume that the absolute values of ¥ and S are sufficiently small, we may simply
take ao=1 for the time interval where f is nonzero, while the contribution arising from a, is of higher order in ¢ and

will be neglected. To the indicated level of approximation,

I=—i fm [¢(wk)exp(——iwkt+et)da)k/(wk—ie)]f’ exp(iwkt’+et’)f(t')dt'
Qy —®

=—i f(:h(Zﬂ)]/zzﬁ(wk)exp(—iwkt +et)g;(wg,dwy /o —i€)

where the function g;(wy,t) will be designated the “in-
complete” Fourier transform of f(z'). Considered as a
function of wy, the product P(w;)=exp(—iwyt +€t)g; is
analytic in the half-plane Imw; <0, provided that the con-
dition ¢ >t' obtains, as it does here. It is convenient to
make the change of variable v=w; — Q, yielding

I=—i2m'? [ 7 dvPv+Q)$(v+0)/(v+Q—ie) ,

where we have dropped the subscript “th.”

We shall formally integrate the expression for I in the
complex plane, using the same contour as Robiscoe;
namely, the real axis from the origin to R, a circular arc
clockwise to (0,— iR), with return to the origin along the
imaginary axis, in the limit R— . The contribution
from the arc vanishes, while the evaluation of the contour
integral requires a knowledge of the singularity structure
of . We shall make the assumption that either ¢ is ana-
lytic in this quadrant or the singularities are of such char-
acter and location that their effect is negligible. This an-
satz applies to the problems considered by Robiscoe and
by Mittleman and Tip,>* but would not obtain if there
were a resonance near v= —{). Thus, the dominant con-
tribution in this approximation arises from the integral
along the negative imaginary axis. Since ¢ is very large,

the integrand contains a factor that is exponentially small
except for a small region near the origin. Accordingly, it
is correct to approximate the factor g;(v+Q,t)/(v
+Q—ie) by g;(Q,2)/(Q—i€), and move this product out-
side the integral sign. Furthermore, since f—0 for
t >>T, we may replace g;(Q,t) by g(Q)=lim,_, , g;(Q,?),
the normal or “complete” Fourier transform. In addition,
if |QT | >>1, it would be appropriate to represent g by
its asymptotic form. Thus, the entire difference between
corrections that apply when the preparation function is
varied is cor}tained in the factor g(), the Fourier
transform of f. The asymptotic form of g will be a power
law in (Q7)~! unless all derivatives of f exist. In the
latter case, g will be a function of QT that vanishes more
rapidly than any power law as | QT | — . These con-
clusions are similar to those presented in Ref. 3 in so far
as the functional form of the attenuation factor is con-
cerned, but differ in that this factor is a function of T, not
t. Only if there is no distinction made between the rise
time T of the coupling and the observation time ¢ will we
get the same results as Mittleman and Tip.> Furthermore,
if QT «<1, it is obvious that the expression for a step-
function switch is recovered. Thus, if an experimentalist
wished to look for long-time corrections to the exponen-
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tial decay law, he might, with a suitable choice of prob-
lem, succeed in avoiding a case where adiabatic switching
is predicted to attenuate the signal. This would, of course,
still leave the very formidable difficulty of surmounting
the small size of the correction in the presence of sudden
onset.

It is relevant to inquire whether, in fact, there are cases
where |QT | <<1. An example immediately presents
itself—the photoionization problem discussed by Mittle-
man and Tip.> If the exciting laser is of nominal frequen-
cy <l cm~! above the ionization threshold, and is
switched on in a time <10~ sec, a choice which seems
compatible with the state of the art, | QT | would be
<0.1, which should be satisfactorily sudden. Moreover,
the photoionization cross section is finite at threshold (in
contradistinction to that for the photodetachment of neg-
ative ions, which vanishes at least as fast as Q3/2). This
means that, since the integral I is proportional to v/,
and y does not vanish more rapidly than ) as Q goes to
zero, the correction term has a relatively large intrinsic
amplitude. That is, a decay which involves photoioniza-
tion near threshold appears to be a promising candidate

for an experimental investigation of long-time deviations
from the exponential law.

To summarize, we have found, in agreement with Mit-
tleman and Tip,’ that adiabatic switching can attenuate
the correction term to the exponential decay law at long
times. However, we differ from those authors in that the
reduction depends on the rise time of the coupling poten-
tial, instead of the observation time, a result that suggests
the existence of problems where the attenuation is absent
or not important. Photoionization, the problem analyzed
in Ref. 3, may be a promising candidate for a search for
this effect.

Finally, we note that our treatment does not address the
question of what effect couplings other than those be-
tween the one bound state and the single continuum have
on the correction term, or on the main exponential law it-
self. This matter should be studied before any experimen-
tal investigation is undertaken, should anyone be bold
enough to consider doing so.
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