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A recently proposed two-step method is applied to the quantum-mechanical problem of one-dimensional

Morse potential. The method is composed of two steps. In the first step a variational principle is applied to

a generalized coherent-state ansatz which in the present case is nothing but a Gaussian with a shifted origin

and modified frequency. Correlation corrections are then added in the second step by standard perturba-

tion. The "rigorous formula" for the energy spectrum is derived by a lowest-order perturbation calcula-

tion. As a severe test of the theory, we have applied the method to calculate the Frank-Condon factors.

The agreement with numerical calculation is excellent over eight orders of magnitude.

I. INTRODUCTION II. THEORY

The Morse potential' and its superpositions have been
widely used as an approximation to interatomic potentials.
The vibrational energy spectrums were usually obtained by
approximating pole conditions on the gamma functions. But
the eigenfunctions obtained' are difficult to be used for
evaluating Frank-Condon factors. ' In an attempt to study
the unharmonic effects, Kono, Huo, and Lin6 sho~ed that
straightforward harmonic approximations usually yield un-
reliable results for the Frank-Condon factors in comparison
with numerical integrated values.

Recently, we have proposed a two-step method to solve
the anharmonic oscillators. ' The method is heavily influ-
enced by the coupled-cluster method (CCM)s of the many-
body problems. In the first step a generalized coherent-
states ansatz of SUB 2 approximation in the language of
CCM is introduced. The variational principle is then applied
and is solved via a Hartree-Bogoliubov transformation. In
the present case this is equivalent to an optimized Gaussian
with shifted origin and modified frequency. ' " Correlation
corrections are then added in the second step by CCM or
various methods of perturbation, with the confidence that
all the disastrous coherent effects have been taken care of
in the first step. The method is simple, straightforward, and
has a clear physical picture. It has been successfully applied
to the $42 quantum field theory, ~ " coupled oscillators, "and
electron correlations. "

In Sec. II we apply the two-step method to solve the vi-
bration spectrum of the Morse potential. The widely used
"exact" expression for the energy spectrum is derived by
keeping terms up to first order in the anharmonioity. The
best harmonic approximation to the Morse potential is one
with shifted origin and modified frequency. In Sec. III we
calculate the Frank-Condon factors. It is sho~n that the
corrections in the second step are very important in obtain-
ing satisfactory results. The conclusion and discussions are
also given in that section.

l

The Hamiltonian for a one-dimensiona1 vibration for the
Morse potential can be written as"

H- —— +—y (1—2e "+e "), (1)1 9 1
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where
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To write (1) in a second quantized form we face the prob-
lem with the choice of the correct origin and the frequency.
However, this problem can be put in a form of a generalized
coherent-state ansatz of the SUB 2 approximation in the
language of CCM. ' ' The Hamiltonian can then be
transformed by a Hartree-Bogoliubov transformation, '
and as already mentioned the only result in our case is a
change of the origin and the frequency. %e can therefore
skip the ~hole step by just introducing the creation and an-
nihilation operators through

x - (1/v'2yaa))(a +a') +r,
' 1/2

1 8 . +0.'49 (a —a),
I QX 2

where the creation and annihilation operators a and a satis-
fy the commutator relation

[a,a'l-1 .

The frequency ~ and the shift of the origin 7 are to be
determined by the variational principle. %ith use of the
operator identity

~A +8 ~A~ B~ —[A,Bl/2

which holds when [A,B) is a c number. We may write the
Hamiltonian (1) in a normal ordered form:
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where

to«0 =t iy a/Mr(f (7)

and

aE/a -o, (13)

v)=2y/a . (8)

which leads to

2 ~
—.1/~ (14)

In the standard treatment, the fact that q is a big number

plays an important role. This fact will also show up in our
treatment. The bare ground state for (6) satisfies

aio) 0 .

Its expectation value is given by

s- &oieio)

Inserting (12) and (14) into the Hamiltonian (6) and keep-
ing only the diagonal terms up to I/q and off-diagonal
terms up to I/ Jg, we can simplify (6) and arrive at

'I
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Application of the variational principle now yields

(10)

Notice the absence of the linear and the quadratic terms in
the creation and annihilation operators. This is an essence
of the Hartree approximation. The advantage of our
Hartree-Bogoliubov transformation lies in the physical inter-
pretation of the generalized coherence ansatz. ' Any disas-
trous coherent effect has been taken care of in the first step.
Further perturbation around this coherent state is expected
to be small and harmless. We therefore apply the standard
perturbation theory. The zeroth-order eigenvector of (15)
is given by

aS/ar -0- exp( —ar + I/2qcu) —exp( —2ar + 2/pcs)
)n), (0)

(ai ) II

(16)

or

AT ~ 3/2'rtCd (12)
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and the first-order approximation is given (keeping only the
lowest order in I/Jq) by

I/12Jq[4(n +1)(n+2)(n +3) In +3) —4n(n —1)(n —2) (n —3) ]+3/4Jg[mln+1]n +1) —(n —1)Wn (n —1) ] . (17)

With use of (17) and the expansion from (14)

cu - 1 —I/2g+ 0 ( I/rt'), (18)

we obtain for the energy spectrum by a second-order pertur-
bation keeping terms up to order I/q, the "rigorous result":

S„-tcuo[(n + ~) —(I/q) (n + ~)'] (19)

Systematical improvement is straightforward. In most cases,
this is not necessary due to the smallness of I/it.

III. APPLICATION TO FRANK-CONDON FACTORS
AND DISCUSSIONS

d'-v (~i/~i) (d+ (3/442) [(1/Jqp) —(I/v qi)]] . (20)

The results of the calculation are given in Table I. The

As a severe test of our theory, we have applied it to cal-
culate the Frank-Condon factors ~(v'[i") )2, recently treated
by Kondo, Huo, and Lin. The original frequencies are

cubi

- 1160 cm ', rai = 870 cm ', rs i/pi ——1 cm ', and
coi/q2-2 cm '. In addition to the corrected frequencies
due to Eq. (14), the original shift d -0.825 is now changed,
because of Eq. (12), to

t

first entry is the harmonic approximation with the correct
frequency and shift. In the second entry, we include via
(17) the lowest correction in order of I/Jg, or I/~ili. The
comparison with the numerical results (last entries) is very
satisfactory. " In the third entries we include the whole
first-order correction to the Hamiltonian (15). The agree-
ment with the numerical results is excellent over eight or-
ders of magnitude. If necessary, a systematic improvment
can be obtained with use of our method.

%'e conclude our paper by a few observations: Although
the first-order correction to the wave function is very small
in amplitude, sometimes it is the dominating term in the
Frank-Condon factors due to its rapidly changing in magni-
tude. Any harmonic approximation to nonlinear potentials
is doomed to fail sooner or later. One should be very cau-
tious in treating the corrections. Similary, the Hamiltonian
(15) may be obtained by retaining the correct order from a
truncation in the expansion of (1) in powers of x up to the
sixth order. But due to the rapid cancellation, the energy
obtained by directly diagonalizing the truncated Hamiltonian
is usually worse than the "rigorous" result (19). In con-
clusion, we have sho~n in this paper and a related series of
papers "' that the two-step method is simple, straight-
forward, and yet very powerful in yielding accurate results.
It is appealing because of its clear physical picture. The ex-
tension of our method to superpositions of the Morse po-
tential and other nonlinear potentials is straightforward.
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TABLE I. Frank-Condon factors [(v'(v") )2 for Morse potentials. The suitable parameters are given in

the text. In our notation, v' and v" represent the v'th and v"th vibrational level corresponding to ao& and

co2, respectively. The first entry is the harmonic approximation. The second includes the lowest correction.
The third entry contains the whole first-order correction. The last entry is the numerical result from Ref. 6.
The entry 2.49(-1) means 2.49x10 ', etc.

7.29(-1)
7.31{—1)

7.31(-i)
7.27(-1)
2.55(—1}
2.47(-1)

2.46(—1)
2.49(—1)
1.55(—2)
2.39(-2)

1.91(—1)
2.00(-i}

2.00(-1)
2.02(-1)
3.44(-1)
3.27(-1)

3.27(-1)
3.20(—1)
4.13(—1)
3.97(-1)

5.98(—2)
5.48(-2)

5.45(-2)
5.55{-2)
2.18(-1)
2.52(-1)

2.51{-1)
2.52(-1)
1.30(—1)
9.44(—2)

1.52(-2)
1.21(—2)

1.20(-2)
i.24(-2)
1.20(-1)
i.22(-1)

1.20(—1)
1.24(—1)
1.67(—1)
2.06(-1)

2.35(-2)
2.42{-2)
2.74(-4)
1.11(-4)

1.26(—4)
i.67(-4)
4.13(-4)
2.96(-4)

2.45(-4)
1.64(-4)
1.06(—5)
8.43(-5)

8.36(-S)
4.60{-5}
3.51(-6)
5.07(—7)

2.90(-6)
1.29(-6)
7.2i(-7)
1.97(-6)

6.25(-7)
1.72(—7)
5.38{-9)
3.46{-7)

3.53(-7)
1.03(-7)
1.67(-8)
6.93{—9)

5.91(—9)
5.91{-9)

3.94(-1)
3.95(-1)
4.92(-2)
8.ii(-2)

7.61(-2)
7.94(-2)
5.00(-4)
i.63(-3)

1.28(-3)
2.01(-3)
1.88(-3)
i.i8(-3}

1.04(-3)
4.84(-4)
7.82(-5)
5.93(-4)

5.30(-4)
2.82(—4)
2.00(-5)
9.97(—6)

2.3i(-5)
i.73(-5)
5.83(—6)
1.53(-5)

4.93(—6)
4.74(-7)
2.30{-8)
3.84{—6)

3.ii(-6}
8.72(-7)

9.36(-2)
9.03(-2)
4.86(-1)
4.42(-1)

4.37(—1)
4.30(-i)
i.oo(-i)
i.72(-i)

1.52(-i)
1.61(-1)
3.86(-4}
8.64(-3)

5.08(—3)
9.60(—3}
5.02(-3)
2.56(-3)

2.68(—3)
6.23(-4)
3.20(—4)
2.33(-3)

1.84(-3)
9.20(—4)
6.34(-5)
7.93(-S)

9.04(—5)
1.06(-4)
2.61(—5)
6.44(-5)

2.21{-5)
9.89(—8)

2.06(-1)
2.02(—1)
3.14(-2}
5.86(-3}

5.26{-3)
5.12(-3)
4.9i(-1)
3.98(-1)

3.96(-1)
3.73(—1)
1.64(—1)
2.87(—1)

2.39(—1)
2.52(-1)
5.78(—5)
2.87(—2)

1.29(-2)
2.92(-2)
1.03(—2)
3.8i(—3)

5.48(—3)
2.69(—4)
9.61(—4)
6.»(-3)

4.69(—3)
2.07(—3)
1.47(—4}
3.96(—4}

2.37(—4)
4.22(—4)

ACKNOWLEDGMENTS

This cwork was finished during the author's visit at the University of Bochum. He would like to thank his colleagues in
Bochurn, especially, Professor Kummel for his hospitality and stimulating discussions. This cwork is supported by the Na-
tional Science Council of the Republic of China.



33 1395

'Permanent address.
'P. Morse, Phys. Rev. 34, 57 (1929).
2P. A. Fraser and %. R. Jarmin, Proc. Phys. Soc. London, Ser. A

66„ 1145 (1953);66, 1153 (1953).
3T. Y. Wu, Proc. Phys. Soc. London, Ser. A 6$, 965 (1952).
~T. Y. Chang and M. Karplus, J. Chem. Phys. $2, 783 (1970).
~M. Ramjee, M. L. P. Rao, D. V. K. Rao, and P. T. Rao, J. Chem.

Phys. 7$, 1574 (1981).
6H. Kono, Z. Z. Huo, and S. H. Lin, Chem. Phys. 80, 1760 (1984).
7Chen-Shiung Hsue and J. L. Chem, Phys. Rev. D 29, 643 (1984).
SFor a review, see H. Kommel, K. H. LOhrmann, and J. G. Zabol-

itzky, Phys. Rep. 36C, 1 (197S).
~C. S. Hsue, H, Kummel, and P. Ueberholz, Phys. Rev. D 32, 1435

(1985)

M. Altenbokum, thesis, University of Bochum, 1984 (unpub-
lished}; M. Altenbokum and H. Kummel, Phys. Rev. D 32, 2014
(19&5).

~C. S. Hsue and C. L. Lin (unpublished); see also C. L. Lin, Ph. D,
thesis, Tsing-Hua University, 1983 (unpublished).
C. S. Hsue, Mol. Phys. $3, 1009 (1984) ~

K. Emrich and J. G. Zabolitzky, Phys. Rev. B 30, 2049 (1984).
t~S. Flttgge, Practical Quantum Mechanics I (Springer-Verlag, New

York, 1971)~

tsThe only marked difference is the entry l(9I2)12. The numerical
result given in Ref. 6 changes very rapidly here. We do not know
at this moment whether this discrepancy is a real one or is only
due to a numerical cancellation.


