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Theory of the extended-ratio method and its application to lattice models
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The theory of the extended-ratio method (ERM) and its extensive applications to various lattice
models are presented here in detail. %e find the following interesting features in contrast with the
traditional ratio method (TRM): the results of the ERM very often (except for a very special exam-

ple encountered among the studied lattice models) appear to be smoother and better or at least com-

parable to those of TRM; the odd-even oscillations appearing in the loose-packed lattices are re-

duced greatly; the Neville tables often provide sequences with a faster convergence rate and appear
steadier and more reliable; while the computational efforts needed for the ERM are the same as
those needed for the TRlVl.

I. INTRODUCTION

The series-expansion method has played an important
role historically in the development of the study of critical
phenomena. Like the Monte Carlo and some renormali-
zation methods, it is still very important in the theoretical
investigations of critical phenomena nowadays. The
reason is very obvious: only very few problems can be
solved exactly, while the series expansion itself often pro-
vides a reliable but rather simple and straightforward
method. It is well known that it is very time-consuming
to get any valuable results from the exact enumeration,
which is the starting point of the series-expansion method,
of configurations for a given lattice model. The rate of
increase of computer time used for every additional step
(or site or bond) of the enumeration, generally speaking, is
as rapid as (or even faster than) that of a geometric series.
Thus, in the interest of reducing the time consumption in
the exact enumeration process, how to improve the con-
vergence of the series-expansion method is a very signifi-
cant subject.

The ratio method has succeeded remarkably in deter-
mining the location and nature of the singularity which
lies on the real axis and is dominant. For example, the
value of the exponent y (=1.75) characterizing the high-
temperature susceptibility of the two-dimensional Ising
model close to the Curie temperature was detei~ined on
the basis of up to nine terms of the exact-series-expansion
method, some time before its exact theoretical justifica-
tion was known. Because of its simplicity and efficiency,
one often prefers to use the ratio method first rather than
any other.

An extended-ratio method (ERM) has been proposed by
these authors' and successfully applied to self-avoiding-
path walks (SAPW's) and the spiral-bond —animal model
very recently.

In this paper, the mathematical basis for the ERM, us-
ing two mathematical theorems (Stoltz's theorem and
Darboux's first theorem" ), is given. The results for the
application of ERM to various lattice models are present-
ed in detail. Our results show that in almost every case
studied, the results from the ERM are better than or at

least comparable to those from the traditional ratio
method, while the computer time consumed is almost the
same for both.

II. THEORETICAL FRAME%ORK

p~= g p„ /Cst~BN ",
I~N I

(2)

where (to~ I and p„are, respectively, the distinguishable

N-step (or site or bond) configurations and square end-to-
end distances obtained by the exact enumeration in the
given lattice model. In Appendix B, we show generally
the validity of the following three equations (we have
proved some of these only for the SAPW case specifical-
ly') provided the Eqs. (1) and (2) are fulfilled:
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The method in which the ratios (3)—(5) are used, instead
of those used in the tradiational ratio method (TRM), is
called the extended-ratio method in this paper, and a
qiumtity with a superscript S represents a result of ERM,

We assume the following conventional asymptotic rela-
tions for large N for some lattice model:

c
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using Stoltz's theorem.
From Eqs. (3)—(5), one finds that these equations give

the same asymptotic behaviors as those of the TRM (but
give no information about the rate of convergence, espe-
cially when N is not large). Thus all the steps for the fur-
ther numerical analysis in the TRM can be adapted to ob-
tain the critical quantities. This is just the content of the
ERM. At first sight, the surprising simplicity of the
ERM seems to be trivial, while it does in practice often
improve the convergence rate.

Defining the generating function of C~ as usual,

f (z) = g C~z =A ( 1 —pz)
X=0

one defines Cz= g OC~; it is obvious that

8 Pf2v+1 1+0
2v+ 1

I

gl
+ ( 1)N 1+0 1

2 N
(14)

III. NUMERICAL RESULTS AND DISCUSSIONS

First, we define some symbols that appear in the text.
Assume X is some critical quantity, and x the correspond-
ing critical index. Then,

then we can prove the next line in the same way (see Ap-
pendix C),

f(z)(1—z) '= g C~z
%=0

By use of Darboux's first theorem, one can show that
these two sequences of Cz and CN have the same asymp-
totic behaviors. That is, the ERM and TRM certainly
will lead to the same critical quantities eventually when
N~ oo. It is very interesting to note that the convergence
rate of the original sequence can be improved by such a
simple procedure: multiplying the generating function by
a proper function [here the (1—z) ' is used in the ERM].
One can consider the rate of convergence as a functional
of the multiplied function with some constraint conditions
so that it should not change the location and nature of the
interesting singularity of the generating function. The
problem of determining which function to give the
highest rate of convergence for the new sequence is a sig-
nificant subject.

We can prove that the odd-even oscillation, a trouble
encountered in the loose-packed lattices, is reduced in the
ERM. According to Sykes et al. , the ON's in the loose-
packed lattice can be written as

X~ —= i (X~+Xiv i»-
X(N, M) = (NX~ —Mar ),1

x~ =N(X~/—X' 1), —

X~ =N(XN /X' 1), —

where X' is the estimated value of X. The definition of
the Neville table is as follows:

0
W =—&N

eN =
I¹~' —[N —(N —M)l]e~ 'J /(N —M)l,

and M=N —1 for the close-packed lattice, M =N —2
for the loose-packed ones.

After extensively applying the ERM to various lattice
models, we get the following results.

C~-AaN+A'( —1) b~,
where

a~ =@~X&-'

and

pNNr' i—
We can prove (see Appendixes B and C)

ga = pN" ' 1+0
m=0

and

2.708

2.684

0.01
1
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1/N
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I
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I
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1
( 1)mb O' NNy' 1 l+0-

p+1 E (12)

p =EN "+8'(—1) N (13)

Notice that p) 1; thus taking the sum will strengthen
the weight of the smooth terms and depress the oscillating
ones. The analogous conclusion also holds for g C p
since if we have

0.014
I

0,028
I

0.042
1/N

I

0.066

I

0.070

FIG. 1. Consecutive constants vs 1/X for a SA%' on two lat-
tices. Curves a and b are p~ and p~, respectively, for a hexago-
nal lattice; curves e and d are p~ and p~ for a square lattice.
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0.75- - 0.595
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0.012 0.018
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t

0.024

0.89- - 0.550

FIG. 2. Consecutive constants and correlation-length ex-
ponents vs 1/N for two lattice models. Curves c and b are p~
and pN, respectively, for the SAW on a sc lattice; curves c and d
are v~ and v~, respectively, for the spiral SAW on a square lat-
tice.

A. Self-avoiding walk (SAW} (Ref. 6),
including some return to the origin SAW,

on square, triangular, hexagonal, simple-cubic (sc},
and face-centered-cubic (fcc) lattices

One can find from Figs. 1—3 that, as we have expected,
the ERM reduces greatly the odd-even osrillations appear-
ing in the loose-packed lattices, and the results of the v~'s
are the steadiest ones. From these figures and Tables
I—IV, one can find further that the odd-step sequences for
}u~'s and y~'s are close to those for pz's and yN's, respec-
tively. The contents in the figures and tables mentioned
above strongly support the impression that the results of
the ERM are steadier than those of the TRM's. Far ex-
ample, from Table II, the range of variation of y~'s
(p'=4. 1517} is 0.0013 for SAW's on a triangular lattice
from N =14 to N =18, while the corresponding variation
for yz (with the same p') is only 0.0006.

The sequences provided in the Neville table by the

0.67
0.02

I I

0.04 0.06
1/N

I

0.08

I

0.10

FIG. 3. Correlation-length exponents vs 1/N for the SAW
on square and sc lattices. Curves a, b, and c are v~', v~, and
v, respectively, far the sc lattice; curves d, e, and f are v~', v~,
and v for the square lattice.

ERM aften appear to converge more rapidly and more
steadily than those by the traditional one. For example,
they provide mare reliable results for the correlation-
length exponent ( =0.75} until / =6 (/ is the order of the
Neville tables) in Table II.

Another even more interesting feature is presented in
Table IV(b): when I & 2, the v~'s provided by the Neville
tables for a SAW on a sc lattice in the TRM increase with
N, thus giving an incorrect tendency when compared with
the value of 0.5875 in which the confluent correction has
been considered. However, a correct tendency of our vz 's

is preserved even in high-order Neville tables.
In Table II, it is also shown that the variations of

p(N, M) and yz with N for a triangular lattice are oppo-
site to those of the ERM quantities. Thus it is helpful for
the error estimation for those quantities.

TABLE I. The susceptibility exponents for the SA%' problem on a square lattice.

PN TN
(p' =2.6385) (p' =2.6385)

fN
(p'=2. 639)

fN
(p' =2.639)

S —S

(p' =2.638S) (p' =2.6385)

S

(p' =2.639)
7N

(8' =2.639)

20
21
22
23
24

1.3052
1.3567
1.3078
1.3553
1.3100

1.3318
1.3309
1.3323
1.3315
1.3326

1.3011
1.3527
1.3036
1.3508
1.3054

1.3280
1.3270
1.3281
1.3272
1.3281

1.3305
1.3531
1.3309
1.3518
1.3313

1.3426
1.3418
1.3420
1.3414
1.3416

1.3267
1.3491
1.3267
1.3474
1.3267

1.3388
1.3379
1.3379
1.3371
1.3370



33 THEORY OF THE EXTENDED-RATIO METHOD AND ITS. . . 1359

TABLE II. (a) The linear projections of the connective constant and the susceptibility exponent for the SAW on triangular lattice.
(b) The Neville table of correlation-length exponents for the SAW on a triangular lattice.

14
15
16
17
18

4.24900
4.242 60
4.23700
4.23205
4.227 64

I (w, M)

4.1536
4.1533
4.1531
4.1530
4.1527

fN
(p' =4. 1517)

1.3280
1.3284
1.3287
1.3290
1.3293

(q'=4. iriS)

1.3287
1.3291
1.3295
1.3299
1.3302

S
PN

4.251 34
4.244 65
4.238 80
4.233 64
4.229 06

p {N,M)

4.1508
4.1510
4.1511
4.1512
4.1512

fN
(p' =4.1517)

1.3360
1.3358
1.3357
1.3355
1.3354

S
fN

(p' =4.1515)

1.3367
1.3366
1.3365
1.3364
1.3363

1=0 1=2 1=3

(b)
0

eN =vS
1=4

13
14
15
16
17

0.7463
0.7462
0.7460
0.7459
0.7459

0.7439
0.7441
0 7AAA

Q 7AAA

0.7448

0.7455
0.7459
0.7450
0.7474

0.7477
0.7409
0.7589

0.7205
0.8177

13
14
15
16
17

0.7477
0.7474
0.7472
0.7470
0.7469

0.7443
0.7443
0.7443
0.7443
0 7AAA

0.7440
0.7441
Q 7AAA

0.7445
0.7448

0.7445
0.7455
0.7454
0.7464

0.7484
0.7448
0.7496

B. Site lattice animal (SLA) on square, triangular,
and hexagonal lattices (Ref. 7)

From Tables V—VII, it is seen that in all cases the
ERM results are steadier than those of the ratio method.
All the v~'s are closer to the well-accepted value of v= l.

From the tables mentioned above we find further that
the two sequences corresponding to two different values
of A, have an opposite tendency in variation; one thus has
reason to expect that the exact value of A, would have an
intermediate value between these two A, 's.

Also from the opposite tendencies of A,(N, M) and
A,~(N, M), one can make an error estimation for A, 's.

the ERM even if N is large. The reason is obvious: the
ratio method provides an exact solution by accident, since
the asymptotic behavior is just an exact relation in this
case. In the other two remaining cases (square and hexag-
onal lattices) the ERM still prevails against the TRM.
The DSLA on a triangular lattice is the only exception in
our numerical analysis of the various lattice models.

D. Spiral SAW on square lattice (Ref. 9)

Figure 2 shows a reduced odd-even oscillation appear-
ing in the ERM, and Table VIII shows that the sequence
in the ERM is steadier.

C. Directed-site lattice animal {DSLA)
on square, triangular, and hexagonal lattices (Ref. 8)

The DSLA on a triangular lattice is the only exception
for which the TRM provides a better result than that of

E. SAPW's on square, triangular, and sc lattices (Ref. 1)

The SAPW problems have attracted much interest re-
cently. " %e have pointed out that errors occurred in

TABLE III. The connective constant and the susceptibility exponent for the SAW on a hexagonal
lattice.

30
31
32
33
34

1.866 96
1.869 23
1.865 92
1.867 90
1.86490

p(X,M)

1.8484
1.8468
1.8504
1.8472
1.8486

(p'= 1.848)

1.3078
1.3562
1.3103
1.3554
1.3110

1.868 90
1.86906
1.867 60
1.867 74
1.86642

p (X,M)

1.8474
1.8467
1.8480
1.8473
1.8476

S
PN

(p'= 1.848)

1.3394
1.3533
1.3394
1.3525
1.3389
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TABLE IV. (a) The susceptibility exponent for the SAW on a
simple-cubic lattice. (b) The NeviHe tables of correlation-length
exponent for the SAW on a simple-cubic lattice.

(a)

YN TN
{p' =4.6835)

3N Px
(p' =4.6835)

15
16
17
18
19

1.1756
1.1530
1.1744
1.1542
1.1734

1.1635
1.1643
1.1637
1.1643
1.1638

1.1746
1.1600
1.1734
1.1604
1.1726

1.1670
1.1673
1.1667
1.1669
1.1665

1=0

0.6346
0.6042
0.6256
0.6027
0.6201

0.6158
0.6021
0.6032
0.5894
0.6007

0.6521
0.6062
0.5938
0.5947
0.5974

0.6062
0.5841
0.5909
0.5993

1=4

0.5974
0.5909
0.6012

0.6300
0.6219
0.6229
0.6180
0.6185

0.6085
0.6110
0.6054
0.6063
0.6028

~sr =4
0.6440
0.6098
0.6030
0.6015
0.5597

0.6098
0.5962
0.5988
0.5981

0.6078
0.5988
0.5983

TABLE V. The connective constants and the susceptibility exponents for the SLA on a triangular lattice.

12
13
14
15
16

4.768 10
4.79908
4.825 74
4.848 93
4.86929

5.1690
5.1709
5.1724
5.1736
5.1746

5.2016
5.1990
5.1970
5.1953
5.1939

0.9755
0.9792
0.9826
0.9858
0.9887

0.9542
0.9560
0.9575
0.9587
0.9597

4.757 68
4.79038
4.818 36
4.842 59
4.863 77

5, 1838
5.1827
5.1821
5.1818
5.1816

5.1902
5.1896
5.1890
5.1885
5.1880

0.9996
1.0010
1.0025
1.0041
1.0057

0.9783
0.9778
0.9774
0.9771
0.9768

TABLE VI. The connective constants and the susceptibility exponents for the SLA on a square lattice.

15
16
17
18
19

3.80224
3.81800
3.831 96
3.84440
3.855 57

A,(N, M)

4.0530
4.0540
4.0549
4.0556
4.0563

(A, '=4.06)

0.9523
0.9537
0.9549
0.9559
0.9567

+N

(A.
' =4.07)

0.9868
0.9907
0.9943
0.9977
1.0010

3.795 36
3.81204
3.826 73
3.839 79
3.85146

4.0632
4.0624
4.0620
4.0618
4.0616

0.9777
0.9772
0.9767
0.9763
0.9759

1.0122
1.0141
1.0161
1.0182
1.0202

TABLE VII. The connective constant and the susceptibility exponent for the SLA on a hexagonal lattice.

18
19
20
21
22

2.873 55
2.881 79
2.889 25
2.89603
2.902 21

A,(N, M)

3.0285
3.0294
3.0305
3.0313
3.0318

(A,
' =3.04)

0.9855
0.9888
0.9918
0.9946
0.9972

(A,'= 3.03)

0.9294
0.9294
0.9291
0.9285
0.9279

2.868 24
2.87706
2.88501
2.89221
2.898 75

3.0362
3.0359
3.0360
3.0361
3.0362

1.0170
1.0184
1.0197
1.0209
1.0222

+N

(A,
' =3.03)

0.9610
0.9590
0.9570
0.9550
0.9530



33 THEORY OF THE EXTENDED-RATIO METHOD AND ITS. . . 1361

TABLE VIII. The Neville table of correlation-length exponent for the spiral SA% on a square lat-
tice.

0.6151
0.6166
0.6145
0.6158
0.6141

0.5866
0.5971
0.5918
0.6014

0.6306
0.6677
0.6654

0.6018
0.6023
0.6027
0.6032
0.6036

0.6324
0.6312
0.6299
0.6289

0.58SO
0.5935
0.5932

fN
(p' =2.718)

TABLE IX. The susceptibility exponent for SAP%'s on a square lattice.

PN
(p' =2.719)

S
fN

(8' =2.718)

14
15
16
17
18

1.3919
1.3829
1.3910
1.3814
1.3903

1.3872
1.3886
1.3970
1.3877
1.3970

1.4078
1.4022
1.4047
1.3988
1.4018

1.4121
1.4068
1.4095
1.4039
1.4072

TABLE X. The susceptibility exponent for SAP% s on a simple-cubic lattice.

7
8
9

10
11

YN
(8' =4.850)

1.1207
1.1221
1.1211
1.1228
1.1208

fN
(p,

' =4.S49)

1.1222
1.1238
1.1229
1.1249
1.1231

fN
S

(I '=4.850)

1.1269
1.1267
1.1254
1.1262
1.1245

gN
S

(p' =4.849)

1.1284
1.1284
1.1273
1.1283
1.126S

18 1110 9
lillf pl f 0 g

I 8 1111
~ + + ~ %$% ~

4.960

2.80

4.920 1.20

2.75
4.889

I I I alg
5 6 7 891011 4.840

h ~ l 5 I I

FIG. 4. Consecutive constant vs 1/N for the SAP%' on
square and triangular lattices. Curves a and b are v~ and vN

for the square lattice; curves c and d are vN and v(N) for the
triangular lattice.

FIG. 5. Correlation exponents vs 1/N for the SAP%' on
square and sc lattices. Curves a and b are 2d~' and 2v~ for the
square lattice; curves c and d are 2vN' and 2v~ for the sc lattice.
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the exact enumeration, the fundamental starting point in
series expansion, in the previous works, " and after a
corrected exact enumeration up to N =18, 12, and 11 on
square, triangular, and sc lattices, respectively, these au-
thors suggested it could belong to a different universality
class. This has attracted renewed interest and effort; it
seems the SAP%"s still have the same universality class as
do SAW's, but the complexity and the necessity for
analysis based on the exact enumeration of more steps was
previously unexpected.

Nevertheless, our Figs. 4 and 5 and Tables IX and X
show obviously the reduction of odd-even oscillation in
the ERM results. It is interesting to note that the two re-
sults of p and y for the ERM and TRM are close when N
is even, in contrast with the SAW. It seems this differ-
ence between the SAPW and the SAW is not accidental.

ERM is a very simple but rather valuable method for the
numerical analysis in the series-expansion inethod.

APPENDIX A: TWO MATHEMATICAL THEOREMS

The following two mathematical theorems are often
used in proving the mathematical basis for the ERM; we
repeat them here to remind the reader.

1. Stoltz's theorem (Ref. 3)

If the following conditions are fulfilled for the two se-
quences IX& I and I Y& I,

F~+)p F~, lim X~=+00, lim F~ ——+op,
N~ oo N-+ e)

then we have

F. The spiral-bond animal (SBA) on square lattice

A new interesting lattice model, the SBA, has been pro-
posed and strongly confirmed by these authors to belong
to a different universality class compared with the SLA
and DSLA.

In this lattice model, the ERM results are comparable
to those of the TRM. Perhaps more exact enumeration is
needed to show the prevalence of the ERM.

lim (X~/YN) =A,
N-+ oo

provided the following limit exists:

lim [(X~—XN i)/(Y~ —Y~ i)]=A .
N~ oo

2. Darboux's first theorem (Ref. 4}

If the function F(z) can be represented by

(A 1)

IV. SUMMARY F(z)=A(z)(1 —pz) "+8(z)= g azz
N=0

(A2)

In this paper we recommend an extended-ratio method
as a worthy one in the series-expansion approach. It is
valid whenever the singularity lies on the real axis and
dominates like the TRM does. Our numerical results for
some varieties of the interesting lattice models show that,
in almost every case studied, the ERM results are compar-
able to (often smoother and better than) those of the
TRM, while the computer time used is almost the same
for these two methods. The ERM often provides a more
rapid rate of convergence; the sequences provided in the
Neville table by the ERM often appear to converge more
rapidly, more steadily, as well as more rehably. One can
even continue the Neville table to higher orders. The Ne-
ville table for the SAW even gives a correct tendency
when one compares it with the values considering the con-
fluent correction, while one cannot obtain these results by
the traditional ratio method. The odd-even oscillation, a
trouble encountered in the loose-packed lattice, is reduced
greatly in nearly every case. The reason for this reduction
has been illustrated in the ERM mathematical basis pro-
vided in Appendix C. Also one can get some reasonable
error estimates of some critical quantities such as the lo-
cations of the singularity, the correlation length, and the
susceptibility exponents, in the case when the TRM and
the ERM give successive ratios with opposite tendency.
%'e pointed out that the ERM can be equally valuable in
Pade approximation as mell as in the problem of correc-
tion to scaling. Some phenomena presented in the ERM
still remain to be resolved, especially the theoretical basis
for convergence of the ERM. However, we are en-
couraged by our results of the application to various lat-
tice models presented in this paper and confirm that the

where A (z) and 8 (z) are assumed regular in the neighbor-
hood of z =z, —:I/p, and if, in addition, both functions
are regular in the disk

~

z
~
(z„then the asymptotic form

of the coefficients az can be obtained by substituting for
the expansion of F(z) that of A(z}(1—pz, } r. Higher-
order approximations may be obtained by replacing F(z)
by

m (z —z, )'
A' '(z, ) (1—pz)

l=o
(A3)

the error involved in stopping at the Nth term being al-
ways of 0 ( I /N) times this term.

N

gC p =A' pN"+"
0 p —1

(Bl)

N ~2++1 2 +1 1

2&+1 2N
(B3)

APPENDIX 8: PROOF OF EQS. (5)—(7)

To prove Eqs. (5)—(7), one needs to show the following
three equations:
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Firstly, using Stoltz's theorem, we have

N
lim g C CN ——lim [CN/(CN —CN i}]

N~co N~ cg

Put

N

g Cm= CN —f(N),
m=0

Nl

thus one has

f (N) f(N——1)

(84)

(1—z) 'g(z) = g g Cmpm z (810)

A P N
1

y —1 1

f'(y) p, —1 p —1 N

N=0 m =0

comparing (89) with (A2) and according to Darboux's
first theorem, one obtains

N co —I d I
CN ——g Cm=A g ( —1), I(1—z)I! dz

r

X( 1)N [ ~ pN
N

y —i-

=Ay N" 1 — 1 ——N —1

N (p —1) ' (85)

g(z)= g CNpNz lf(z)=B'(1 —pz)
N=0

(87)

in which f(z} was given in Eq. (8) in the text, one thus
has

g (z)=—g CNpNz =B(1 pz)—
N=O

From the formula for generation of power series, one
has

00 OO

(1—z) 'f(z)= g g C z"= g CNz (89)
N=0 m =0 %=0

L

r

as N is large enough.
Suppose y&1 (which is not necessary —a parallel

procedure can be performed equally for y ( 1 };
thus limN „[f(N) f(N —1)—]=+ oo which means
limN „f(N}=+oo.

Making use of Stolz's theorem once again,

f (N) . f(N) f(N —1)—
~p Nr N ~p, Nr —p (N —1)"

lim
N z

= liili

=A p(y-1)
(p -1)'

Thus

f(N) =A N" [1+5(N)], (86)
(p —1)

where limN „5(N)=0. We can further prove that
5(N) -0(1/N) for the same reason.

From (84} and (86), one gets (81) straightforwardly.
Considering CNpN-A'p N"+ " ', one can prove Eq.
(82) if one repeats the steps above for Eq. (81). The same
is also true for Eq. (83), if one sets

g (N) = +pm N—PN /(2v+ 1)—.
m=0

From (Bl)—(83), one gets (5)—(7) at once. Thus the
reasoning of the ERM is illustrated by Stolz's theorem.

An alternative way for proving Eqs. (81)—(83) is by
means of Darboux's first theorem.

Defining the correlation length g(z) as usual,

This is just Eq. (Bl). One can get Eq. (82) from Eq. (810)
by the same steps.

APPENDIX C: REDUCTION OF ODD-EVEN
OSCILLATION IN THE ERM

by using Stolz's theorem.
Thus,

N/2 N

g AI= g ( —1)bI= p Nr '[1+5(N)]
10 10 i+1 (C 1)

in which 5(N) —)D(1/N).
When N is odd, set N =2M+1 and adapt the above

procedure; then one gets

g ( —l)bI p, Nr '[1+5(N}].
p+1 (C2)

Combining (Cl) and (C2), one gets the Eq. (12) that ap-
peared in the text.

For the sequences g pm and g C p one can prove
the reduction of odd-even oscillation by just the same
steps mentioned above.

(ii) Consider the generating function of susceptibility

6(z) =A (1—pz) r+A'(1+pz) (C3)

Expanding 6(z}and (1—z) '6(z) around the origin,

6(z}= g CNz
N=0

(1—z) '6 (z) =A (1—z) '(1 —pz)

+A '(1 —z) '( I +pz)

= g CNzN= g g C z".
N=O m=0

As in Appendix B, two alternative approaches are used.
(i) When N is even, setting AI =b2I bzI, i—t is easy to

prove limN „Ai=+ oo, and hence one has

N

QAI
lim

p 2N( 2N )
y' —I

AN p= lim
p»(2N)r' p» (-2N 1)r'-- p+1
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Making use of Darboux's first theorem for the last two
lines, then

N

C~ ——g C

where the second term in the above line corresponds to the
oscillating one, hence the oscillation term is reduced in the
ERIVl.

For the sequence of g C p one can get the same
conclusion.

After comparing the two approaches based on Stolz's
theorem and Darboux's first theorem, one finds that the
exact asymptotic expressions for g o C~ and

g+C~p~ can be derived by utilizing Darboux's first
theorem. But we can solve neither the problem with a
logarithmic singularity nor the problem concerning

g p~ by Darboux's first theorem, while it is easy to
resolve these problems by Stolz's theorem. Thus the two
approaches complement each other.
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