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%e consider a general reaction process in which two entrance-channel particles, the beam and tar-
get particles, interact off-resonance and produce two exit-channel particles. In the c.m. frame we
derive a general expression relating the probability density of the exit-channel particles to that of the
entrance-channel particles. Furthermore, we show that whenever the coherence length, tus, of the
beam particle is much larger than the coherence length, e&, of the target particle, the wave function
of each exit-channel particle may be expressed explicitly in terms of the wave function of the beam
particle. %'e also derive expressions for the coherence time and coherence length of each
exit-channel particle. In addition„whenever the speed of the target particle is much less than
the speed u& (i = 1,2) of an exit-channel particle, we show that a simple relationship exists between

the coherence length, w~, of the exit-channel particle and the beam particle:
iu~ =u&(iu&/~ v& —v&

~
)I1—[(v& e&)/ ut)(case')), where the velocity of the beam particle is vs

(vg —U+c3), and the velocity of the target particle is YT {vT ——u~e3). The angle 8' is the spherical po-
lar angular coordinate, measured with respect to the unit vector '83, of the point at which the coher-

ence length m is to be determined. The above relationship is applied in the case of photoionization
of the hydrogen atom at low energies to obtain realistic estimates for the coherence lengths of the
ionized electron and proton. The coherence length of the electron is shown to be of nearly macro-

scopic dimensions.

I. INTRODUCTION

In studying intensity correlations of radio waves,
Hanbury-Brown and Twiss showed that intensity correla-
tions could be observed between incoherent sources of
photons. ' Subsequently, the theory, underlying not only
photon beams but also particle beams, in general, was for-
mulated using quantum-mechanical prtinciples. 2

Goldberger, Lewis, and Watson (GLW) derived an ex-
pansion for the correlated counting rate of two detectors
at arbitrary locations and for arbitrary time delay. The
basis for their derivation was the wave-packet formalism
which they developed. Specifically, they constructed the
wave function of a beam of particles using an appropriate-
ly symmetrized product of wave packets, each one being
associated with a different beam particle. After making
some assumptions about the statistical independence of
the beam particles, they derived the correlated counting
rate of two detectors.

Benard, applying the wave-packet formalism of GLW,
extended their cwork and derived an expression relating to
the correlated counting rate of an arbitrary nmnber of
detectors. Specifically, she derived the pth-order coin-
cident probability density (CPD), which is defined as the
probability of detecting p particles at p arbitrary locations
and at p arbitrary times. As an apphcation of the formal-
ism that she developed she showed how the effects of
bunching and antibunching attributed to bosons and fer-
mions, respectively, were resulting from the detection of
indistinguishable particles.

The correlated two-detector counting rate derived by
GLW and the CPD derived by Benard are dependent
upon the size and shape of the wave-packet associated

with the individual beam particles. This being the case,
we have attempted to answer, within certain limitations,
the following questions: how big is a wave packet, and
what is its shape? Apart from the effect of wave-packet
spreading, the size and shape of a wave packet are deter-
mined during some reaction process such as elastic
scattering, an absorption-emission process, or a decay pro-
cess, etc. Consequently, we have investigated how the
structure of a wave packet is determined during a reaction
process. However, we have restricted our investigation to
reaction processes in which two particles interact to pro-
duce only two other particles (though not necessarily the
same as the two initially interacting particles).

The paper is organized as follows. In Sec. II we consid-
er a reaction process in which two particles in the en-
trance channel interact and produce two particles in the
exit channel. For the situation of off-resonance scattering
we derive the exit-channel wave function in terms of the
wave packet describing the particles in the entrance chan-
nel. In Sec. III we consider the situation when the wave-
packet size of the target particle is much smaller than that
of the beam particle and derive the probability density of
each exit-channel particle in terms of the wave packet
describing the beain particle. In addition, we obtain expli-
cit relationships for the coherence time and the coherence
length of each exit-channel particle. In Sec. IV we apply
the formalism derived in Sec. III to photoionization of the
hydrogen atom at low energies and obtain reahstic esti-
mates of the coherence lengths of the ionized electron and
proton.

Concerning units, in Secs. II and III we set c, the speed
of light, and i)1 equal to 1. This serves to reduce the com-
plexity in appearance of many of the equations presented.
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II. REACTION PROCESSES

In our analysis of reaction processes we have applied
the wave-packet formalism as set forth by Goldberger and
Watson, and consequently have adhered very closely to
their notation. Furthermore, to simplify our discussion
we have ignored wave-function symmetrization for sys-
terns of identical particles.

Consider an arbitrary reaction process in which two
particles, denoted as the beam and target particles, in-
teract in the entrance channel. Assume that after the in-
teraction there appear in the exit channel only two parti-
cles, which may or may not be the same as those in the
entrance channel. The beam and target particles, which
are initially noninteracting, are prepared at time
to —

~
to

~

. The reaction process is described in the c.m.
frame by a coordinate system chosen so that at time t =0
the midpoints of the wave packets describing the two par-
ticles coincide with the origin of the coordinate system.
Furthermore, since the reaction process is described in the
c.m. frame, the group velocities of the beam and target
particles, vz and vr respectively, are parallel. Thus,
without any loss of generality we can assume a coordinate
system in which their group velocities are parallel to the z
axis of the coordinate system. Specifically,

Vg =Uge3 (2.1a)

VT =VTC3, (2.1b}

where e3 is a unit vector along the z axis of the coordinate
system. We also assume that the range of the potential
governing the interaction between the two particles is
small enough in comparison to the size of their respective
wave packets so that the time during which they interact,
T, is approximately given by the relationship

T= ling +NT
(2.2)

However, in Sec. IV where we perform certain numerical
calculations, we use a system of units in which c and A' are
exhibited explicitly in any equations.

where

dqBdqT~B(qB pB)~r(qT p—T)X .-(2.5)

The momentum distributions of the beam and target par-
ticles are A~ and AT. The quantities p~ and pT are the
average momenta of the beam and target particles. The
operator K, is the noninteraction part of the Hamiltonian,
H, for the two-particle system so that

(2.6)

V, being the interaction part of the Hamiltonian in the
entrance channel. The function XB, representing a state of
energy es, is an eigenfunction of the operator E„i.e.,

E,XB=@,XB . - (2.7)

Explicitly,

exp(iqB rB ) exp(iqT rr )
x =

(2 )3/2 BB (2 )3/2
(2.8)

x GB(xB,yB,zBluIB)Gr(xr, yr, zr Iud) . (2.9)

The functions Gl (I=8,T) are defined as

1
Gl(xl yl zl l~I ) 3/2 dql~l(ql pl )exp(t'ql rl )

(2~)'/2

(2.10a}

where rB [rB=(xB yB,ZB)] and rT [rT =(xT,yz, zT)] are
the positions of the beam and target particles, and qB and

qT are their momenta. The functions g~ and g~ are the

most probable internal wave functions of the beam and
target particles. Equation (2.5) may be reexpressed in a
form which explicitly exhibits its coordinate dependence
as

exp(ipB rB) exp(ipT rT)

(2m ) (2rr)

where rBB (rBT) is the coherence length of the beam (tar-
get) particle, i.e., their wave-packet size in their direction
of propagation, and where U„

U, = lvB vT I, —

and normalized so that

I drl
~

GI(xl,yl, zllwl) i
=(2n. )

/

The total energy of the entrance-channel particles is

(2.10b)

P( t) =exp[ i%, ( t —to )]X, , — (2.4)

is the relative speed of the two entrance-channel particles.
We now derive the time-dependent wave function of the

system after the interaction has occurred. First, we con-
struct the wave packet of the particles in the entrance
channel. We then derive the wave packet for the system
of particles in the exit channel. Finally, we extract from
the exit-channel wave function that part resulting from
the reaction process, i.e., the scattered wave packet.

In the entrance channel for times during which the par-
ticles are noninteracting, the time-dependent two-particle
wave packet may be expressed as

~B =(qB.qB+mB)'j[l2 (2.12)

eT=(qr qT+mT) 1/2 (2.13)

The quantities mB and mT are those masses of the beam
and target particles associated with their internal wave
functions g~ and g~. If we neglect the spreading of the
wave packets in the entrance channel, we can perform the
integration in Eq. (2.4) to obtain

(2.11)

where the energies of the beam and target particles are
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0(t)= GB xB yB
Z& —U&t Zy —Uyt

&Ts3'r~
Wy

Ed =6')+62,

where the energy of each exit-channel particle is

~i=(qi qi+mi)

(2.22)

(2.23)
X exp[ i—((e )„t p—B rB'p—T'rT }]

and

(2.14) e'2=(q2'q2+m 2 )
2 1/2 (2.24)

(s, ).,=(e &.,+&~ &.. (2.15)

Here the average energy, (s'B ),„,of the beam particle is

('BB ) =av(PB 'PB+ tttB ) (2.16)

The total average energy of the beam and target particles
1S

m, and m2 being their masses. To simplify the discus-
sion we are assuming the values of the masses are in-

dependent of the internal wave functions. Using results
from standard scattering theory we can reexpress Eq.
(2.18) for times t »

I
T I, as

I dqBdqT~B(qB PB)~T( lT PT)

(2.17)

and the average energy, (eT ),„,of the target particle is

(~T &av (PT PT+~T) where

Xexp( i e, t—)p+, (2.25)

After the interaction has occurred, i.e., for times t & I

'r I,
the wave function for the system, describing both incident
particles and reaction products, is

P(t)=exp[ —iH(t —to)]exp( iK, to—)Xs . (2.18)

Equation (2.18) can be expressed in a form which more
clearly exposes its physical content. In order to do so we
require some additional definitions. In the exit channel
the noninteraction part of the Hamiltonian for the two-
particle system is

(2.19)

V„being the interaction part. The eigenfunctions of K,
are denoted Xd and satisfy the equation

+=X.+ -f dq)dq2+Xd . &Xd I~IX, )
1

d 6-+ill —6d

(2.26)

g being a small positive constant associated with those
solutions which propagate forward in time. The scatter-
ing matrix W is given by

&&~
I

~
I &g & =(&s I'+ &*

H
~ &m)

1

E'~ + l 'g —0
(2.27)

Because of momentum conservation we can define the re-
duced matrix Td, ,

KxXd =edXd .

Explicitly,

exp(iq~. r~) exp(iq2 r2)
d =

(2 )3/2 gd l
(2 )3/2 gd2 '

(2.20)

(2.21} Qs =qB+qT (2.29a)

Qs)~dtt(qB qT) qi q2) &Xd I
~

I X.—&

where the total momentum of the incident particles is

where r& [r~ ——(x~,y~, z&)] and r2 [r2 ——(x2,y2, z2)] are the
positions of the particles; q& and q2 are their momenta.
The functions gd ~

and gd2 are the internal wave functions
of the exit-channel particles. The total energy of the exit-
channel particles is

and the total momentum of the reaction products is

Q=qi+q2 ~ (2.29b)

Substituting Eqs. (2.26) and (2.28) into Eq. (2.25) we ob-
tain

4(t)= J dqBdqT~B(q PB)/IT(qT PT)—

exp[i (ed e,)t]—
X exp( ie, t)X,-+ I—dq&dq +2exp( iedt)Xd —. 5(Q —Q, )T~

d 6~ + l 'g —6d
(2.30}

Using Eq. (2.14}and the fact that

exp[i (ed —e, )t]
lim = —2m i 5(ed —e,—),t~ oo 6'- +l'g —6d

we can reexpress Eq. (2.30}as

(2.31)
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p(t) =p(t)+p'(I), (2.32)

P'(t)= 2—Iri f dqadqrAa(qa —Pa)Ar(qr —PT)

X f dq1dq2+ exp( I—ezt)X&5(td ez)5—(Q —Qs)Tqs(qa, qT, q&, q2) . (2.33)

To evaluate the integrals in Eq. (2.33) we transform the
coordinates of the reaction products to c.m. coordinates,
R [R=(X,F,Z)], where

&., +& Xexp[i (qa+ qz') 'R]S (t) (2A3)

dqa dqr
y'(t) = 2~—I,/2, /2 Aa(qa pa—)AT(qT pr—)(2Ir)'/ (2m. ) /

and reduced-mass (r.m.}coordinates, r [r=(x,y, z)], where

r=r& —r2 . (2.35)

(~g&..=&e, &,.
The average energy of each exit-channel particle is

( E'g )~q + III (
—PI 2

(2.36)

(2.37)

By energy conservation the total average energy, (a~),„,
of the exit-channel particles satisfies the relationship

where

S(t)= f dq exp[ i(a~t—qr)—]5(eg —es)

x gg„g„Z,(Q„q) .
d

(2.44)

e, = &e. &.,+va (q pa)+vT—(qT PT) (2A5)

To facilitate the integration of Eq. (2.44)„we, first, expand
eq and es in Taylor series. Retaining terms of first order,
we obtain

(6g )~q +Vl 2
—Fn )

(2.38)

ag= &eg),.+U(q (q).,), —

where

q =
I q I

(2.46)

(2.47}

Using Eqs. (2.34) and (2.35), we can reexpress Eq. (2.33)

P'(t) = 2Irt f dq—adqTAa(qa Pa)Ar(q—r Pr)—
exp —i e~t — ~ —q.r

X5(Q Qs )5(—eq e,)—
gu& ge2~ (2 )1/2 (2 )I/2

(2.39)

&e2)..
& q),„= '" 1-

2

m&+mz
2

m2 —m2

&e~).,

The average speed of the of the r.m. system is

&q &,„U=
p

where

(2.48)

'2

(2.49)

(e2)„q —(e ),.q2
(2.40)

I 1 1

&eI &a. &e2&a.
(2.50)

Next, we transform the variable of integration q from
Cartesian to spherical coordinates. We then make the fol-
lowing substitution:

T~a(Q, q) =T~(qa. qr*Q q) exp{iq-r)=4m gi'1'I (q)1'I' (r)jI(qr),
I„m

(2.51a)

=T&;(qa qT qi q2}.

(2.42)
I~j, (~d &RY

The energy e~ can be expressed as a function of the in-
tegration variables Q and q as follows:

2 1/2
2Q+q +III;

where fhe functioIls Ft are sphertcal llarInoIllcs, aIld the
functions jt are the spherical Bessel functions which, in
the large-argument limit, qr &) l. , are

exp[i (qr Irl/2)] e—xp[ i (q—r Irl/2—)]-i t(qr)
2l if'

Using Eqs. (2.29) we integrate over the variable Q in Eq.
(2.39) to obta1I1 The variable

(2.51b)
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(2.51c}

We are assuming that each of the moinentum distribu-
tions As and AT defines a narrow spread in momentum.
Consequently, the asymptotic form of the spherical Bessel
functions, Eq. (2.51b), can be used in evaluating the in-
tegrals in Eq. (2.43) whenever the condition

(2.51d)

(2.55)

where

& Q.-&..=p. +p.=0 (2.56)

Using Eqs. (2.48) and (2.55) we integrate Eq. (2.43) to ob-
tain

is satisfied. In addition, since we are considering the
asymptotic condition t~ao [see Eq. (2.31)], the second
exponential in Eq. (2.51b), the incoming spherical wave,
does not contribute to the integral in Eq. (2A3) and can
therefore be discarded. Substituting Eqs. (2.47), (2.51a),
and (2.5 lb) into Eq. (2.44), we obtain

4m exp[ i (ed—t qr)]-
S(t)= . dq q2 5(ed es—)

2l7' q

X Td it(QN, q), (2 52)

where

~42(t)
pi(t) =

i(q ),„Br
Here

$2 ——exp[ i (—(ed )«t (q),„r)]—
Z r —Ut

XGs XF,
Wtt Wit U US

(2.57)

(2.58a)

where q dq dQs is the volume element of integration ex-
pressed in spherical coordinates. Here 9 and g are unit
vectors in the directions r and q, respectively. We can in-
tegrate over the spherical angles in Eq. (2.52) to obtain

Z r —Ut
xGT XI;

WT WTU UT

The scattering amplitude (fd s ),„is defined as

(2.58b)

S(t)= . J dq q exp[ i (ddt qr)]—5(ed—e, )—4m.

2lf

X g gd igd2Td it(Qtt~qr)
d

(2.53)

S(t)=
2ET

Using Eqs. (2.45) and (2.46) we perform the final integra-
tion in Eq. (2.53) and obtain

1 P exp( i ( ed )—,„t)
U

&fdic),„= 4' p, Td,— (2.59)

Va VT
&q&.,» Ss+

U U
(2.60)

In deriving Eqs. (2.58) we have used the fact that the ex-
pression for P defined by Eq. (2.54b) can be obtained by
differentiating the exponential terms in Eq. (2.54a) with
respect to r and multiplying by —i.

For the rest of our discussion we assume further that
the momentum distributions of the beam and target parti-
cles are so narrow that

~here

X ggd igd2Tds(Qtt~q~) ~

d
(2.54a)

XexpI it[vtt —(qs —ps)+v„(q, —p, )]+irP I where Ss (5T ) is the standard deviation in the momentum
vtx:tor of the beam (target} particle calculated from the
momentum distribution As (Az ). Under this assumption
the second and third terms in Eq. (2.54b} can be neglected
so that Eq. (2A3) can be integrated to yield

Vg VyP = &q &,„+ (qs —pit)+ (q„—p2 ) . (2.54b)
(2.61)

Because the spread in each momentum distribution A~
and A2 is sufficiently narrow, the reduced matrix
Tds(Qs, qf) may be considered constant with respect to
the variables qs and q2.. We therefore can approximate
Tds(Q~, qf) by

We now provide a qualitative discussion justifying the
expression for the exit-channel wave function P'(t) First, .
we reexpress the entrance-channel wave packet in terms of
c.m. and r.m. coordinates and obtain the transformed
wave function P„(t), where

exp[ i ((e ),„t—s(p, ),~, )] . —(es ),„(es),„Z, z, U,t—
XGT X, — x„Y,— y„+(es),„(es&,„wr wTU, /UT

(2.62)
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r =ra —rT

Here

where the average momentum of the r.m. system is

&ea &.,&~T).,

(2.64)

(2.65a)

(2.65b)

The reaction process can be described, classically, as one
in which a particle with mass equal to the reduced mass
of the entrance-channel system propagates along the z
axis, interacts with a potential, becomes a particle of mass
equal to the reduced mass of the exit-channel system, and
scatters radially f«m the interaction region. The
quantum-mechanical analogue of this description is that a
wave packet corresponding to the r.m. system of the en-
trance channel propagates along the z axis, interacts with
a potential, and scatters in the exit channel as a spherical
wave. The implication is that the exit-channel wave func-
tion should maintain essentially the same form as the
entrance-channel wave packet, with the principle differ-
ence being that the variables in the exit-channel wave
function should be expressed in spherical coordinates
rather than in Cartesian coordinates. Therefore to obtain
the exit-channel wave function we must modify Eq. {2.62)
in the following way: Each expression z, —u, t (which
shows that the r.m. system, in the entrance channel, prop-
agates "on the average, " along the z axis) should be re-
placed by r ut, where r is—the radial spherical coordinate
[Eq. (2.51c)],and u is the average speed of the r.m. system
in the exit channel [Eq. {2.48}]. For all other occurrences
of the quantity u„ the quantity u should be substituted.
In addition the exit-channel wave function should contain
a factor 1/r which is characteristic of spherical waves and
also another term, the scattering amplitude, which is re-
quired for tempering the amount of spherical wave propa-
gating in various directions. In Eq. (2.62) all occurrences
of either x, or y, should be replaced by zero, since in the
exit channel the terms which would correspond to these
are replaced by the spherical polar and azimuthal angles
which appear as variables in the scattering amphtude.
Other modifications to Eq. (2.62) include replacing the
quantity (P, ),„by the magnitude of the average momen-
tum of the r.m. system in the exit channel, (q ),„, and re-
placing the quantity (es),„by the total average energy in
the exit channel (eg ),„. Applying all these modifications
to Eq. (2.62), we obtain Eq. (2.61).

In deriving the exit-channel wave function, Eq. (2.61),
from the entrance-channel wave packet we have made cer-
tain assumptions which we now summarize.

(1) The range of the interaction is small enough so that
the time during which the beam and target particles in-

The c.m. coordinates R„[R,=(X„F„Z,)] of the beam
and target particles are defined as

&e &„r +&~ &,.r
R, =

(

and their r.m. coordinates r, [r, =(x„y„z,)] are defined
as

teract may be approximated by Eq. (2.2).
(2) The energies es, Eq. (2.11), and eq, Eq. (2.22), may

be evaluated using Taylor-series expansions, as was done
in Eqs. (2.45) and (2.46).

(3) The scattering matrix may be evaluated using aver-
age values of its arguments, as was done in Eq. (2.59).

(4) The wave packet describing the two exit-channel
particles applies only in regions where the interaction be-
tween the exit-channel particles may be neglected and
when r && I/(q ),„[seeEq. (2.51)].

The derivation of the exit-channel wave function de-
pends strongly on whether assumptions (2) and (3) are sa-
tisfied. Assumption (2) is satisfied if the time during
which P'(t) is to be valid is of short enough duration that
wave-packet spreading in the entrance and exit channels
may be neglected (this condition should be satisfied in
most experiments}. Assumption (3) is valid if the energy
uncertainty of each particle in the entrance channel is
much less than its average energy. However, if the
scattering matrix should exhibit a sharp energy resonance
in the region of absorption, so sharp that its energy spread
is less than that of either entrance-channel particle, as-
sumption (3) would then be invalid.

In the remainder of this paper we are assuming that the
scattered wave packet can be considered separately from
the transmitted part of the incident wave packet. Thus,
we are not considering situations which allow for the in-
teresting possibility of interference between the scattered
and unscattered waves. This has been implicit in our pre-
vious discussion in that we have denoted the position
coordinates of the transmitted part of the incident wave
packet by a set of labels different from those of the scat-
tered wave packet, i.e., ra and rr are the position coordi-
nates in the incident wave packet, and ri and rz are the
position coordinates in the scattered wave packet. Stated
equivalently, we have been assuming that experimental
conditions have been chosen so that the states to be ob-
served, X~, are orthogonal to the incident wave packet,
thereby eliminating the possibility of interference.
Nonetheless, such interference should occur when one of
the incident particles and one of the reaction products are
the same kind of particle. In such a situation it would be
possible, under the right experimental conditions, to ob-
serve effects resulting from interference between the scat-
tered and the unseattered wave packets. Recently,
anomalous effects in electron-potassium differential
scattering measurements have bo:n attributed to this
phenomenon. "

P'(t)= ~P'(t) ~'= —Gs X, Y,
U Mg

r —Ut+
tug U /Us

Z r —UtXG, Xr, +
LENT LUq T/UT

2
o(r)
f 2

(3.1)

III. THE WAVE PACKET ASSOCIATED
%'ITH EACH EXIT-CHANNEL PARTICLE

F«m Eq. (2.42) we obtain the probability, P'(t), for the
two-particle system in the exit channel,

2
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where tr(r}, the differential cross section, is

o(r}=—g &f,.&:,—&f~.
Ue

(3.2)

This result has been obtained by summing (or integrating,
as appropriate) over the degrees of the freedom of the
internal wave functions and making use of their orthonor-
Inality.

We now assume that the size of the wave packet associ-
ated with the beam particle is very much larger than that
associated with the target particle. Specifically

Wg )QWT (3.3)

Ue r —Ut
P,'(t)= —Gii 0,0,

U Wr

2
a(r)

2
(3.4)

where

Wp =UT . (3.5)

The quantity w„, the coherence length, represents the size
of the r.m. system in the radial direction. The expression
for the coherence length, Eq. (3.5), can be understood as
follows. The wave packet of the beam particle interacts
with that of the target particle for an amount of time T.
During this time the wave packet for the r.m. system is
being created at r =0. As it is being created it propagates
radially outward with speed u. Consequently, after time
T the wave packet grows to size w, as given by Eq. (3.5).

Applying the same assumptions used in obtaining Eq.
(3.4), we can, in a similar manner, derive an expression for

This assumption allows us to approximate the probability
density of the target particle,

I Gr I, by a delta function.
We can therefore integrate over the c.m. coordinates of
the exit-channel wave function [Eq. (3.1)] to obtain the
probability density P,'(t) of the r.m. system in the exit
channel.

the probability density of each exit-channel particle. The
calculation involves, first, transforming from the c.in. and
r.m. coordinates, used as arguments in the probability
density of the two-particle system [Eq. (3.1)], to the coor-
dinates of the individual particles. Using the fact that the
wave packet of the target particle may be approximated
by a delta function, we can integrate out the coordinates
of one of the particles to obtain the probability density of
the other particle. However, because the argument of the
delta function is a nontrivial function of the particle's
coordinates, we must consider, for each particle i
(i =1,2), three distinct cases. Each case is distinguished
according to whether the

I p; I g 1,
I p; I

=1,or
I p; I

& 1,
where

A T AU

p; =p;es —— ei,
Ul

and u;, the speed of the ith exit-channel particle, is

(3.6)

U;= U

&eg &., (3.7}

I
Ga(0, 0,~;o) I

'
2—o(r;o) 2 J;o, P;Z; (0

Ul i0
Pg' (t) = 00, Z; =0

0 otherwise.

(3.8b)

Case 3: whenever
I P; I

& 1,

The probability density P; (t) of each exit-channel particle
is given as follows.

Case 1: whenever IP; I
&1,

u, I Ga(0, 0,p, ;+) IP {t)=—tr(r;+) 2 J~+ . (3.8a)
Ul U;+

Case 2: whenever
I P; I

=1,

I
Ga«, 0,};+)I

'
0{r;+) 2 J;++o(r; ) i J;, p;Z;&0 and IZ; I &(p; —1)p;

l rl+ rl
P t= 0 otherwise. (3.8c)

In these expressions

r + —U-tl l
(3.9a)

1
J;O ——

I
1 —P 'rol

(3.10b}

and

r;O —U;t

U;T
(3.9b)

The functions J+ and Jo are the Jaeobians that result in
transforming from c.m.-r.m. coordinates to the coordi-
nates of the two exit-channel particles. Specifically,

The vectors r;+ and r;o connect the spatial coordinates of
particle 2 to particle 1. The subscript i refers to whether
the vector is expressed as a function of the coordinates of
particle 1 or particle 2. The vectors r;+ and 9;o are unit
vectors in directions of r;+ and r;o, respectively, awhile
r;+

I r;+ I
and r; o =

I

r——;o I
. Explicitly,

I
1 —P r+

I

(3.10a)
r;+ ——( —1)'+'E~(x;,y;, Z;+P;P;) .

r;o ——( —1)'+ 'E; (x;,y;, , (Z; —p(~/Z; )), —
(3.11a)

(3.11b)
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where

8;=[p;(1—P;)+Z; ]'

(ed ).,
(ed) —(e;)., '

g =z.—UTt,

and

(3.12a)

(3.12b)

(3.13)

2=2 2
pi =&i +3'i

Equations (3.8) apply only when

(q)..r;+ &)1

(3.14)

(3.15a)

ol

(q)., ;o))1 . (3.15b)

/

VTT -~~—VIT —--~

I
—v

V T
T

This criterion is equivalent to that stated in Eq. (2.51c).
Equations (3.8) can be interpreted, physically, in a rela-

tively straightforward manner. As the target particle
propagates in the +z direction, it appears to act as a
source of two distinct spherical waves, each of which cor-
responds to the probability density of an exit-channel par-
ticle (see Fig. 1). The intensity of a particular spherical
wave front, emitted from some location on the z axis, is
controlled by that portion of the beam particle's probabili-
ty density spatially coincident with that of the target par-
ticle. Furthermore, the intensity of a wave front propaga-
ting in various directions is modulated by the differential

cross section. As a wave front propagates away from its
source, its intensity is multiplied by a factor 1/r;+ or
1/r;o, which is characteristic of point sources. Finally,
the Jacobian takes account of the motion of the target
particle by effecting a clustering of wave fronts to the
front of the target particle and a thinning out of wave
fronts to the rear [see Fig. 1(a)].

Case 3 is sufficiently different from the other two cases
to merit further discussion. In this case

I p; I
&1, and

consequently the target particle is traveling faster than the
exit-channel wave packet which it appears to emit. This
case is similar to what occurs when a charged particle
travels through a medium with a speed greater than the
phase velocity of electromagnetic radiation propagating
through the medium: the charged particle emits a shock
wave referred to as Cerenkov radiation. ' Similarly, case
3 describes the situation in which the target particle acts
as the source of a shock wave, the wave packet associated
with the exit-channel particle. The direction of propaga-
tion of the shock front relative to that of the target parti-
cle is defined by the angle H„where

1
Gosl9c

p;
(3.16)

'V

This is the same relationship that applies to Cerenkov ra-
diation. In this case, the expression for the wave packet
[Eq. (3.8c)] comprises a sum of two terms. The reason for
this can be understood as follows. If one compares Fig.
1(a) to Fig. 1(c), one observes in Fig. 1(c) that at each
point two circles intersect. This shows that the probabili-
ty density at this space-time point derives from spherical
wavelets which have been emitted from two different lo-
cations, hence the two terms in Eq. (3.8c).

A close inspection of Eq. (3.10a) shows that for case 3
the Jacobian diverges along the shock front, a situation
which is characteristic of shock waves. However, this
also implies that the probability density of the exit-
channel particle diverges there. This can be shown to
occur because the wave packet associated with the target
particle has been approximated by a delta function. If a
more realistic wave packet is assumed for the target parti-
cle, i.e., one which is less pathological, it can be shown
that the singularity along the shock front will be smeared
into a region whose spatial extent is of the same order of
size as that of the target particle's wave packet.

We now reexpress the probability density of each exit-
channel particle [Eqs. (3.8)] in a form which explicitly ex-
hibits the coordinates of the exit-channel particle.

Case 1: whenever
I P; I

& 1,

u, 1 —P; I
Gg(0 Op;+) IP (t) =— tr(r~) . (3.17a)

u; 8; + PZ+8;
Case 2: whenever

I P; I

= 1,
T

FIG. 1. %'ave fronts associated with an exit-channel particle.
Solid straight line represents the trajectory of the target particle
whose speed is

I
ur

I
. The sphericai wave fronts associated with

the exit-channel particle are traveling with speed U;. Time T is
the approximate time during which the beam and target parti-
cles interact. Depicted are the three cases: (a)

I ur
I &u;, (h)

I
ur

I

=u and (c)
I
ur

I
& u

I
Ga(0, 0P o) I'

2 tr(r;o) —
~ 2, P;Z; (0

Z;+p;
P (t)= ao, Z;=0

0 otherwise.

Case 3: whenever
I P; I

& 1,

(3.17b)
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u, 1 —P; i GII(0,0,p;+) i ) Ga(0, 0,p;'
e(r+) pz

'
B' +a(r-) pZ' B

0 otherwise.

P;Z;(0 and (Z; i &(P; —1)'/2p;

(3.17c)

Zg
—(Utt) +P.2 2 2

PI'0= (3.18a}

PtZI +Bt—Ut t

u; T(1—P;)
(3.18b)

P;Z;+B;
(q&.,E;

' ', '»1
1— (3.19a}

(q),„(——, )Ei & 1.Z( +pg

l

(3.19b)

Expressed in terms of the coordinates of the exit-channel
particle Eqs. (3.15a) and (3.15b) are

We now derive the coherence time for each exit-channel
particle. Qualitatively, we mean the coherence time to be
the duration of time required for a wave packet to pass a
given location. The coherence time may be estimated as
the difference in time between the arrival of the first and
last wave fronts at the particular location. For cases 1

and 2 this calculation is straightforward since these two
wave fronts correspond to those wave fronts emitted when
the beam and target particles begin and finish interacting.
The approximate location along the z axis where these
wave fronts are emitted can be determined as follows.
The midpoints of the beam- and target-particle wave
packets coincide at time t =0, and since the time required
for the beam particle to pass over the target particle is ap-
proximately T [see Eq. (2.2)], the location of the target
particle is given, approximately, as z = —uz T/2 when the
interaction begins and z =uz. T/2 when the interaction
finishes. Thus, calculating coherence time T„,at location
(x,y,z) for the ith particle we obtain the result that in
cases 1 and 2

T./= T+

' 2 1/2
2 T

p + 2 —Uz"
2

VI

'2' 1/2
2 T

2p + Z+VT

(3.20a)

where

p=x +p (3.20b)

Region I:

sgn(UT)Z&sgn(uz) 2, 2+uz-
p ( 1 1/p2) I /2 (3.2 la)

For case 3 the situation is complicated by the fact that the
target particle is traveling faster than the exit-channel
particle so that the first and last wave fronts to arrive at a
particular location may not be those emitted when the tar-
get particle is located at z = —uz T/2 and z =ur T/2. A
careful analysis indicates that case 3 comprises four sub-
cases, as depicted in Fig. 2. When the location at which
the coherence time is to be determined is situated in re-
gion I or region IV, the first and last wave fronts to arrive
at the location are emitted from z = —uz. T/2 and
z =uz T/2 (not necessarily respectively). When the loca-
tion is situated in region II, the wave front arriving first is
emitted from that point on the z axis defined by the inter-
section of the z axis with the gamma ray emanating from
the location and crossing the shock front perpendicularly.
The wave front arriving last is emitted from z = —uz T/2.
When the location is situated in region III, the first arriv-
ing wave front is emitted from the point on the z axis
determined in the same manner as for region II; however,
the last arriving wave front is emitted from z =uzT/2.
These four regions are defined by the following conditions
placed on the z coordinate of the location at which the
coherence time is to be determined.

Region II:
UT

sgn(uz )
p (1 I/p2)l/2

& sgn(ur )z

T
U
— + 2

~ —1

' 1/2

(3.21b)

Region III:
2

T p
2 p,.—1

1/2

& sgn(uz )z
r

& sgn( uz ) I/2
—uz' (3.21c)p T

Pt(1 —1/ I
)'

(3.21d}

Region IV:

Sgil(uz } —Uz & Sgll(Uz )Z .P T
P (1-1/P')'"
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Calculating the coherence time T„ in each of these re-

gions we obtain the following results.

In regions I and IV

[p'+ (z vr—T/2) ]'~ [p—'+ (z+ ur T/2)2]'~2
ci T+

Ui

(3.22a)
In region II

[p +(z+vrT/2) J' p(1 ——1/P, . )'
Cl

UT

(3.22b)

In region III
2

[p +(z uTT/—2)']' ' p(1 ——1/P,')' '
z T+

UT 2

(3.22c)
The coherence length, iu;, of the ith exit-channel particle,
at a given location, can be defined as the product of its
coherence time and average speed. Consequently,

Tci

Wi Ui Tei (3.23)

In order to show how these results can be applied in the
calculation of the coherence time atid coherence length we
consider the following elementary example: the target
particle is propagating in the +z direction; the average
speed of the exit-channel particle is equal to the average
speed of the target particle, i.e., u; =

I
uT I

[see Fig. 1(b)].
We now calculate the coherence time and the coherence

IV. PHOTOIONIZATION

We apply the results of Sec. III to another elementary
example, but one which is more physically based than that
considered in the previous section. We consider the pho-
toionization of the hydrogen atom at nonrelativistic ener-
gies. The hydrogen atom, the target particle, is at rest in
the laboratory frame where it is to be ionized by a photon,
the beam particle. The photon source is a uv gas
discharge tube, the mean wavelength of whose photons is
g 13

X=700 A .

The velocity of the photon is

Vg =UC3,

(4.1)

(4.2)

where c is the speed of light. In the c.m. frame the veloci-
ty of the target particle is

&equi).,+ &e, ).,

length at some location (z,p), where p=O and z & vTT/2.
Since this example is one of the case 2 type, we may apply
Eq. (3.20) and obtain the result that T„=O. This result
may be understood, qualitatively, as follows: As the tar-
get particle is traveling with the same speed as the exit-
channel particle, the wave fronts which are emitted during
the interaction and which are propagating along the +z
direction are all superimposed on top of one another.
Consequently, all these wave fronts pass a point on the z
axis, outside of the interaction region, simultaneously.
Therefore, the coherence time is zero, which implies the
coherence length is also zero.

=( —566 cm/s)ei, (4.3)

XQN I
I

!

Z

where the rest energy of the hydrogen atom is

&eT ),„=938MeV,

and the energy of the photon is

hc =17.7 eV .

(4 4)

(4.5)

FIG. 2. Decomposition of space into four regions for deter-
mining the coherence time in case 3 (UT & v;). The pair of lines
AEB represent the shock front associated with the exit-channel
particle. The shock front is moving in the direction defined by
the angle 8,. Point C (z = —vTT/2) represents the approximate
location on the z axis where the beam and target particles begin
interacting. Point E (z =UTT/2) represents the approximate lo-
cation where they stop interacti. ng. The two rays represented by
the dotted lines emanating from point E separate region I from
region II. Dotted curve passing through point D (z=U;T/2)
separates region II from region III. This curve is the locus of all
points for which wave fronts originating from points C and A
arrive simultaneously. The two rays represented by the dotted
lines emanating from point C separate region III from region
IV. Point 0 indicates the origin of the z axis.

Wg =Ups (4.7)

The time, r, is related to the energy spread, he~, of the
excited state by

(4.g)

The speed of the r.m. system in the entrance channel is

us=
I va vT

I
=c .

We can obtain an estimate of the photon wave-packet size,
iuii, in its direction of propagation, using the following ar-
gument: the photon is produced from an excited state of
an atom; the lifetime ~ of the excited state represents the
uncertainty in time during which the photon wave packet
is created. Its size iu~ can therefore be obtained from the
relationship
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From a classical argument'"

5g~ ——E
A. (A)

where

(4.9}

Pl@K= =5.90X10 A .
me

(4.10)

The quantities rn and e are the mass and charge of the
electron. Using Eqs. (4.1)—(4.9), we find that

My=13, 2 cm . (4.1 1)

Using Eqs. (2.38)—(2.40), we compute the average speed,
u, of the r.m. system in the exit channel as

u=1.20X10 cm/s . (4.12)

vi ——1.20X10s cm/s,

and the speed of the proton,

u2 ——6.50X10 cm/s.

Thus

Pi ——4.72 X 10

(4.13)

(4.14)

(4.15a)

We then use Eqs. (3.7} and (4.12) to compute the speed of
the ionized electron,

—1
~o

(4.21)

T„=T(1—P;cos8') . (4.23)

The variable 8' is the spherical polar angular coordinate,
measured with respect to the z axis, of the location at
which the coherence time is to be determined. Using Eqs.
(3.23) and (4.23) we obtain the coherence length of each
exit-channel particle as

The quantity eo is the ground-state energy of the hydrogen
atom; u is the fine-structure constant; ao is the Bohr ra-
dius. The variable 8 is the spherical polar angle describ-
ing the orientation of the vector p;+. With the aid of Eqs.
(3.11) we can express sinz(8) in terms of the coordinates of
each exit-channel particle as follows:

2

"0=
~ (4.22)

(p,'+Z, ')+2P, Z, (p,'+Z,')'" '

In Eq. (4.22) terms of order quadratic and higher in p
have been neglected.

We now calculate the coherence times and coherence
lengths associated with the ionized electron and proton
wave packets. Using Eq. (3.20) and retaining terms of
first order in p; we obtain the following expression for the
coherence time:

and w„=v; T(1—P. ;cos8') . (4.24)

p2 ——8.71 X 10 (4.15b)

We now make the assumption that the wave-packet size
associated with the photon, wii, is very much larger than
that associated with the hydrogen atom, wr. In addition,
since P;, (P;=uT/v;) is much less than 1, we can apply
the results of Sec. III, neglecting terms of order p;. Using
Eqs. (3.17a), (3.18b), and (3.12)—(3.14), we obtain the
probability density I' (t) (i =1 for the electron, and i =2
for the proton) for each exit-channel particle is

IGa(00 p +) I'
&t' ( t) =—o'( ~ )

(p,'+Z,')'"[P;Z;+(p,'+Z )'"]

T, &-T,z-T=440)&10 & s (4.25)

In addition, the coherence length of the proton wave
packet is

u, 2
——2.90& 10 cm, (4.26)

and the coherence length of the electron wave packet is

w, &

——5.30)(10 cm . (4.27)

Using Eqs. (4.13), (4.14), (4.19), and (4.23), we calculate
the coherence times of the ionized electron and proton
wave packets to be

where

P;z;+(p;+Z; )'~ u;t—
QI. +=

U) T

Zg =Zg —UTt,

and

Ng+NTT-
Ue

Mg =4.40& 10 s .—10

The low-energy cross section for photoionization is'

(4.16)

(4.17)

(4.18)

(4.19)

In summary, we have derived explicit expressions for
the wave packets of the ionized electron and proton and
have shown that both wave packets assume, basically, the
same shape as the ionizing photon wave packet. In addi-
tion, we have calculated the coherence times and coher-
ence lengths associated with the ionized electron and pro-
ton wave packets. It is interesting to note that when the
electron is bound to the proton its wave-packet size is
about an angstrom, but after ionization its wave-packet
size grows to almost 0.1 mrn. '

V. CONCLUSIONS

exp[ —4y cot '(y)
sin 8,

1 —exp( —2n.y )]

where

(4.20)

6'O

a(r+ ) =64naa0.
(erat &.,

Our interest in what factors were determining the size
and structure of a wave packet motivated us to consider a
general reaction process in which two particles in the en-
trance channel interact, thereby producing two arbitrary
particles in the exit channel. Based on some rather broad
assumptions about the nature of the interaction we were
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able to obtain, in the c.m. frame, the relationship between
the wave function in the exit-channel system and wave
functions of the two entrance-channel particles. Further-
more, under the assumption that the coherence length of
one entrance-channei particle, the beam particle, ~as
much greater than that of the other, the target particle, we
derived an explicit expression for the wave function of
each exit-channel particle in terms of the wave packet of
the beam particle. We also showed that under this as-
sumption there were three different cases which had to be
considered, the first case in which the speed of the exit-
channel particle was greater than that of the target parti-
cle, the second case in which they were equal, and the
third case in which the speed of the exit-channel particle
was less than that of the target particle. We found in all
three cases that the target particle appeared to act as a
source of a spherical wave packet which corresponded to
the exit-channel particle. Also, it was found that these
three cases could be interpreted, physically, in the same
way as the corresponding situations in classical wave
theory. Case 1 was corresponding to the situation in
which the speed of the source was less than the speed of
the wave which it was generating. Case 2 was corre-
sponding to the situation in which the source and wave
were traveling at the same speed. Case 3 was correspond-
ing to the situation in which the speed of the source was
greater than the speed of the wave so that the source was
generating a shock wave. Finally, for each case we de-
rived expressions for both the coherence time and coher-
ence length of each exit-channel particle. We showed

that, in general, these expressions were a complicated
function of the coordinates at which the coherence time
and coherence length were to be determined. However,
when the speed of the target particle was much less than
that of an exit-channel particle, we found that the expres-
sions for the coherence time and coherence length as-
sumed a simple spatial dependence [see Eqs. (4.23) and
(4.24)).

The assumptions on which all of our results were based
were quite general so that these results should apply in a
variety of situations. The important assumptions may be
summarized as follows:

(1}the range of the interaction between the particles in
the entrance channel must be much less than the coher-
ence length of one of the entrance-channel particles;

(2) the scattering cross section must not exhibit a sharp
resonance in the region of energy where the reaction pro-
cess occQfs;

(3) the results are applied only in regions where interac-
tion between the exit-channel particles may be neglected
and when the distance separating them is large [see Eqs.
(3.51}].

As a simple and semirealistic application of our formal-
ism we considered the case of photoionization of the hy-
drogen atom at low energies. After making some assump-
tions about the source of the ionizing electromagnetic ra-
diation, we were able to calculate the coherence length of
both the ionized electron and proton. We found the
coherence length of the electron to be approximately 0.1

mm, a result which may be surprising.
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