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Flows in a two-dimensional Hele-Shaw cell are studied analytically and numerically by
conformal-mapping methods. In the presence of surface tension the fingers are linearly stable.
However, the structure of the linear stability problem is exponentially sensitive to noise, which im-

plies the existence of a finite-amplitude nonlinear instability appearing at low surface tensions. Nu-

merical simulations demonstrate the existence of this instability. The most unstable modes are
predicted and compared with real and numerical experiments.

I. INTRODUCTION

The flow of two immiscible fluids in a Hele-Shaw cell'
is an interesting problem which exemplifles many of the
features observed in pattern formation processes: emer-
gence of an ordered structure from a transient chaotic re-
gime, and (upon variation of some control parameters) bi-
furcation of that selected state into an oscillatory and
eventually chaotic one. Indeed when a viscous fluid con-
fined between closely spaced parallel sheets of glass (a
Hele-Shaw cell) is driven by a less viscous one, the inter-
face between the fluids is unstable. It develops a transient
chaotic pattern of fingerlike invaginations from which a
single propagating finger emerges, which width is experi-
mentally related to the driving velocity. Upon increasing
that velocity the propagating finger is first observed to bi-
furcate to an oscillatory state and eventually a chaotic
state may be achieved.

The theoretical model describing the flow in a Hele-
Shaw cell2 belongs to the class of the two-dimensional
Stefan problems: in the quasistationary limit it involves
solving the Laplace equation for some field P with boun-
dary values specified on a moving interface I, the velocity
of which is in turn determined by the gradient of P. It
has some very puzzling riddles. (1) In the absence of sur-
face tension, Saffman and Taylor showed that there ex-
ists a continuous family of steady-state solutions, i.e.,
penetrating fingers parametrized by their relative width A, .
In the presence of surface tension, a formal singular per-
turbation analysis by McLean and Saffman seems to
show that the continuous family of solutions persists.
However, numerical solutions of the steady-state equa-
tions ' show no hint of the continuous family. Rather,
the analysis indicates a countably infinite discrete family
of steady-state propagating fingers. (2) Results of linear
stability analysis of the A, = —,

'
finger are contradictory '

and neither show the experimentally observed transition
to an unstable propagating finger at low surface tension
(high velocities). '

It is the purpose of this paper to describe a method,
which is well suited for efficient numerical studies ad-
dressing the questions raised above, and which can be ap-
plied successfully to the analytical study of this problein
and related Stefan problems (solidification, dendritic

growth, electrodeposition, etc.). In particular it allows one
to address the problem of the stability of the A, = —,

'
finger

from a new perspective, and thus to solve it. In the fol-
lowing we will first describe the interface dynamics ap-
proach as developed by Shraiman and Bensimon. We
will look for steady-state solutions both with and without
surface tension. We will then study the linear stability of
one of these solutions: the A, = —,

'
finger, which is the one

experimentally observed at high velocities. In the absence
of surface tension it is unstable, as first noticed by Saff-
man and Taylor. In the presence of surface tension this
finger is linearly stable, a conclusion reached independent-
ly by Kessler and Levine using a different (numerical and
thus less accurate) approach. However, the spectral struc-
ture of the linear operator, which eigenvalues determine
the stability of the steady-state interface, is exponentially
sensitive to noise. Namely the amplitude of the perturba-
tion necessary to destabilize the finger decreases as an ex-
ponential power of the velocity. We relate that structural
sensitivity to a finite amplitude nonlinear instability of the
interface and are then able to predict the form of the most
nonlinearly unstable modes. Results of numerical simula-
tions based on this method demonstrate the existence of a
noise-driven nonlinear instability, and support the results
of our analysis.

II. INTERFACE DYNAMICS

The Saffman-Taylor equations describe the fluid velo-
city v in terms of a velocity potential P (v=VQ) which
obeys the Laplace equation

V /=0, (la)

(lc)

where I is the interface between the two fluids which evo-
lution we want to track, x its curvature, n indicates a
direction normal to the interface, and do is the dimension-

with the following boundary conditions at the interface:

(lb)
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less surface-tension parameter. In terms of measurable
quantities do is given by

1 2mb T
(2)

12 8' pV
'

where b is the cell thickness, W its width (in this paper
for convenience 8'=2m. ), T the surface tension, p the
viscosity of the driven fluid, and V its velocity at infinity.
[Since there is no agreement on the exact form of the
surface-tension parameter we will, for the convenience of
the reader, relate our parameter do to the one used by oth-
ers. Thus the parameter it used by McLean and Saffman'
is it=doA, /(1 —A, )z. The parameter 8 introduced by
Tryggvason and Aref is 8 =do/(2n ) . Finally, the criti-
cal unstable wavelength for a flat interface is
A,,=S'~dp. ] In principle, Eq. (1) should be supplied
with boundary conditions on the walls, i.e., the normal
component of the velocity equals zero; however, we will
assume here periodic boundary conditions which corre-
spond to a cylindrical Hele-Shaw cell such as the one used

by Aribert.
Equations (la)—{lc) determine the evolution of the in-

terface: the Laplace equation with the Dirichlet boundary
condition on I, Eq. (lb), completely determines the flow
field, then the value of the normal velocity (the normal
component of P) at the boundary determines the velocity
of the interface, Eq. (lc). We have to solve a Stefan, or
moving-boundary-value problem. The two dimensionality
of the problem greatly simplifies the task by allowing the
use of the conformal-mapping technique.

The idea which is standard in all textbooks on complex
variables' is based on the Riemann mapping theorem.
This theorem ensures the existence of a conformal map
from the complicated but simply connected domain en-

closed by the interface I into a standard domain, the inte-
rior of the unit disk. Within the disk the Dirichlet prob-
lem for the potential P, Eqs. (la) and (lb) can be readily
solved. That solution then enables us to rewrite Eq. (lc}
as an evolution equation for the mapping. We introduce
the complex potential

4( w) =P(x,y)+i P(x,y),

which is an analytic function of w =x +iy We then con. -

formally map the domain of interest, i.e., the space occu-
pied by the driven fiuid into the unit disk [ I

z
I

&1,
z =f, '(w)); see Fig. 1. Since the interface I between the
two fluids is the image of the unit circle (z =e") under
the map f,(z),

I (t,s) =f,(e"),

specifying the mapping f,(z) at a given time t is identical
to specifying the interface 1 (t,s) and its parametrization
S.

The solution of Eqs. (la} and (lb) in the z plane (inside
the unit disk) is standard. ' One has to determine the
function analytic inside the unit disk 4(z} which real part
on its boundary (z =e") is specified: P(s) =doe(s), where
a(s), the curvature of I'{t,s}, is

z plane GJ p IQAe

FIG. 1. Conformal map from the unit disk to the space occu-
pied by the driven fluid.

Im(Bgf/B, f)
a(s) =—

I
d.f I

(4)

The solution is known to be given by the Poisson integral
formula. '0 That formula states that the function analytic
for

I
z

I & 1, g{z), for which the real part on the unit disk

g (s}can be written as

g(s)=ao+ g (a„e' +a„'e ' ),

must be

g(z}=A {g(s))=ao+2 g a„z".
n=1

Therefore, the potential N(z) inside the unit disk is

4(z) =—lnz+doigcz) . (7)

The first term on the right-hand side of that equation
( —lnz} is the solution for the potential in the absence of
surface tension (do=0). Notice that since we are map-
ping the unit disk into the strip 0&y &2m, in the limit
x~ ~, w~ —lnz. Thus Eq. (7) implies that the velocity
of the fluid far away in front of the interface (x~ oo ) is
normalized to 1. Now, the normal velocity of the inter-
face, given by Eq. (lc) is

=nB„4,
Bt

where

B,f zB,f
I ~.f I

B„@=Re(nB4)
Re(zB,4) 1 —do Re[zB,igcz)]

I ~.f I I ~.f I

This equation specifies only the normal velocity of the
interface. There is, of course, no physical significance to
a tangential velocity which would simply correspond to a
reparametrization of the interface. However, the analyti-
city of the mapping function f,(z) fixes a particular "ana-
lytic" parametrization "gauge" which has to be main-
tained for all time. To achieve that, it is sufficient to
make the time derivative of the map B,f analytic inside
the unit disk. For that purpose we add to the right-hand
side of Eq. (8) an appropriate tangential velocity com-
ponent inC',
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Re(za, 4}
=na„4+inC'=za,f +iC

I za.f I

'

where C and C' are real functions of z. For the evolution
of f,(z) to be analytic the terms in the large parentheses
must describe an analytic function (thus C has to be the
harmonic conjugate of the first term in the large
parentheses). In other words, they have to represent the
function analytic in

I
z

I
( I, which real part on

I
z

I
=1

is specified [=Re(za,4)/Iza, f I ]. We have seen previ-
ously that this is achieved by the Poisson integral formula
as expressed in Eqs. (5) and (6). One thus obtains the
desired evolution equation for the mapping:

f, (z) =fp(z)+rl(z}+e, (z), (15)

where fp(z} is tlM dp=0 Saffman-Taylor steady-state
solution, rI(z} is a small time-independent correction to
the shape of the interface, and e,(z} is a small time-
dependent perturbation. Since f,(z) is analytic inside the
unit disk we may assume

m=0

the limit dp~0 (low surface tensions or high velocities).
As usual we will assume that the mapping f,(z) can be
written as

1 —dp Re[za,aqz) ]= —za,fA
I
za.f I

' (10) e,(z)= g e„(r)z".
n=0

where the integral operator A has been defined in Eq. (6).
Equation (10) serves as the basis of the numerical scheme
for the evolution of the interface, as well as for the linear
stability analysis, which shall be presented in the follow-
ing. However, before studying time-dependent states, we
will look for steady-state solutions of Eq. (1).

III. STEADY-STATE SOLUTIONS

It is then straightforward to show that

Re(za, 4) „=U Re(za,f) (12)

In the absence of surface tension (4= —lnz), one obtains
the Saffman-Taylor one-parameter family of solutions:z

Steady states are characterized by an interface propaga-
ting unaltered along the cell at a velocity U, i.e.,
d I'/dt = Ux. To find such states it is easier to recast Eq.
(1c) in the following form:

R~na. C }=a„eI,=Un„
I
r—= URe(n) .

In principle, the shape-correction term rl(z) is a small
surface tension effect of Q(dp}. However, in an effort to
understand the origin of the observed instability at sinall
dp, we will study the structural stability of the linearized
eigenvalue problem by allowing r)(z) to be a random per-
turbation of the interface. Namely we shall slightly per-
turb the shape of the interface (which determines the ker-
nel of the linearized eigenvalue problem) and look at the
resulting change in the eigenspectrum. This will turn out
to be exponentially sensitive on the amount of noise, i.e.,
the amplitude of r)(z).

The stability analysis is done by expanding Eq. (10) and
keeping terms in e, dpi', and rim. Using Eq. (4} in Eq. (6)
to compute F,(z) to first order in e and using the result in
Eq. (10) one obtains after some lengthy algebra (the details
of which will be presented elsewhere} the following set of
line)irized equations for the coefficients e„(t)[we have in-
cluded the Q(dp) correction to the finger shape, i.e., we
let rl(z)~g(z)+dpKg(z)/2]:

fp(z) =2( 1 —A, ) ln(z —1 ) —lnz (13)

where A,( =1/U) is the relative width of the propagating
finger (the width of the finger divided by the width of the
channel). In the presence of surface tension [)p given by
Eq. (7)], the formal solution is

p dp i dp z ,
dt „, m m

M)„+ M)„e„+M)„e„,

where

(17)

f(z) =fp(z) +d

pled(z)

. (14)

Since i~cz} is a functional of f(z), Eq. (14) is a functional
fixed-point equation for the mapping f(z), which, in prin-
ciple, can be solved recursively. This functional equation
may be a clue to the understanding of the mentioned
discrepancy between the singular perturbation analysis of
McLean and Saffman~ and their numerical results. )'

Namely the solution of Eq. (14), expressed as an expan-
sion in dp, may converge to different fixed points, f'(z)
[depending on the initial "guess" f(z)] corresponding to
the different members of the discrete family of solutions
obtained numerically.

IV. LINEAR STABILITY ANALYSIS

We shall now present the results of the linear stability
analysis for the A, = —,

' finger which is the one observed in

0 — x+ o +x o +

FIG. 2. Eigenspectrum at do ——0.05 for various truncations:
%=130 (+), N =100 (0), N =80 ()(). Notice the discrete
spectrum of asymmetric modes (complex eigenvalues) and the
continuum of symmetric and antisymmetric modes (negative
real eigenvalues).
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(e)

ll II I II I
I l I

FIG. 3. Three most unstable modes {dashed line: unperturbed finger). {a) The symmetric nonoscillatory mode, which may be re-
sponsible for the experimentally and numerically observed fingers of width A, & 2. {b) The asymmetric "hump" mode. {c)The asym-
metric "tip wobbling" mode. (d) The asymmetric "hump" mode observed in an experiment [courtesy of p. Tabeling and A. Lib hab r
(Ref. 6). (e) Result of a Monte-Carlo simulation of the flow exhibiting the two asymmetric modes [courtesy of S. I.rang (Ref. 13)

MI„=2[15in—(l +1)5I+i„],
Mjn =II [ (~ I ~n, I+I }+(b —I 25 —I —I+b —I —2}1

(rln —I+i Vn —I+3 in+I —I Qn —I —2}l ~

Mj„n[(A~——A„j+,) —(b„+I+I 2b„j+b„+—I i)

+2(On+I+2 39n+I+I+39n+I n+I —1}l ~

with

Anj=l[(n+ 2 }an+i,j —("+ 2 )&n, j]
1

+n, I =—
+1 n+ —,

'—+I n ——, —

and

Pl 4

Notice that in the absence of surface tension (dc ——0)
we recover the Saffman-Taylor results, the finger is
linearly unstable {the matrix Mj„has eigenvalues equal to
2k where k =1,2, 3, . . .). Also notice that the transla-
tional mode eo decouples from these equations and is thus
manifestly marginal. The eigenvalues of the above linear
set of equations were obtained by truncating the expansion
en to order N (for N in the range 50—200}. (A standard
EISPACK package was used to compute the eigenvalues
and eigenrnodes of the resulting matrices. ) The eigenspec-
trum for do ——0.05 is shown in Fig. 2. Notice the continu-
um of symmetric modes (e„real) and antisymmetric
modes (en imaginary) characterized by negative real

eigenvalues preceded by a discrete set of asymmetric
modes (en complex) with complex eigenvalues. These
asymmetric modes appear when do & 1, i.e., when the flat
interface becomes linearly unstable, and their number sub-
sequently increases as do~0. The eigenvalues were all
found to have negative real part (i.e., the interface is
stable) for values of do down to 10 2. However, the
lowest (asymmetric) eigenmodes were extremely sensitive
to the amplitude of the noise (i.e., the amplitude of r) ). In
fact the amount of noise needed to drive them unstable
decreases exponentially with do. In the analysis as well as
in the numerical simulations r) was a random variable
either uniformly distributed in Iri or with a Gaussian dis-
tribution near m =0, i.e., 2} =vrandom(m). [When rI
is real, the eigenvalues of the truncated Eq. (17) can be
found faster by computing the eigenvalues of the two
NXN matrices M +djIM'/rr+doM /rr. ] Let v, be the
amplitude of the noise necessary to obtain marginal eigen-
values, then we found

v, -dc exp( —ado ),1/2 —1/2

where a = 1.3. (For example, at dc ——10,v, =5 X 10 . )
This particular fit is suggested by an argument due to
Zel'dovitch et al. ,

" which can be adapted to the
Saffman-Taylor problem. ' Other fits are possible, e.g.,
v, =exp( —ydo ~},with P=0.61, and y =0.72.

The most unstable modes are shown in Fig. 3; there are
two asymmetric oscillatory modes, and a symmetric
nonoscillatory one which corresponds to a change in the
width A, of the finger. These modes have apparently been
observed in numerical simulations' and in real experi-
ments. The extreme sensitivity of the spectrum on the
noise we interpret as a structural instability of the
Saffman-Taylor equations at high velocities. We conjec-
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ture that this structural instability is related to a finite-
amplitude nonlinear instability of the propagating finger
at low surface tensions (see Appendix}, such as the one ob-
served in numerical simulations by DeGregoria and
Schwartz. ' In order to test that conjecture we have simu-
lated the time evolution of the Saffman-Taylor problem in
the presence of noise.

0.68

0.60

V. NUMERICAL SIMULATIONS

The numerical algorithm implementing the conformal-
mapping technique to the study of the evolution of the in-
terface is straightforward. Given f,(z}, compute the cur-
vature «(s) deflned in Eq. (4) (all spatial derivatives were
evaluated by Fourier methods), then evaluate i~cz} given by
Eqs. (5) and (6) and use Eq. (10) to determine f, +s, (z) by
some convenient integration scheme (we used a fourth-
order Runge-Kutta code). However, due to the contrac-
tion of points along the interface (s is uniformly distribut-
ed on the unit circle but its image on the interface I is
not), we initially encountered numerical instability prob-
lems arising from very-high-frequency noise. In order to
overcome these problems we introduced a routine which is
averaging the curvature and its derivative over an arc-
length smaller than A,, (typically A,, /5). A,, is the critical
wavelength associated to the instability of a flat interface.
This routine thus reduces the resolution of the method
and is similar to the introduction of an underlying grid
used in other numerical schemes. s'i' [The overall code
is still very effective being an N lnN algorithm (N being
the number of Fourier modes used). All calculations were
performed on a FPS-164 array processor. ] Being aware of
the danger that such a scheme may alter in an uncontroll-
able way the time evolution of the interface, we have
checked our algorithm with the known results in the
asymptotic regime ( r ~ ao ).

A typical outcome of such a simulation is shown in Fig.
4 and fits well the finger shape obtained by the
phenomenological scaling hypothesis of Pitts. " The
dependence of the finger width on the McLean-Saffman
surface-tension parameter x is shown in Fig. 5 and agrees

0.56

0 ) 2 3 4 5 6

2.56

0.00—

- l.28—

-2.56-

2.56 (b)

FIG. 5. Dependence of the finger width A, on the McLean-
Saffman surface-tension parameter ~. The continuous curve is
the McLean-Saffman relation.

-2.56 .

l.28

0.00

l.28

2.56
0

(c)

I I I I 1 I I

4 6 8 l0

FIG. 4. Asymptotic {t~ ao ) finger for do ——0.04 (solid line)
compared with the asymptotic expected shape from Pitt's
phenomenological scaling hypothesis (dashed line).

FIG. 6. Time evolution of arbitrary initial interfaces. (a)
Evolution of an initial interface without surface tension. (b)
Evolution of the same interface as in (a), but in the presence of
surface tension (do ——0.01). (c) Tip splitting in the evolution of
an interface at low surface tensions {do ——0.01).
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22'
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I I i stretching of the perturbation wavelength by the tangen-
tial velocity component of the flow and the quenching by
the walls. However, strong enough thermodynamic fluc-
tuations could destabihze the flame front, their threshold
amplitude decreasing exponentially with the Reynolds
number. That argument can be adapted to the present
case and yields a prediction similar to Eq. (18).'
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FIG. 7. Critical noise amplitude v, necessary to drive the sys-
tem unstable as a function of the surface tension parameter do.
Notice the vertical scale is logarithmic (we plot —loge, vs do).
The crosses (+ ) are results of the structural stabiHty analysis,
the continuous curve is a best fit of the form v, =exp( —ydo ~)
with P=0.61 and y=0.72. The dashed hne is a best fit of the
form vc ——v, do exp( —ado '

) with v, =26 and a=1.3. The
circles (0) are results of the numerical simulations which
seemed to be more sensitive to noise by a constant factor.

with their numerical results for the steady-state interface.
Finally in the absence of surface tension, the time evolu-
tion of the interface was in complete 'agreement with the
exact time-dependent solutions. 7 It developed finite-time
singularities, see Fig. 6(a). In its presence we could ob-
serve two regimes. One at low velocities (do ~ 10 ) for
which an initial arbitrary interface evolves into the corre-
sponding McLean-Saffman steady-state propagating
finger, Fig. 6(b). The other at high velocities (dn &10 2)

for which the finger is unstable, wobbling, and tip split-
ting, Fig. 6(c), this being in qualitative agreement with re-
cent numerical and experimental work. ' ' '

We have then tested our conjecture that the instability
of the finger in the second regime is due to numerical (or
real) noise, and that the noise amplitude necessary to des-

tabilize the finger decreases exponentially with increasing
velocity [Eq. (18)]. This was done by looking for the on-
set of the instability —at a given value of dn —as a func-
tion of the amplitude of a random analytic perturbation of
the interface. In Fig. 7 are shown the results of the per-
turbation analysis and the numerical simulations. Both
demonstrate the existence of a finite-amplitude nonlinear
instability whose threshold is decreasing as an exponential
of the velocity, i.e., as an exponential of 1/do, though the
numerical simulations seemed to be more sensitive to
noise by a constant factor.

VI. CONCLUSION

We have argued for the existence in the Saffman-Taylor
problem of a structural instability related to a nonlinear
instability of the penetrating finger at low surface ten-
sions. The most unstable modes predicted by our analysis
are in good qualitative agreement with both experiment
and numerical simulations. Finally, our numerical simu-
lations confirm the existence of a nonlinear instability
which threshold decreases exponentially with increasing
velocity. A similar result was obtained by Zel'dovitch
et al. " in the case of flame propagation in tubes. They
found that the curved interface was stabilized due to the

APPENDIX

We shall now argue for the existence of a relation be-
tween the structural stability of the linearized problem
and the nonlinear instability of the full problem. Consid-
er the following general equation:

d,f=K(f), (Al)

where K is some nonlinear operator on f. That equation
may have stable and unstable steady states f, and f„
which means that the linear operator

has all its eigenvalues on the left of the complex plane at
f=f, and some eigenvalues on the right at f=f„.Notice
that

f„
O=K(f„)=f Lydia, (A2)

where the integration is over a path in functional space
from f, to f„.Since we expect the least-stable eigeninode
to become unstable flrst (in particular, if it is well separat-
ed from the other modes), we may look for a path in func-
tional space from f, to f„which at every point ((I is
tangential to the eigenmode p of L~ with maximal eigen-
value A. ,„(i.e., the most unstable mode). Then
parametrizing this path by t [dP=p(t)dt] there exist
some T such that

T
K(f„)=f A, ,„(t)p(t)dt=0. (A3)

Thus we see that it may be possible from a structural sta-
bility analysis of the linearized problem L~, in the neigh-
borhood (() of the linearly stable steady state f„to get in-
formation about the finite-amplitude nonlinear instability
of f, . If we are only interested in the scaling behavior of
the critical destabilizing amplitude as a function of some
parameter a, we may not have to calculate f„asa func-
tion of a. Rather, we notice that the maximal eigenvalue
of L~ must change sign before f„(i.e., for P in a neigh-
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terials Research Laboratory of the University of Chicago
under National Science Foundation Grant No. DMR-82-
16892. This work was presented as a thesis to the Depart-
ment of Physics, The University of Chicago, in partial
fulfillment of the requirement for the Ph.D degree.
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borhood of f, not including f„)so that we may sample
the neighborhood of f, and estimate the amplitude of the
perturbation at which the linear operator I.~ has a mar-
ginal eigenvalue. The scaling of that amplitude (although
dependent on the sampling scheme} yields qualitative in-
formation on the behavior of the critical destabilizing am-
plitude. And if only few modes are nonlinearly unstable
such a samp1ing may project out a good approximation to
the critical modes.

Examp/e. In order to demonstrate the previous asser-
tions let us consider the following simple nonlinear equa-
tion:

The stable steady state is at f, =(0,0). It has eigenvalues
A, i ———5, A2 ———1, and associated eigenmodes p, i

——(1,1),
pz ——(0, 1). Consider the path in functional space
P=f, +tpi The .linearized operator is

-5 3t'
1 —1

The maximal eigenvalue of I.
& is A, ,„=5—+3t

+0(5,t } and the associated mode is)Lii+0(5). To find
the unstable steady state we look for T such that

0(5')= J ( 5+—3t')Ct .

The solution T =+5'~ implies that f„=(+5'~,+5' )

which, of course, is the known result. Notice that T is
also the critical destabilizing amplitude. If we are only in-
terested in the scaling of T as 5 is decreased, then we may
instead look at the scaling of T' where I.~ has a marginal
eigenvalue, i.e., T'=+(5/3)' . In that case the depen-
dence of T and T' on 5 is the same. This example
demonstrates the relation between the structural stability
analysis of the linearized problem, and the existence of a
finite-amplitude nonlinear instability.
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