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Method of analysis of critical-point singularities from power-series expansions
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A simple method is proposed for determining characteristic parameters of critical-point singulari-

ties from power-series expansions. It applies to a broad class of functions of physical interest and

provides acceptable, simultaneous approximations to the critical point, exponent, and amplitude.

Several examples of low- and high-temperature series expansions for thermodynamic properties of
spin- 2 Ising models are studied, and quite accurate results are obtained for both close- and loose-

packed arrays.

I. INTRODUCTION

Exact solutions to problems in theoretical physics are
rarely attainable. Approximations are often given as
power-series expansions that in most cases are divergent
or at least have finite convergence radii. Owing to this,
great effort has been devoted to the development of ap-
propriate techniques for handling such series.

Power-series expansions with finite convergence radii
nowadays are of great interest in theoretical physics and
chemistry. Among them we can mention low- and high-
temperature expansions for some thermodynamic proper-
ties (such as magnetization, magnetic susceptibility, and
specific heat) of the spin- —,

'
Ising and Heisenberg

models, ' s virial expansions for simple real gas models,
series in inverse powers of the nuclear charge for the elec-
tronic energy of atoms, and power-series expansions for
the energy eigenvalues of rigid polar rotators in electric
fields (see, for example, Ref. 6 and references therein).

Sometimes the physical value of the expansion parame-
ter lies outside the convergence region, which makes
necessary the use of convenient summation methods. In
other cases (i.e., in the study of critical behavior in lattice
statistics} the singularity determining the convergence ra-
dius has itself some physical meaning. Due to this, great
effort has ban devoted to the determination of the
characteristics of the singularities of a function from its
power-series expansion.

The purpose of the present paper is to develop a very
simple procedure for simultaneous calculation of all criti-
cal parameters. As far as we know, none of the currently
used techniques exhibit such an advantageous feature that
in some cases is of paramount importance, as shown
below. The method is presented in Sec. II. Phase transi-
tions for the magnetization and magnetic susceptibility of
a number of two- and three-dimensional close-packed
spin- —,

'
models are studied in Sec. III. The procedure is

modified in Sec. IV to deal with loose-packed systems.
Finally, other problems that can be treated this way are
briefiy discussed in Sec. V.

II. THE METHOD

As stated before, the aim of this paper is to develop a
systematic procedure for determining characteristic pa-

The present method applies when a critical (real) ex-
ponent a exists so that the "factorized" function

f(x)=(1—x Ixp)'F(x)

is analytic in
~

x
~

& ~xi ~, and A =f(xp), the critical
amplitude or singularity amplitude, is non-null. For the
sake of simplicity it is assumed that xp is real though
complex xp values can be treated the same way.

In order to obtain xo, a, and A simultaneously, we de-
fine

g (u, b, x)=(1 x/u)sF(x), — (3)

where u and b are adjustable parameters. On expanding
the right-hand side of Eq. (3) in powers of x we obtain

g(u, b,x}=gg„(u, b)x",
m=0

where

(4a)

n b
g„(u,b)= g ( —u) 'F„

s=O .

and (, ) are the binomial coefficients.
Clearly, if u =xp and b =a the sequence

g(N, u, b,x}=g g„(u,b)x", N=1, 2, 3, . . .

will converge towards f(x) in
~

x
~

&
~
xi

~

. In particu-
lar, g( ao, x, p,ax)p=A. From a practical viewpoint, prop-
er u and b values are set so that the largest convergence
rate for the sequence (5) is obtained. A sensible conver-
gence criterion seems to be

gN(uN»tt ) =gN —1(uN»N ) =0
from which we obtain the u and b values for each N

rameters of critical-point singularities from power-series
expansions. To this end let us consider a function F(x)
with singularities at xo,x l,x2, . . . , where

lxp I
& lxi I

& lxi I

& The Tay»r-series expan-
sion Fp+Fix+Fix + for F(x) converges in

/x
/

& /xp/ and

lim IFn~Fn+i I

=
I "p

I
.
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value. If the sequences u~, bN, and A~ —g—(N, u~, b~, uN }
(%=1,2, 3, . . .) are found to be convergent, their limits
must be xp, a, and A, respectively.

Although we do not give either a rigorous proof of con-
vergence or a mathematical justification of the choice (6),
the method is very reliable because the convergence of
three sequences is tested simultaneously. Therefore, for-
tuitous convergence is very improbable. Our assumptions
will be numerically checked in Secs. III and IV. Besides,
it is very easily shown that Eq. {6}leads to the exact result
when f(x) is a polynomial function of degree N —2 in
which case g~(uN, bN ) =0 for all M & N —2.

The roots of Eq. (6) are easily calculated by means of
the Newton-Raphson method ' and the sequences u~,
bN, and A~ are simultaneously obtained. This fact is of
great importance because it is known that the use of pre-
viously computed xo snd a values in calculating A leads
to inaccurate results if the input is not very accurate.

Several ways of estimating xi' and a have been pro-
posed. Among them we can mention the following: (a)
the ratio method and its several related variants' '

that obtain the limit (1) by means of an appropriate
asymptotic expression for F„; (b) some techniques using
Pade approximants, the most successful of which requires
a previous accurate calculation of one of the critical pa-
raiiieters z (c) methods of sequence extrapolation such as
the Neville table9' and the Wynn-Shanks e algo-
rithm '~'s the latter giving re~sonable approximations to

aild xp from the power series for lnF and d lnF/dx,
respectively; (d) procedures based upon the Borel
transform and its variants ' and (e) the contour-map
method. 9's's Some of these procedures require the use of
different functions derived from F(x) in order to calcu-
late xo and a. In the present case both critical parameters
are obtained from the Taylor expansion for F{x)

The contour-map method ' ' is particularly interest-
ing because it resembles the present one. It applies when
x0 = —x i & 0 and consists of defining the function

f(x)=(1 x—/xo)'F(x) is not analytic at xo. For the par-
ticular case a= —,', t =1, and xo ——xi ——1 we obtain

(N =70) a =1.49+0.01, xo ——1.00002+0.00002, and
A =1.1+0.1, which agree with the exact values.

III. APPLICATION TO CLOSE-PACKED-LA l l ICE
SPIN- ~ MODELS

The spontaneous magnetization for a two-dimensional
scpmre spin- —,

'
Ising model is known to be '

M(x)=(1+x)'i (1—x) 'i (1—6x+x )'

where x=exp( 4J/k—'1}, k being the Boltzinann con-
stant, T the absolute temperature, and J the spin-spin in-
teraction (coupling constant). This model is a good test
problem since its critical parameters are exactly known.
In fact, it has recently been used to check the e algo-
rithm. '4 "

The singularities of M(x) are at xo ——3 —2 ~, xi ——1,
x2 ———1, and xs ——3+2, and its low-temperature series
expansion converges in

I
x

I
&xo. [The coefficients of

the x-power-series expansion for M(x) are easily calculat-
ed.] The closest singularity to the origin, xo, is related to
the critical temperature T, (Curie temperature) of the
phase transition.

On applying the present method it is found that the er-
«~

I
~ —bx I I

xo —ux I, and
I

A —AN
I

are smaller
than 10 ' for N &23. Notice that the three critical pa-
rameters have been obtained with the same accuracy,
which does not happen when using other techniques.

The reduced magnetic susceptibility X can be approxi-
mated by low- and high-temperature expansions. 9'zo Only
the latter will be considered here because it has been the
most frequently studied (see Ref. 20 and references
therein). This series is of the form

X= QX„x", (9)

Ii (m, u, b,x) = 1 ——x
Q

1+— F(x) . (7)

Different u and b values are tried for m =0, 1,2, . . . so
that the Taylor coefficients for h decrease in inagnitude
and alternate in sign. The uncertainty in the computed xo
and a values decreases as m increases. %hen there is only
one singularity closest to the origin, the function F(x) in
(7) is replaced by F(x)F(—x). However, in this last case
results are considerably poorer. On the other hand, our
method applies successfully to both cases as shown in
Secs. III and IV provided it is properly modified when
x) = —xp (0.

Numerical investigation shows that the present method
applies even when f(x) has a branch-paint singularity at
xp. Although at present there is not a plausible
mathematical justification, it seems that the sequences
u~, b~, and A~ converge even when the Taylor series for
f(x) at x =xo does not. For example, convergence of the
sequences is observed when F(x}=(1—x /xo)
+(1—x/xi) ' where a and r are positive nonintegem
(a & t) and 0 &xo (x i. Obviously, in this case

n=0

where x =tanh(J/kT). The coefficients X„ for some lat-
tice arrays can be found in Ref. 20.

The singularity of X(x) closest to the origin for close-
packed lattices (ferromagnetic singularity xo&0) factors
as indicated in Eq. (2).' On the other hand, the mag-
netic susceptibility for loose-packed arrays is singular at
xo &0 and xi ———xo (antiferromagnetic singularity), due
to which they are studied in Sec. IV.

The close-packed arrays to be studied here are the two-
dimensional plane-triangular (PT) and the three-
dimensional face-centered-cubic (fcc} lattices. Let us first
consider the former. The first 16 coefficients X„ for the
PT Ising model obtained by Domb have been used to
build the sequences bz, uN, and A~ in Table I. They
seem to converge and, as usually happens, '

uN ap-
proaches the limit more quickly than the others. The
contour-map method' enables one to calculate only xp
and u and its results are less accurate than those estimated
from Table I.

In order to obtain closer approximations to the limits of
the sequences we have tried two convergence-accelerating
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TABLE I. Sequences for the magnetic susceptibility for the
taro-dimensional plane-triangular Ising model.

TABLE III. Sequences for the magnetic susceptibility for the
three-dimensional face-centered-cubic Heisenberg model.

AN

13
14
15
16

1.749 27
1.74909
1.749 28
1.74947

0.267 943 9
0.267 941 9
0.267 943 9
0.267 945 8

0.848 80
0.849 12
0.848 76
0.848 39

1.304 24
1.398 39
1.527 60
1.50695

0.245 13
0.248 10
0.251 07
0.250 67

1.269 51
1.11368
0.897 25
0.931 83

techniques, namely, the e algorithm (EA) (Refs. 14„15,
and 24—26) and an N ' extrapolation (E},using the last
terms of the sequences. Since these procedures are widely
used they require no further comment. Similar results are
obtained in both cases as shown below.

For the critical exponent we have a=1.7492 (EA} and
a =1.7503 (E) which agree with the exact exponent value
a = —,, which is supposed to occur in all two-dimensional
lattices. The present estimate for xo is xp 0.267942
(EA} and x p 0.267 954 (E), the exact result being
xo ——(2+3'~ )

' =0.267 949 2. . . . The A values ob-
tained in this paper, 2=0.8491 (EA) and 2=0.8467 (E),
agree with that coming from the ratio method (using ex-
act xo and a values) and other procedures'~

is

A =8472+0.0002. It is worth noting that much more ac-
curate critical parameters are obtained if at least one of
them is exactly known. However, we do not profit from
this fact because the present method is developed to deal
with more realistic models where no exact critical param-
eter is available.

Table II shows the sequences for the critical parameters
of the fcc Ising model constructed from the first 12 coef-
ficients X„. The critical parameters obtained directly
from Table II are more accurate than those coming from
the contour-map method. ' Besides, our results can be
improved by using the aforesaid convergence-accelerating
techniques. A straightforward calculation yields
a =1.2462 (E}, a 1.2473 (EA), xo 0.101729,
x0-0.101731 (EA), 2=0.9753 (E), and 3=0.9675 (EA)
which agree with the results'obtained through other
methods: a = —,

' (which is supposed to occur in all three-
dimensional arrays}, x0.10175+10, ' 0 and A =0.963
+0.002."

Although more accurate results than the present ones
are available, we deem that our method is interesting be-
cause it is very simple and enables simultaneous calcula-
tion of all the critical parameters. Besides, it poses a nov-
el way of approaching the problem of critical behavior
and offers some advantages as shown in Sec. IV.

In order to show that the convergence of the sequences

is not fortuitous or model dependent we now consider the
magnetic susceptibility for the fcc spin- —, Heisenberg
model. The sequences for the critical parameters
displayed in Table III were obtained from the first nine
coefficients X„of the series in powers of x=J/kT. 29

They appear to converge more slowly than those studied
previously and therefore the results are expected to be less
accurate. In this case we have (only N ' extrapolation
has been tried) a =1.4, xo-0.25, and 3=1.10 that agree
with a=1.43+0.01 and xo ——0.249+10 (Ref. 29) and
with a=1.406 and xo-0.245. ' As far as we know the A
value was not reported previously.

IV. APPLICATION TO LOOSE-PACKED-LATTICE
ISING MODELS

It is well known that the magnetic susceptibility for the
loose-packed-lattice Ising models has two closest singular-
ities to the origin that correspond to the ferromagnetic
(xop0) and antiferromagnetic (xi ———xo) phase transi-
tions. Owing to the presence of the antiferromagnetic
singularity the sequences u~, bN, and A~ as defined in
Sec. II exhibit a characteristic odd or even superimposed
oscillation that leads to too rough estimations of the criti-
cal parameters. However, the procedure of Sec. II is still
useful since it reveals the existence of the singularity at

Xo ~

In this section we study the high-temperature
magnetic-susceptibility series [x=tanh(//kT)] for the
body-centered-cubic (bcc) and simple-cubic (sc) Ising
models. The Taylor coefficients X„are given in Ref. 20.

The sequences uz, bN, and A~ for the bcc lattice are
shown in Table IV as an illustrative example. On estimat-
ing the limits of the odd and even sequences separately
and then averaging the results we obtain a=1.3+0.3 and
x& 0.154+0.004 that agree poorly with the much more
accurate results a =1.25 and xo-0. 1562.9

It is clear that the antiferromagnetic singularity has to
be taken into account explicitly, as in the case of the
contour-map method, ' in order to obtain acceptable re-

TABLE II. Sequences for the magnetic susceptibihty for the
three-dimensional face-centered-cubic Ising model.

TABLE IV. Sequences for the magnetic susceptibility for the
body-centered-cubic Ising model (method of Sec. II).

9
10
11
12

1.247 66
1.247 76
1.247 56
1.247 28

0.101 739 2
0.101 740 1

0.101 738 5
0.101 736 4

0.97248
0.972 30
0.972 69
0.973 23

12
13
14
15

1.735 84
1.02602
1.721 36
1.028 12

0.13682
0.15348
0.13907
0.153 86
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suits. To this end let us suppose that the magnetic suscep-

tibility for the above-mentioned three-dimensional Ising
models can be written as '

TABLE V. Sequences for the magnetic susceptibility for the
body-centered-cubic Ising model (method of Sec. IV).

X(x)=fi(x)(1—x/xp) '+f2(x)(1+xIxp)', (10)

where
~

a
~

&
~

a'
~

and fi(x) and f2(x) are analytic in
—xp &x &xp and —xp &x &xo, respectively. The fer-
romagnetic and antiferromagnetic amplitudes are defined
as A =fi(xo) and A'= f2(xo), resPectively.

The odd and/or even superimposed oscillation of the
sequences must approximately be due to a contribution of
the form A'(1+x/xp)~. To remove it we define

12
13
14
15

1.21649
1.213 97
1.221 50
1.21959

0.155 918
0.155 889
0.155 973
0.155 955

N

g(N, u, b, u,x}=g g„( ub, u) x",

0.51095
0.513 17
0.52749
0.529 11

1.062 66
1.067 97
1.052 27
1.056 59

(13)

F(x)=X(x)—U(1+x lu)', and the values of the parameters u, b, and U are set so
that

and

g(u, b, u, x) =(1 x/u)sF—(x) . (12)
gN 2(uN~bN—~UN) gN —l(uN~b¹UN)

=gN(uÃ, bN, UN )=0, (14)

From the Taylor series for g(u, b, u, x) we build the se-
quence of partial sums

for N =2,3,4, . . . .
It immediately follows from gN 2(uN, bN, uN ) =0 that

N —2

~N N —n —2
n=0 I

bN a'N —2

n N —n —2 (15)

and the Newton-Raphson method is used to obtain uN

and bN from the remaining algebraic equations. Obvious-

ly, the critical parameters xp, a, A, and A' are the limits
of the sequences uN, bN, AN —g(N 3,uN—,bN—,uN, uN},
and uN, respectively, provided they converge.

The exact antiferromagnetic critical exponent is
known to be a'= —', (Refs. 20 and 28) and for the sake of
simplicity we use this value in the present paper. If it
were unknown we could calculate it simultaneously with
the other critical parameters by defining
F(x)=Nx) U(1 —x/u)' —and then solving gN
=gN 2

——gN i
——gN

——0 (%=3,4,5, . . .) for uN, bN, vN,
and cN. The last Mquence will converge towards a'.

The sequences for the bcc lattice are given in Table V.
Upon comparing Tables IV and V we notice that the use

of (11) greatly reduces the odd or even oscillation leading
to quickly converging sequences.

As stated before, simultaneous calculation of all the
critical parameters is of great importance because too
much manipulation of the power series may lead to inac-
curate results. This is the case of the antiferromagnetic
amplitude that could only be roughly estimated, ' and
the results obtained do not appear to very reliable. The
present method yields A' values that are as accurate as
the A values. We deem that our A' values are the most
accurate reported in the literature up to now.

Standard graphical and numerical polynomial extrapo-
lations have been used to estimate the limits of the se-
quences uN, bN, UN, and AN. Present critical parameters
compare favorably with the most accurate ones reported

Model

TABLE VI. Magnetic-susceptibility critical parameters for loose-packed-lattice Ising models.

Present
Pade (Ref. 19)
Ref. 19
Refs. 20 and 27'

Present
Pade (Ref. 19)
Ref. 19
Refs. 20 and 27'

'The exact a value is used.

1.250+0.004
1.250+0.004
1.250+0.01

1.250%0.002
1.250+0.004
1.249+0.02

0.15612+0.00004
0.1562+0.0002
0.1562+0.0002
0.156 12+0.00003

0.21815+0.00004
0.2182+0.0003
0.218 12+0.00004
0.218 13+0.00001

0.966+0.006

0.965+0.003

1.016+0.004

1.016+0.001

0.609+0.005

0.536, 0.622

0.644%0.004

0.561, 0.630
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in the literature as shown in Table VI. There is great
disagreement in the case of A' but we consider that our
A' values are highly reliable because the sequence Uz is as
smooth as Az (see Table V) and our A values are in close
agreement with those reported in Ref. 19. This is one of
the advantages of the simultaneous calculation of the crit-
ical parameters. In addition to this, the present method is
simpler and more straightforward than any other that
yields results of the same accuracy.

The magnetic susceptibility for the two-dimensional
loose-packed lattices has a logarithmic antiferromagnetic
singularity. 2o It is beheved that X(x}is of the form

X(x)=fi(x)(1—x/xc) '
+f2{x)(1+x/xo)ln(1+x/xo)

due to which F(x) has to be defined as
X(x)—Uln(1+x/u) in order to apply the present method.
The calculation is similar to that discussed above.

The procedure developed in Secs. II and IV applies to
other problems in theoretical physics and chemistry than
those discussed here. As an example, let us consider the
Mathieu equation

4"(8}+[E(A,) —A, cos8]%(8)=0,
where 4(8+m}=%(8}. On taking into account well-
knomn results one can argue that the characteristic
values E(A, ) are of the form E(A, ) =Fi(A, )

+(1+",/Q)'~F2(A), where Q&0 and Fi(A) and F2(A)
are analytic in

~

A.
( &R & ( Q ~. The coefficients of the

A,-power-series expansion for E(A, ) is available and the
present method applies to E(A, ) —E(A'). The critical pa-
rameters Q, Fi(Q), and F2(Q) can be simultaneously
calculated in a way similar to that shown in Sec. IV. Re-
sults for this and other problems will be presented in a
forthcoming paper.

U. FURTHER COMMENTS AND CONCLUSIONS

A method for studying critical behavior was developed
that applies successfully to a wide class of physically in-
teresting nonanalytic functions. Its main advantage is to
allow simultaneous calculation of all the critical parame-
ters, which leads to very reliable results.
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