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Atomic structure and polarization line shift in dense and hot plasmas
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A model of a confined atom in a self-consistent field has been developed to describe the high-

density effects on atomic bound states in plasmas. Numerical values, asymptotic behaviors, and
scaling laws are given for energy levels and spectral line shifts. Concurrently, a suitable quantum-
mechanical impact calculation has been performed to obtain linewidths and line shifts. For a typical
electron temperature and density of laser plasma, it has been shown that line shifts given by the two

approaches are in agreement within 10'.

I. INTRODUCTION

The study of atomic systems embedded in a finite-
temperature and -density environment is one of the major
subjects of current research in astrophysics and in
condensed-matter and plasma physics. In recent years,
renewed interest has been principally stimulated by
inertial-confinement research, where it occurs both in
spectroscopic diagnostic methods and in target dynamics
or the plasma equation of state. Indeed, experiments with
high-power laser beams produce plasmas having an elec-
tron density and temperature as high as 10 cm and
1000 eV, respectively. It is difficult to diagnose such plas-
mas because they are neither homogeneous nor static.
However, modern diagnostic technology provides space
and time resolution of a few micrometers and a hundred
picoseconds, respectively. Therefore, it is now possible to
obtain space- and/or time-resolved x-ray line spectra.

Several theoretical papers' concerning line-
broadening aspects of such data are already available.
However, for very-high-density plasmas which are strong-
ly coupled with the radiating systems, a more detailed
understanding of experimental data is essential and neces-
sitates improvement of fundamental theory of atomic
structure. Among the basic and controversial subjects we
must mention the so-called "plasma polarization shift, "
which has to be considered in spectroscopic diagnostics
and design of future x-ray lasers. Up to now, most of the
theoretical models of line shift are based on linearized
Debye-Huckel theory and are not satisfactory for at least
two reasons. Firstly, the linearization is valid at large dis-
tance from the ion and not close to the nucleus where the
model is applied. Secondly, this a priori electrostatic po-
tential ignores completely the reaction of plasma electrons
to the presence of bound electrons. Some recent works
have taken into account this reaction by solving the non-
linear Poisson equation. Unfortunately the obtained ion
effects are rather doubtful because they imply (a) first, the
Boltzmann distribution which is erroneous for strong ion
coupling and (b) second, the polarization of the ion com-
ponent which has a correlation time much longer than the

lifetime of excited atomic states.
In a suitable atoinic model we note the following: (i)

All the bound states are confined inside the ion sphere
with radius Ro=(4mN;/3) '~ where Nt denotes the ion
density. (ii} Only plasma components with correlation
time smaller than the effective atomic lifetime can be po-
laflzed.

In high-density and low-temperature plasmas, such as
in the solid phase, the ions are packed together tightly and
each ion occupies an equal volume. Indeed, Monte Carlo
simulations for strongly coupled plasmas show that the
ion radial distribution function is negligibly small at short
distances r and increases sharply to unity for r =Ra. So,
atomic states with orbit radius r„&RQ actually belong to
the continuum. At higher temperatures (or lower densi-
ties}, the ions are more randomly distributed and there is a
large fluctuation of the volume occupied by different ions.
Here the linearized Debye theory is valid and lays down
that interactions can occur over the Debye sphere and im-

ply a large number of ions. Nevertheless, it is easy to
show that the assertion (i} holds still true here. Atnong
the main causes of this we ought to mention the fluctuat-
ing ion microfield Fo-Ze/Ro which is to be compared
with the ionizing critical field ' F,=E„/e Z where
E„= Ze /r„denote—s the atomic binding energy. We
have to consider also the electron pressure ionization. "
Indeed, taking into account the electric neutrality condi-
tion N, =ZN;, the number of free electrons compressed
inside an atom is EZ=4nN, r„/3=Z(r„/Ro) and corre-
sponds to the complete screening of the nuclear charge for
all atomic orbit radii r„&RQ.

Concerning the assertion (ii) relative to time scaling, the
effective atomic lifetime r„can be estiinated by the in-
verse of the corresponding electron-produced linewidth.
As given by Eq. (30) in Sec. III, ~„ is of the order of 10
sec. The electron correlation time r, (equal to the inverse
of the plasma frequency) is about 10 ' sec while the ion
correlation time is r;=(M;/rrt)' r, =60@Zr, where Mt
and m are the ion and electron mass, respectively. Then,
we have generally the double condition

&g «&Pg «&I
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The condition r„«~; means that the lifetime of atomic
states is too short for the ion component to be effectively
polarized. Its effect on spectral lines could be treated
separately via the quasistatic Stark effect' or the adia-
batic approximation including ion dynamic effects. '

The condition r, « r„ in Eq. (1}ensures that the atom-
ic state exists through several oscillation periods of free
electrons. Therefore, the time average for atomic proper-
ties and its equivalent ensemble average are meaningful.
The former will be performed in Sec. III by means of a
quantum-mechanical electron-impact theory' while the
latter will be obtained in Sec. II by using a self-
consistent-field method for confined atoms. '

II. SELF-CONSISTENT-FIELD METHOD
FOR CONFINED ATOMS

=36.5[10 N, (cm )] ' (eV), (2)

so that Maxwell-Boltzmann statistics can be used. There-
fore, in terms of the energies E(nl) and the radial wave
functions R„i(r) of the bound states, pb(r) can be written
as

pb(r) = g b (nl)R„((r) g b (nl)
4~ n I n, l

(3)

In pursuance of the previous remarks on the localiza-
tion of bound states and on the time scaling in polariza-
tion effects, we are finally left with the following atomic
model: the nuclear charge Zze is at the center of a spher-
ical cavity with a radius Ro ——[3(Zz k)/4nN—, ]'~ where
k is the number of bound electrons. To focus attention
we shall consider only the case k= 1, i.e., hydrogenlike
atomic systems. Inside the ion sphere there are sufficient
electrons to give an overall electrical neutrality. Outside
the ion sphere the plasma is replaced by neutralizing uni-
form distributions due to electrons and ions, which lead to
a constant electrostatic potential conventionally taken to
be zero. On the average, an electron moves through an
electrostatic potential P(r) defined by the Poisson equa-
tion with the central point charge Zz, the number density
of free electrons p, (r), and that of the bound electron
pb(r) Gene.rally plasma temperatures are much higher
than the Fermi temperature:

kT )kTp (3' aoN, ) ——(Ry)

po ——po(r) = {2ni [eP(r) —Q (r)] I
' (6)

and

P(r)=P(Ro)=0 for r &Ro (9)

dP(r)
r=RO

=0. (10)

For r &Ro the suitable solution of the Poisson equation
takes then the form

p(r) =Zze/r +p, (r)+pb(r),

where the first term is the contribution of the central
charge Zze while those of free and bound electrons are re-
lated to number densities according to

and the momentum condition p &po ensures that the ki-
netic energy of free electrons is larger than the (negative)
potential energy. In Eq. (5), Q denotes the quantum-
mechanical correction to the energy consisting of three
terms; the exchange energy Q,„, the correlation energy

Q~~, and the gradient correction energy Qs, . The first
two, Q,„and Q, ' ' result from antisymmetrizing the
electron wave function. Physically, they prevent two elec-
trons from occupying the same quantum state in accor-
dance with the Pauli exclusion principle. The gradient
correction energy Q~ takes into account the Heisenberg
space-momentum uncertainty relation and prevents the
formation of a large electron-density gradient. '7's

Instead of Q,„(r)+Q„(r)+Qs,(r} we use, in fact,

Q (r) =Q,„(r)+Q„(r)+Qs, (r)

[Qex(Ro ) +Qcorr (Ro ) +Qsr(Ro )]

so that the quantum-mechanical correction in Eq. (5) is
zero on the ion sphere. In accordance with the atomic
model described in Sec. I, the hydrogenlike ion-sphere ra-
dius is

R o ——[3(Zz —1)/4~N, ]'i

where N, is the volume-averaged electron density, called
electron density for short, and considered together with T
as input data in our problem.

With regard to the electrostatic potential we assume the
following boundary conditions;

r Rp

p, b
—— 4ne —f—r'+. f r'dr'p, b(r') . (12)where

b (nl) =(21+ 1) exp{ —[E(nl) —E(10)]/kT I . (4)

Likewise, the number density of free electrons is given by

p, (r) =p, (Ro)

f co pX ~p
(2rnkT) ~

eP(r)+ Q(r)—X exp

(5)

The above boundary conditions on the solution of the
Poisson equation call for the following two remarks.

Firstly, Eqs. (7) and (9) show that the potential energy
vanishes on the ion sphere. Therefore, taking into ac-
count the normalization condition of the Maxwellian dis-
tribution function we find that the prefactor p, (Ro) on
the right-side member of Eq. (5) has really the meaning of
the boundary electron density. As a result of the plasma
polarization, the latter is generally smaller than the
volume-averaged electron density:

Ro
N, = i r drp, (r) . (13)

Ro
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E(R )
r ddt3(r}

r dr r =Ro

o
ZE —4m r r pe r+pb r

0

=0.

Then, the confinement condition, Eq. (10},turns out to be
the electrical neutrality condition for the whole atom in-

cluding free and bound electrons

Ro
Zr=4rr I r dr[p, (r)4pr(r)]=4rN, R&r'34-) .

(14)

This is consistent with expressions defining the atom ra-
dius, Eq. {8),and the bound-electron number density, Eq.
(3), where the normalization condition

Ro
r rR I r =1

is assumed. '

Finally, to complete the description of the system, we
have to consider the Schrodinger equation for the bound
electron

I (R /2m)[d—/dr l(1+1)/—r ]+V, (r)

—E (nl) ][rR„i(r)]=0, (15}

where we assume the boundary condition'

Secondly, the condition, Eq. (10), also used for the
Wigner-Seitz cell in solid-state physics, means that the ra-
dial electric field vanishes and no electron current takes
place through the boundary surface. Taking into account
Eqs. (11)and (12) we note that

the second one gives rise to spectral line shifts. In the
low-density limit, justifying the first-order perturbation
theory, this second term can be expressed as

2me XeEE{nl)= — ((nl
~

r
~
nl)

3

m.e N, a02 2

n [5n +1—31(l+1)] .
3ZE

(19)

For any given N, and T, in order to obtain fundamen-
tal parameters of the plasma (local electron density, ele:-
trostatic potential) and those of atomic bound states (ener-

gy levels, wave functions, occupation numbers, . . . ), Eqs.
(3), (5), (11), (12), and (15) should be solved self-
consistently with the confinement conditions Eqs. (8), (9),
(14), and (16).

The starting point consists in solving numerically Eq.
(15) where the interaction potential V, (r} is initially re-
placed by its high-temperature limit V, , Eq. (18).
This leads to atomic data and in particular to the electro-
static potential due to bound states Pb(r), Eq. (12). First,
we keep the latter unchanged and find self-consistent
values for p, (Ro), p, (r), and P, (r) by considering together
Eqs. (5), (9), (11), (12), and (14). This procedure requires
up to four iterations. Then the new form of dt3, (r) is intro-
duced in Eq. {15},the numerical solution of which consti-
tutes a starting point for the following sequence of itera-
tions. Generally, the first two sequences already yield
self-consistent values of atomic data. Some more are real-
ly necessary only for extreme cases with low temperatures,
high electron densities and high principal quantum num-
bers.

Figure 1 represents typical self-consistent values for the
most interesting plasma and atomic parameters. Curve
(a) shows that the number density of free electrons in-
creases rapidly when r decreases towards the orbit-radius

R„i(Ro}=0

and introduce the effective atomic potential

V, (r) = —e [Zxe/r+P, (r)],

(16)

(17)

from which the self-energy of the bound electron
—ebb(r) is excluded, as it should. With regard to Eqs.
(5), (12), and (13), we note that P, (r) tends to vanish with
decreasing N, and, consequently, Eq. (15) reduces to the
unperturbed Schrodinger equation.

When the temperature is high enough so that the kinet-
ic energy overcomes completely the potential energy, Eq.
(5) shows that the number density of free electrons is
indeed spatially independent. Thus, according to Eq. (12),
the atomic potential reduces to the following uniform
electron-gas model (UEGM):

V, (r)= e[Zze/r+ lim P,(r}]-
T~ cN

= —eiI Z&/r +2mN—,Re[1—7~(r/Ro') ] I .

(18}

In the right-hand side of Eq. (18), the first term in square
brackets corresponds to the continuum lowering awhile

FIG. 1. Self-consistent values for a: free-electron density rel-
ative to that at the boundary surface, p, (r)/p, (Ro); b: relative
number of free electrons compressed inside the radius r,
4m r' dr'p, (r')/(ZE —l ); e: effective atomic potential rela-
tive to the unperturbed Coulomb potential, rV, (r)/e ZE. For
comparison purposes, the orbit radius values r (nl)
={nl

~

r
~

nl)'~ are marked by means of arrows along the r
axis.



1282 NGUYEN, KOENIG, BENIREDJEM, CABY, AND COULAUD 33

TABLE I. Ne X energy levels E(nl) (in Ry), calculated for a given temperature T=500 eV and various volume-averaged electron

densities N, . As shown in the second line we note that the boundary electron density p, (RO) is appreciably smaller than the volume-

averaged density.

N, {cm )

p, (RO)/N,

—E{1s)
—E(2s)
—E(2p)
—E{3s)
—E(3p)
—E(3d)
—E(4s)
—E(4p)

E(4d—)
E(4f—)

6x 10'2

0.9822

95.523
20.538
20.541
6.736
6.728
6.702
2.075
2.056
2.014
1.952

1 x 10'3

0.9794

94.666
19.700
19.696
5.951
5.932
5.890
1.427
1.394
1.324
1.217

3x 10'3

0.9723

92.218
17.336
17.306
3.849
3.790
3.666

6x 10'3

0.9669

90.110
15.348
15.283
2.280
2.162
1.910

1 x 104
0.9620

88.188
13.582
13.474

1.065
0.972
0.606

3x10'4
0.9510

82.706
8.863
8.549

6x 10
0.9421

77.980
5.312
4.721

values of fundamental and first excited states. Therefore,
the latter can hardly be treated by means of the uniform

electron-gas approximation. As shown by curves (b) and

(c), highly excited states (3s state given in Fig. 1) are only

weakly bound because of the large number of free elec-

trons compressed inside their orbit and the significant
reduction of the effective atomic potential at their loca-

tion.
Table I presents the energy levels for the Ne X bound

states existing in plasmas with T=SOO eV and various

N, . For increasing N, we note the following two points.
(i) The number of bound states decreases rapidly. In fact,
no bound state with n=4 and 3 exists when the volume-

averaged density N, goes beyond 102' and 102 cm
respectively. (ii) All the energy levels move more and

mare tawards the continuum. Besides, the energy shift
E(nl) —E (nl) =[E(nl)+100/n )] (Ry) increases with in-

creasing orbital quantum number I and decreasing princi-

pal quantum number n The la.tter fact provides for a red

line shift which will be discussed in detail in Secs. III and

IV.
Table II gives the saine arameters as in Table I but

with a fixed density N, =1 cm and various tempera-

tures. The values at the infinite temperature limit (last

line in Table II}have been obtained by solving numerical-

ly Eq. (15} with the effective atomic potential V, (r) re-

placed by the V, of Eq. (18). The numerical values

given in the three right-hand-side columns show that the
energy levels become deeper and deeper as the temperature
increases. Physically, this can be explained by noting that
the lower the temperature, the more efficient is the nu-

clear Coulomb attraction and, consequently, the larger is
the fractional number of fry electrons compressed inside
an atomic orbit. As a result, the corresponding energy
level tends towards the continuum from its deepest value

given by the UEGM. Also, comparing the transition en-

ergy E(2p) —E(1s}of the Ne X Lyman-a line to the un-

perturbed one (75 Ry), we point out a red line shift which
decreases with increasing T.

As already mentioned in the comment on Eq. (13},the
second line af Table I and the second column of Table II
show that the boundary electron density p, (R&) is smaller
than the volume-averaged one N, . This lowering of the
boundary electron pressure increases when N, increases
with a fixed T or when T decreases with a fixed N, .
Again, the physical explanation based on balancing the ki-
netic and potential energy is valid here.

III. QUANTUM-MECHANICAL IMPACT THEORY
FOR LINE&IDTH AND LINE SHI&-r

100
200
400
600
800

1000
1200
1500

0.8939
0.9292
0.9550
0.9664
0.9729
0.9772
0.9801
0.9833
1.0000

86.798
87.529
88.078
8&.307
88.436
88.521
88.582
S8.643
88.946

12.434
13.042
13.492
13.680
13.784
13.853
13.903
13.952
14.189

12.268
12.907
13.379
13.577
13.6S7
13.760
13.812
13.864
14.116

TABLE II. Ne X energy levels E(nl) (in Ry) calculated for a
given volume-averaged electron density N, =104 cm ' and
various temperatures. We note that E(nl) and p, (RO)/X, tend
towards the corresponding UEGM values as the electron tem-
perature increases.

kT, (eV) p, (RO)/X, —E{1s) —E(2s) —E(2p)

In Sec. II we have dealt with a neutral "confined atom"
which consists of a spherical cavity having the radius
Rc ——[3(ZE—1)/4nN, ]'r and enclosing a central point
charge Zze and the corresponding number Zs of bound
and free electrons. We have obtained various fundamen-
tal plasma and atomic parameters (local electron density,
energy levels, and wave functions of bound electrons, etc.)

except an essential one: the linewidth. To fi11 this gap, we
shall consider a dynamical treatment of the total interac-
tion between bound and fro: electrons. In addition to
linewidths, we will obtain line shifts which inust be com-
pared to the previous self-consistent-field effects.

A. Basic equations

The general dynamical treatment, including non-
Markovian effects such as the frequency dependence in
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linewidth and line shift, is useful and numerically tract-
able only in some particular cases. In Sec. I we have al-

ready noted that the atomic lifetime r„ is quite larger than
the electron correlation (polarization) time r, S.o, on an
average it takes many collisions to produce an appreciable
change in the wave functions of bound states. This is just

the basic assumption which underlies the quantum-
mechanical impact theory of pressure broadening. Fol-
lowing Baranger, ' we can write the line shape for a group
of overlapping radiative transitions a~a, bP13, . . . , as
follows:

I(a))= ——Im g ((aa'
~

b
~

bP')) bP'
a, b,a,P (H—q; Hg—f+P )

(20)

where we have assumed that the density matrix is diagonal with respect to initial atomic states; b, is the emission dipole
in the doubled-atom description:

Hq; and Hqy are atomic Hamiltonians acting only on initial states a,b, . . . , and final states a,P, . . . , respectively. In
Eq. (20) P' is the constant effective interaction accounting for the time-dependent interaction between free electrons and
the ionic radiator of interest.

has been conveniently expressed in terms of coupled representation T matrix elements in the literature [see, for ex-
ample, Eqs. (205) and (206}of Ref. 6]. For the particular case of the Lyman series ( nf = 1,lf —0) we have

inN, A
((v (;;v&0) E')n );;m&0)) = —

~ g(ZL;+1)[TA(v„v )+T~v(v~vT) —T~+(v~v~)Tq (v;,v))), ,
LI,Ivv

(21)

where ( )„denotes the average over colliding electron
velocity u. The T matrix elements are

Tr. (v„v,')=(,n, u;l, /L,
~

T [ n,'v;I,'I'L, }, (22)

B. Coulomb-Born-Oppenheimer approximation
for highly charged radiators

In laser-produced plasmas the charge number Zz of ra-
diators is generally close to 10 or greater while the elec-
tron temperature is at least of the order of magnitude of
several hundreds of electron volts. This is properly the
validity condition for the Coulomb-Born-Oppenheimer
(CBO) approximation in the calculation of scattering
data. Indeed, by using ao/Zz and ZEe /ao as units for

I

with a =I or f. They are to be evaluated without long-
range Coulomb effects.

Although the formal theory has been developed with
the colliding electron distinguished from the bound elec-
tron, we recall the physical possibility for the former to
remain inside the radiator and for the latter to be expelled
in its place. To take this fact into account we will use in-
stead of Eq. (22), the transition amplitudes TL s involving

exchange effects and replace the factor 2L&+1 in Eq. (21)
by (2L;+1)(2S+1)/4.

length and energy, respectively, it is easy to see that the
direct and exchange potentials in the perturber radial
equation are equal to 1/Zs multiplied by factors which
depend on Zx only through p=(Z@ —1)/Zx-1 for
Zz~&1. Then, for sufficiently energetic colliding elec-
trons, these potentials may be treated as small perturba-
tions according to the CBO approximation which will be
used here in its unitarized version by writing the transi-
tion matrix in the form

T+=1—S-+= —2IR +—/(1 —IR+-), — (23)

+( —1) ' fi(I/;L, l I'L)

XEi,(v;,v,' )], (24)

where fi denotes the angular factor for the 2 multipole
and is expressed in terms of 3j and 6j symbols as

where R+ and R are real and symmetric reactance ma-
trices corresponding to opposite ( S=0} and parallel
(S=1) electron spins, respectively. In the coupled repre-
sentation their matrix elements can be written as

Rr, (vi, v;')= —2 g [fi,(l, /L, /I' I'L)Di (v„v,' )

L I; I „, I'X I
fi(I;IL, I I'L)=( —1)' ' '

I, I, '[(2/+1)(2/;+1)(21'+1)(2/ +1)]'~i
l

0

(25)

In Eq. (24) the direct integral D& and exchange integral Ei involve radial perturber Coulomb wave functions Fzi(Pr)
with 7=k/(Zx —1), and radial atomic wave functions P„ i (r).~l l
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We can express them as

co 00 r
Di(v;, v', ) = dr2F&i(Pri)Fz i (Pri) dr P„i(r.i).It I pz A, +1

4,
„,, ( i)

r2 i i
(26)

00 00 r&
Ei„(v;,v,' )= dr2P„i (ri)F.x.'I'(Pr2) dr Fzi(Pr i }pz p II( g 0 A, +1 „i( i) (27)

where r is the smallest and r& the largest of the re-

duced radii r~ and r2.
The set of Eqs. (21)—(27) will be used to evaluate the

matrix elements occurring in the broadening of I.yman
lines ( nf —1; lf ———0). Before doing this, it is interesting to
compare cross sections presently obtained with the avail-
able ones coming from the close-coupling (CC) or
distorted-wave (DW) method. The latter is characterized
by the influence of diagonal potential matrix elements in-
cluded in the perturber wave functions Fri while the
former consists in solving coupled wave equations in the
subspace generated by adequate pseudostates.

A numerical comparison between the CBO calculation
and the CC (Ref. 24) one is illustrated by Table III (a) and
III (b) for cross sections cr( is~2s) and 0( Is ~2p), respec-
tively. We note that the agreement is quite satisfactory in
the case of Ne X ion as target. However, in the case of
the Hen ion, the agreement is fairly acceptable only for
sufficiently high incident energies. For completeness, we
also give in Table III(a) and III(b) the Coulomb-Born
(CB} values which were obtained by neglecting integrals

Ei, in Eq. (24). By comparing them with the CBO values
we note that the exchange effects can reach the order of
magnitude of 15%%uo and allow to improve appreciably the
agreement with the corresponding CC values.

In the line-broadening problem, more significant is the
precision concerning elastic and inelastic cross sections
which connect two excited states. Some of them are given
in Table IV where we note that elastic cross sections differ
slightly from the traditional ones owing to the monopolar
interference effect of the ground state. For the most im-
portant bound-bound transitions, Table IV shows that our
CBO values are in agreement with Griem, Blaha, and
Kepple's DW results' (values in parentheses).

C. Linewidth and line shift

The linewidth and line shift are given, respectively, by
the imaginary and real parts of the collision operator A,
Eq. (21). In fact, to ensure the continuity when colliding
electron energies cross inelastic thresholds, the width has
been expressed in terms of total cross sections for actual
calculations. The latter have been performed as follows.

(i) For perturber orbital quantum number 1&20, the
cross sections connecting the ion bound states with princi-
pal quantum number n &4 have been obtained via the
reactance matrix by using the CBO approximation (in-
cluding exchange effects) to treat the monopole, dipole,

quadrupole, and octopole interactions. The other bound-
bound and bound-free cross sections are deduced from the
Golden and Sampson approximate formula where the
ionization potential lowering effect is properly included.
As already suggested in Ref. 1, total cross sections can be
conveniently expressed in their equivalent semiclassical
form:

0(nl, E)= 8m

3

Xr r C(n!,E)+—ln
1 420

~min L'min+ 1

where E =mu /2 is the colliding electron energy, I, ;„ is
the minimum relative orbital quantum number corre-
sponding to the impact parameter equal to the atomic or-
bit

and

L~;„(Lm;„+1)=(mr„u/vari) =(n i)lu/ZEe )'

=u(aPp+4co +b,cps) (29)

Here, the presence of the plasma frequency
co& (AeN, /m)', of the freq——uency separation from the

r r=(3apn/2ZE) (ii —1 —1 —1)

is an atomic operator introduced in previous second-order
perturbation theories. ' ' In Eq. (28), C(nl, E), the so-
called "strong-collision constant", '2~' represents the
contribution of collisions with 1&L;„with quantum-
mechanical corrections for other close collisions. Table
IV shows that, at low energy, C(nl, E) increases rapidly
with E. Also, we note that the difference between our C
values and those of Ref. 1 (given in large parentheses)
comes mainly from transitions towards higher levels and
the continuum which have been fully included in this
work via the CBO approximation and partly neglected in
Ref. 1.

(ii) The dipole interaction and semiclassical description
are used to treat the weak collisions with 1&[20,1,„]
where I is related to the maximum impact parameter
Dmax by
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TABLE III. Cross sections (a) a'( Is ~2s) and (b) cr( 1s~2p} (in units of s a 0/Zs ) deduced from our
present Coulomb-Born {CB)or Coulomb-Born-Oppenheimer {CBO) ca1culation and those based on a
close-coupb~p {CC)calculation (Ref. 23).

{Z~ Ry)

0.7575
0.80
1

1.50
2
2.25
3

0.66
OR49

0.36
0.22

0.15
0.12

0.36
0.27
0.24
0.19
0.16
0.i5
0.12
0.10

(a) @{is—+2s)
0.46
0.57
0.31
0.18
0.15
0.13
0.11
0.09

CC

0.45
0.42
0.34
0.24

0.17
0.13

Z =10
CB

O.SS
0.51
0.42
0.28
0.22
0.20
0.15
0.11

CBO

0.47
0.43
0.35
0.25
0.19
0.18
0.13
o.ia

0.7575
0.80
1

1.50
2
2.25
3

1.01
1.21
1.55
1.41

1.22
1.11

1.11
1.16
1.29
1.37
1.32
1.16
1.03
1.02

(b) o(is~2p)

1.03
0.97
1.08
1.15
1.14
1.06
0.97
0.96

1.97
1.91
1.72
1.48

1.30
1.16

2.21
2.19
1.98
1.70
1.49
1.44
1.23
1.06

1.93
1.86
1.68
1.46
1.33
1.29
1.16
1.00

unperturbed line hco=co —sic and of the frequency shift
due to quasistatic perturbations lkros allows for screening
of electron fields, finite duration of the collisions and level
splittings, respectively.

(iii) The thermal average has been performed by assum-

ing the Maxwellian distribution for the electron velocity u

and using the eight-point Gauss-Hermite integration.
Then the linewidth can be written as

TABLE IV. Cross sections u(np~n') {in units of mao/[E (Ry)]) calculated by CBO method for
electron scattering on np levels of oxygen VIII. Only partial waves to i=20 are included. The differ-

ence of np and 1s scattering amplitudes was used to introduce interference effect in elastic cross sec-

tions. Griem et al. 's values (Ref. 1) are given in parentheses for comparison purpose. "Strong-collision
constants" C(nl, E) are defined from total cross sections o(nl) = g„cr(nl ~n ', ) according to Eq. (28) in

the text.

0(2p ~n')

E (Ry)

20

1.06
(i.09)
1.01

(1.03)
0.93
(0.94)

0.38
{0.40)
0.49
(0.51)
0.63
(0.64)

n'=4

0.10

0.12

n'&5 and
continuum

0.12

0.26

o(2p)

1.44
(1 49)
1.72

(1.54)
1.94

(1.58)

C(2p, E}

1.30
(1.44)
2.40

(2.19)
3.33

{2.37)

10

20

n'=4

26.9
(28.6)
22.2
(23.2)
16.9

(17.2)

a(4p —+n')

n'=2, 3,5

4.6
(5.2)
3.9

(4.3)
2.8
(3.0)

n'&6 and
continuum

2.6
(2.7)
3.3

(2.7}
3.9

(2.7)

34.1

(36.5)
29.4
(30.2)
23.6
{22.9)

C{4p,E)

0.60
(0.72)
0.70
(0.74)
0.75
{0.72)
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TABLE V. Temperature dependence of the "strong collision constant" C(n, I, T) occurring in Lyman-u, -P, and -y hnewidths [see

Eq. (30) in the text].

T (eV)IZE C(2s) C(3s) C(jp) C(3d) C(4s) C(4p) C(4f) C(4f)

1.00
1.20
1.40
1.60
1.80
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00

—1.02
—0.95
—0.85
—0.75
—0.66
—0.58
—0.40
—0.27
—0.15
—0.06

0.02
0.09
0.16
0.21
0.26
0.30
0.33
0.36
0.39
0.41
0.43
0.45
0.47
0.51
0.54
0.57
0.60
0.63
0.65
0.67
0.69
0.70

0.10
0.22
0.36
0.51
0.64
0.77
1.04
1.28
1.48
1.65
1.80
1.94
2.06
2, 16
2.26
2.34
2.42
2.48
2.54
2.58
2.63
2.66
2.72
2.78
2.84
2.89
2.94
2.98
3.01
3.04
3.06
3.08

—0.43
—0.32
—0.24
—0.16
—0.09
—0.03

0.08
0.16
0.21
0.25
0.29
0.32
0.35
0.37
0.39
0.41
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.51
0.53
0.55
0.57
0.59
0.60
0.62
0.63
0.64

—0.28
—0.15
—0.05

0.04
0.12
0.18
0.32
0.41
0.48
0.54
0.59
0.63
0.66
0.68
0.70
0.71
0.73
0.74
0.74
0.74
0.75
0.76
0.77
0.79
0.80
0.82
0.84
0.87
0.87
0.90
0.91
0.91

1.18
1.40
1.61
1.75
1.88
1.99
2.23
2.42
2.60
2.78
2.86
2.93
2.97
3.00
3.02
3.03
3.04
3.04
3.03
3.02
3.02
3.02
3.02
3.03
3.03
3.04
3,05
3.06
3.04
3.05
3.04
3.04

—0.18
—0.10
—0.03

0.03
0.08
0.12
0.19
0.25
0.30
0.35
0.39
0.42
0.44
0.46
0.48
0.49
0.50
0.51
0.53
0.54
0.55
0.56
0.57
0.59
0.60
0.62
0.63
0.64
0.65
0.66
0.66
0.67

—0.05
0.05
0.12
0.18
0.23
0.27
0.32
0.36
0.40
0.44
0.47
0.50
0.53
0.55
0.57
0.59
0.61
0.62
0.64
0.65
0.66
0.67
0.69
0.71
0.72
0.74
0.75
0.77
0.77
0.78
0.78
0.79

0.30
0.42
0.52
0.59
0.64
0.68
0.72
0.73
0.78
0.81
0.84
0.87
0.89
0.91
0.93
0.95
0.97
0.99
1.00
1.02
1.03
1.04
1.06
1.08
1.10
1.11
1.12
1.13
1.13
1.13
1.13
1.13

2.36
2.59
2.76
2.88
2.98
3.04
3.10
3.11
3.18
3.22
3.24
3.25
3.24
3.23
3.21
3.19
3.16
3.13
3.14
3.14
3.14
3.14
3.15
3.14
3.14
3.13
3.13
3.13
3.10
3.10
3.09
3.08

Im((nl, ls ~A
~

nl, ls)) = N, (vcr( nl, E)—) /2

' 1/2
4irNe 2m R'r r

3 ~kT m g

&& C(nl, T)+ ,
' f—

where

(30)

and the thermally averaged strong collision constant
C(nl, T) is given in Table V. The calculation has been
systematically performed for different n, I, T, and
Zs & 5. The examination of numerical results shows the
following.

(i) C(nl, T) has a negligibly small dependence with
respect to the charge number ZE. Indeed, at low-
temperature [ T (eV)/ZE I] C(nl, T) increases by only
10% and 1% when ZE varies from 5 to 10 and from 10
to 18, respectively. This ZE dependence decreases rapidly

for increasing temperature.
(ii) C(nl, T) increases with T and tends towards a con-

stant value at high temperature.
(iii) C(nl, T) depends not only on the principal quantum

number n but also strongly on the orbital quantum num-
ber l. Owing to the quasistatic field mixing effect, the
line shape, Eq. (20), generally implies all the nl states re-
gardless of the radiative selection rule. In this connection
we note that the numerical values of C(3d, T) and
C(4f, T) in Table V are particularly large. In using Eq.
(30), we note that the semiclassical description of weak
collisions implies the condition 1,„&20. This fact and
considerations relative to series limit, quasistatic split-
ting, finite duration of collisions and degeneracy suggest
that the accuracy of the results is diminished more or less
at high densities, except, say, for Lyman-a lines of
ZE ~ 10 elements.

As concerning the line shift, i.e., the real part of Eq.
(21), we have to calculate directly the imaginary part of
the elastic transition matrix elements in their unitarized
form, Eq. (23). As previously we have taken into account
the monopole, dipole, quadrupole, and octopole interac-
tions. In fact, the numerical analysis shows that the
monopole interaction plays a leading part in the red shift
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TABLE VI. Temperature dependence of the Lyman-a, -P, and -y line-shift factor D (n, l, T) [see Eq. (46) in the text].

T (eV)/Z~
1.00
1.20
1.40
1.60
1.80
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00

D {2s)
11.75
10.82
10.11
9.54
9.08
8.69
7.94
7.39
6.97
6.63
6.36
6.13
5.94
5.77
5.63
5.50
5.39
5.28
5.19
5.11
5.03
4.96
4.83
4.72
4.63
4.56
4.49
4.42
4.24
4.19
4.15
4.11

D(2p)
8.93
8.20
7.64
7.20
6.S3
6.53
5.93
5.50
5.17
4.91
4.70
4.52
4.37
4.24
4.12
4.02
3.93
3.85
3.78
3.71
3.65
3.60
3.50
3.41
3.34
3.28
3.23
3.18
3.05
3.01
2.97
2.94

D(3s)
42.41
39.S7
37.36
35.64
34.24
33.06
30.77
29.08
27.78
26.73
25.93
25.26
24.69
24.19
23.75
23.3S
23.01
22.70
22.43
22.19
21.96
21.74
21.36
21.04
20.74
20.41
20.21
20.07
19.96
19.85
19.70
19.55

D(3p)
3S.OS

35.47
33.44
31.85
30.56
29.48
27.38
25.83
24.64
23.68
22.95
22.33
21.81
21.35
20.95
20.59
20.28
20.01
19.76
19.54
19.33
19.13
18.79
18.49
18.23
17.94
17.75
17.61
17.50
17.39
17.26
17.14

D(3d)
29.18
27.06
25.42
24.12
23.06
22.18
20.46
19.22
18.27
17.51
16.91
16.41
15.98
15.62
15.29
15.01
14.75
14.53
14.33
14.15
13.98
13.83
13.56
13.33
13.12
12.90
12.75
12.64
12.53
12.44
12.34
12.24

D {4s)
104.63
98.09
93.53
90.12
87.31
84.93
80.25
76.88
74.48
72.58
71.03
69.72
68.59
67.61
66.73
65.93
65.20
64.56
64.00
63.48
62.99
62.51
61.64
60.91
60.26
S9.50
58.98
58.49
58.02
57.57
57.11
56.65

D (4p)
98.83
92.64
88.28
85.00
82.29
80.01
75.52
72.29
69.97
68.15
66.65
65.39
64.30
63.36
62.52
61.76
61.07
60.46
59.92
59.42
58.96
58,51
57.70
57.02
56.41
55.70
55.19
54.72
54.27
53.85
53.43
53.03

D {4d)
86.17
80.6S
76.70
73.68
71.21
69.12
65.06
62.13
60.02
SS.35
56.98
55.84
54.86
54.02
53.27
52.60
51.99
51.46
50.98
50.55
50.14
49.76
49.07
48.49
47.98
47.37
46.95
46.55
46.19
45.84
45.51
45.19

D(4f)
67.25
62.78
59.44
56.S6
54.74
52.96
49.S3
47.08
45.26
43.82
42.65
41.67
40.83
40.11
39.47
38.89
38.38
37.93
37.54
37.19
36.87
36.57
36.05
3S.60
35.21
34.75
34.43
34.14
33.88
33.63
33.40
33.19

of the Lyman lines. The higher orders of the multipolar
expansion occur only in the higher members of the spec-
tral series (n & 3) and lead to a slightly smaller red shift.
It was found that the spectral line shift can be convenient-

ly given in the form

Ahco(nl ~Is)=Re((nl, ls
~

4
~
nl, ls ))

1() iV (cm )
D(n, l, T} (eV)

E

(31)

where, like the previous "strong collision constant, "
C(n, l, T),D(n, l, T) is nearly independent of Z@ for all
Zz & 5. As shown in Table VI, we note the following.

(i) D(n, l, T) decreases smoothly with increasing 1 and
varies approximately as the fourth power of n

(ii) D (n, l, T) decreases sharply when the temperature
increases until the value T=SZE eV. Beyond this tem-
perature, D(n, l, T) decreases smoothly and tends towards
a finite limit D (n, l, oo ) for extremely high temperatures.

For very-high-density plasmas, the two terms in large
parentheses of Eq. (30) have the same order of magnitude.
Then, comparing Eq. (30) with Table V to Eq. (31) with

Table VI, we point out that the electron line shift can be
much larger than the electron linewidth.

IV. COMPARISON OF RESULTS
AND CONCLUDING REMARKS

Owing to the shortness of the electron correlation time
r, compared to atomic lifetimes r„we have pointed out
that atomic properties could be obtained from an ensem-
ble average as well as from a time average. These two
theoretical concepts have been developed by using, respec-
tively, a model of a confined atom in self-consistent field
(CASCF) in Sec. II and a quantum-mechanical impact
theory (QMIT} in Sec. III. We will now proceed to com-
pare them by examining the density and temperature
dependence of the line shift which is one of the most im-
portant atomic parameters.

Figure 2 shows the density dependence of the I.yman-a
line shift resulting from different theoretical models. The
straight line (c) is obtained from the QMIT, Eq. (31),
where the volume-averaged electron density is used.
Indeed, this is not quite correct because electron collisions
start at the atomic boundary surface. Then, using p, (RO}
instead of N„we obtain curve (a) which is to be com-
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E I ectran dens i ty ( 10 cm )

2 6 0
Electron density ( 10 cm )

.5 1 1.5 2

0

—10

ss

c
0 -20
CF
~l

4.

c
0 -10
0
0
4. {o)

-3C

FIG. 2. Density dependence of the Ne X Lyman-a line shift
calculated with T=500 eV. a: quantum-mechanical impact
theory including the boundary depression effect. b: uniform
electron-gas model. c: quantum-mechanical impact theory us-

ing the volume averaged electron density. + + +: confined
atom in self-consistent field. 0 00: results of Davis and Blaha
{Ref. 15).

-15

FIG. 4. Density dependence of the Ne X Lyman-y line shift
calculated with T=500 eV (same notations as in Fig. 2).

pared with the CASCF line shift ( + + + ). In Fig. 2 we
report also the Davis and Blaha's' red shift (OOO)
which is similar to Skupsky s and is 20% smaller than
ours. Numerical checks show that this difference comes
essentially from the negative contribution by iona. As we
have already mentioned, generally the ion gas has not
enough time to be effectively polarized (r; »r„). There-
fore the red shift, including the total ion polarization ef-
fect, must be considered as the lower limit for the correct
one. In Fig. 2, the position of curve (b} which is quite
separated from the other ones, shows that the UEGM
[numerical solution of Eq. (15}with Eq. (18)] constitutes a
poor approximation for treating the 2p state at T=500
eV. In fact, Fig. 1 shows that the free-electron density is
far from uniform in the vicinity of atomic orbits with
n =2.

Figure 3 represents the density dependence of the
Lyman-P red shift and shows once again a good agree-

ment between the QMIT and CASCF results. The same
remark is valid for the Lyman-y red shift illustrated in
Fig. 4. However, we note that the UEGM becomes quite
reasonable here.

The temperature dependence of the Lyman-a and -P
red shift is illustrated in Figs. 5 and 6, respectively. Here
we note that the QMIT and CASCF results are similar
functions of T and tend towards the UEGM results which
are the exact ones when the temperature is high enough to
ensure a uniform spatial distribution for free electrons.
At intermediate temperatures the good agreement between
QMIT and CASCF results can be explained by noting
that the first-order perturbation due to monopole-
monopole interaction plays a leading part in both of these
methods. As shown in Fig. 5, a small discrepancy of
about 10% appears at low temperatures where higher-

Electron temperature (100 eV)

10 15

Electron density ( 10 cm )23

2 6 8

-10

0
C
0
0
0
L.

0
c
0 -20
CF
0
4.

-3C

FIG. 3. Density dependence of the Ne X Lyman-P line shift
calculated with T=500 eV (same notations as in Fig. 2).

—10

FIG. 5. Temperature dependence of the Ne X Lyman-a line
shift calculated with N, = lo ~ (cm '}. a: quantum mechanical
impact theory including the boundary depression effect. b: uni-
form electron-gas model. + + +: confined atom in self-
consistent field.
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E )

ecderon

t ernper ature ( 100 eV)

10 15
I

g —15

C
si
3
cr

—20

w/

/ (a)

FIG. 6. Temperature dependence of the Ne X Lyman-P line
shift calculated with X,=6X10 cm (same notations as in
Fig. 5).

order perturbation terms occur via the unitarized transi-

tion matrix, Eq. (23) in QMIT and are included in the

CASCF model through the modification of the number

density of free electrons, Eq. (5), and the exact solution of
the Schrodinger equation, Eq. (15). Also, we must men-

tion exchange effects which have been calculated via the
CBO and the local potential approximations in QMIT and
CASCF, respectively. Indeed, comparing Figs. 5 and 6
we can see that this discrepancy reduces as exchange ef-
fects decrease with increasing principal quantum number
7l.

We conclude by asserting that the spectral line shift due
to electrons in dense and hot plasmas can be obtained ei-

ther by a correct self-consistent-field method or by a
quantum-mechanical line-broadening approach. The
former is suitable in giving various important plasma and
atomic parameters such as local electron density, density-
and temperature-dependent oscillator strengths, while the
latter leads to effective atomic lifetimes and enables us to
describe conveniently all essential aspects of the binary in-
teraction. To estimate the blue shift due to the ion qua-
drupolar interaction we can use an expression similar to
the second member of Eq. (31) where D(nl, T) should be
replaced by a negative ion line-shift coefficient —Q(n).
Using Table V of Ref. 30 with fractional widths at —, in-

tensity points, for example, we obtain Q(2) =0.8,
Q(3)=2.1, and Q(4)=8.2 for Lyman-a, Lyman-P, and
Lyman-y line shifts, respectively. Comparing these
values with those relative to electrons in Table VI we note
that the ion effect consists in reducing the red shift about
a few tens of percent. Therefore, the scaling law for spec-
tral line shift, Eq. (31), suggest that radiating ions with
small charge ZE (Ref. 31) are excellent candidates for
high-density diagnostics provided that ion-broadening ef-
fects' together with opacity, and spatial-integration '

and time-integration effects are properly taken into ac-
count. Our theoretical work in progress concerns princi-
pally the inclusion of two and three bound electrons and
of relativistic effects for highly charged ions.
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