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Improvements are made in the moment-singularity method for the calculation of densities of state
in the vicinity of van Hove singularities using modified moments by simplifying the functional form
of the singular behavior that is used to fit the densities. Because the asymptotic behavior of the
modified moments determines and is determined by the singular behavior of the density, informa-
tion about the locations and functional forms of the singularities can be determined directly from
the moments themselves and incorporated into the calculation of the density. The use of simplified
functional forms to fit the singular behavior facihtates the use of the higher-order (less singular)
corrections to the dominant singular behavior. These higher-order corrections to the singular
behavior improve the precision to which the locations of the singularities can be determined and the
precision to which the exact densities can be fit. The use of simplified functional forms also facili-
tates the treatment of singularities at the ends of the interval and within band gaps. This is advanta-

geous in the reconstruction of densities whose behavior at the ends of the interval is not fit well by
the Chebyshev weight function. The moment-singularity method is illustrated with applications to
three different densities of states: {1)the density of a linear diatomic chain with m /M = 2, (2) the

average of the densities of two diatomic chains, one word with m/M = —, and the other with

m/M = —,, and (3) the density of the two-dimensional triangular lattice with nearest-neighbor in-

teractions. The precision of the moment-singularity method is also compared to that of the method
of Corcoran and Langhoff for the reconstruction of densities.

I. INTRODUCTION series in the transformed variable, 8=2 arcsinv x:

This paper describes improvements that can be made to
the moment singularit-y method which was originally pro-

posed by Lax and Lebowitz' and Rosenstocki as a way of
improving the precision of the moment method for the
calculation of densities of states in the vicinity of van
Hove singularities. This method takes into account the
presence of known singularities by expressing the density
of states as a sum of terms:

G(x)=G, (x)+G„(x) .

The first term describes the known singular behavior,
which is usually the most singular behavior of the density
and is represented by a sum of appropriate singular func-
tions. The second term describes the remaining, less
singular behavior of the density and is approximated by a
(finite) sum over a set of orthogonal polynomials using the
known moments. This method has been shown to be an
improvement over the moment method when information
about the location and nature of the singularities is
known.

Wheeler, Prais, and Blumstein (WPB) introduced an
implementation of the moment-singularity method based
on modified moments in which information about the
singularities can be obtained directly from the modified
moments themselves and is then incorporated into the
moment-singularity scheme. Wheeler and Blumstein
showed how these modified moments could be calculated
by the same simple product-trace techniques used to cal-
culate power moments. Using Chebyshev polynomials of
the second kind, they expressed the density as a Fourier

G(x)=6{sin (8/2))=(4/ir) g v„'sin(n+1)8, (2)
n=0

where v„' is the nth modified moment of G(x) based on
normalized Chebyshev polynomials of the second kind on
the interval [0,1]. The singular behavior of the density
can be separated from the rest using the modified mo-
ments because the asymptotic behavior of v„' as n~ 00

determines (and is determined by) the singular behavior of
the density. Separating the asymptotic behavior from the
modified moments leads to the following expression for
the density:

G(sini(8/2)) = (4/m) g v„'*sin(n +1)8
n=0

+(4/tr) g (v„' —v„")sin(n +1)8,
n=0

where v„" is a simple function of n that, for large n,
possesses the asymptotic behavior required to reproduce
the singularity and where the second sum is approximated
with a finite sum using the known moments.

A class of singularities in the density that arises natur-
ally in several areas of solid-state physics occurs when x
(or, equivalently, 8) passes through an extreme value or
saddle point as a function of one or more variables with
respect to which the states are uniformly or smoothly dis-
tributed. Examples include van Hove singularities in the
vibrational and electronic densities of states of solids. The
asymptotic contributions to the nth modified moment
from such a stationary point with a frequency given by 8,
have the form6
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v„"-A, (n +1) 'i'+" sin[(n +1)8,+me, /4]

+8,(n + 1) '&+2' sin[ (n + 1)8,

+n(e,.+2)/4)+ (4)

Re[A, (1—e'~) ]
=

~
A, j (

2 sin(P/2)
~

& cos[ ,' p—(P t—r sgn(t ) n—e, /4],
(5)

where p is related to the spatial dimensionality d of the
solid by p =(d —2)/2 and e, is a small integer that de-
pends on the type of stationary point.

Wheeler, Prais, and Blumstein observed that the first
part of Eq. (3) could be summed exactly, using the expres-
sion in Eq. (4), to produce a known (although complicat-
ed) function, the behavior of which near 8=8, could be
expressed in terms of a closed-form nonanalytic piece and
a rapidly convergent expansion with Riemann g functions
as coefficients. With the most singular parts known ex-
actly, the second part of Eq. (3) was approximated by a
partial sum using the known moments. This moment-
singularity method provides a very accurate determination
of the density from relatively few moments. However, it
suffers from the drawback that if higher-order corrections
are employed or if singularities of several types are re-
quired, the complicated nature of the exact singular func-
tions becomes burdensome.

In this paper we give an improvement on the WPB
inethod based on a simplification of the functional form
used to ftt the singular behavior of the densities. This
simplification is of considerable practical value in that it
facilitates both the incorporation of higher-order (less
singular) corrections to the dominant singular behavior
and the treatment of singularities at the ends of the inter-
val, while retaining the precision of the WPB method in
determining the locations, types, and amplitudes of the
singularities from the moments and in calculating the re-
sulting densities. The use of higher-order corrections to
the singular behavior is found to improve the agreement
with the exact density and to improve the precision to
which the locations of the singularities can be determined.

We have found this improved moment-singularity
method very useful in analyzing and reconstructing densi-
ties for the motion of atoms near the surface of a solid. '
Unusual types of van Hove singularities and modifica-
tions of the singular behavior at the ends of the interval
make this technique especially valuable for that problem.
Those results will be presented elsewhere. Here we
describe the new method and illustrate its effectiveness by
a comparison with earlier techniques. In Sec. II the im-
provements in the moment-singularity method are
described. In Sec. III we apply this new method to three
cases in which the exact densities are known and compare
it to other approximation methods. These three cases a
linear diatomic chain, a superposition of two different
linear diatomic chains, and a two-dimensional triangular
lattice —provide densities with band gaps and with com-
inon singularities in the interior of the bands as well as at
the band edges.
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where

As =
I As I

exp( i—tre, /4) .

When p is a half-integer and e, is an odd integer, the
cosine in Eq. (5} will approach a nonzero constant from
one side of the singular point and will approach zero from
the other. Letting /=8 —8„with x =sin (8/2) and
x, =sin2(8, /2}, and using the expansion {for x,&0, 1)

~
2sin(P/2)

~

i'

= ~x —x,
~

[x,(1—x, )] A[1+0(x —x, )], (6)

one sees that p = ——,
'

in Eq. (5) produces a singularity of
the type characteristic of one-dimensional hartnonic solids
and that p =+—,

' produces a singularity of the type
characteristic of three-dimensional harmonic solids. In
Figs. 1(a) and l(b) we have plotted the singular functions
calculated from Eq. (5) for p = ——,

' and e, = —1 and for

p =+—,
' ands, =+1.

To get the moments associated with the singular func-
tions in Eq. (5) the left-hand side of this equation can be
expanded as

II. IMPROVED MOMENT-SINGULARITY METHOD

The singular behavior characteristic of odd-dimensional
harmonic solids can be produced by the real part of the
simple expression A, (1—e'~}t', namely,

FIG. 1. Singular functions characteristic of (a) one-
dimensional and (b) three-dimensional harmonic solids as ob-
tained from Eq. {5) with p =—

2 and e, —1 and with p =+ z

and e, = + 1, respectively.



33 IMPROVED MODII'IED-MOMENT-SINGULARITY METHOD 1235

Re[ A, (1—e'~)l']

=1A,
1 g cos(kP —~e, /4) .

I (k —p)

I'(n —p +1) 1

I'(n +2)I ( —p) (n + 1)'&+"I ( —p)
(10}

It is easy to see that singular behavior of the form

G,(x)- (2/n)Re[A, (1—e ' P]

—(2/m. )Re[A, (1—e '
) )

will be produced by using asymptotic contributions of the
OHIl

v„"—= 1A, 1
sin[(n +1)8,+me, /4] (9)I' n+2 I' —p

in Eq. (3). In Eq. (8), A is the complex conjugate of A.
Only the singularity at 8=+8, will appear in the density
on the interval 0 &x & 1, because we can choose 8 to be in
the interval 0 & 8 & m. The asymptotic behavior of the ra-
tio of gamma functions in Eq. (9) is, as n ~ ao,

Thus, the asymptotic behavior of v„" in Eq. (9) is
equivalent to that in Eq. (4) for large n, but the moments
in Eq. (9} produce a much simpler expression for the
known singular behavior in the density than does the
WPB method.

The singular behavior characteristic of even-
dimensional harmonic solids cannot be deduced directly
from the expression in Eq. (5) because it is analytic when

p is a non-negative integer. However, the expression does
have singular behavior near p =m which can be seen from
the expansion p =m +X for small X:

( 1 el/)m+z ( 1 el/)m[ 1 +/ ln( 1 e jy)+. . . ]

The real part of the singular piece in this expression,

Re[A, (1—e'&} ln(1 —e'~}]

=
I
A. I 12 sin(P/2)

I ( ln12sin(P/2)1 cos[ ,
'

m (P—nsgnP—) ne, /4]—

——,
'
(P —tr sgnP)sin[ —,

'
m (P nsgnP—) me, /4]—), (12)

where A, =1A,
1

exp( inc, /4), —will produce singular
behavior at /=0 of the type characteristic of even-
dimensional hartnonic solids. When m is a non-negative
integer and e, is an even integer, one of the trigometric
factors,

cos[ —,
'

m (P nsgnP) r—re, /4]—

4.0

2.0

(a)

or

sin[ —,
'

m (P tr sgnP ) —ne, /4], —

approaches a nonzero constant from both sides of the
singular point. Using Eq. (6) in Eq. (12) one can recog-
nize that the combination m =0 and e, =4 produces a
logarithmic divergence in the density that is characteristic
of a saddle point in a two-dimensional Brillouin zone,
while the combination m =0 and e, =+2 produces the
discontinuity associated with a two-dimensional max-
imum or minimum. In Figs. 2(a} and 2(b} we have plotted
the singular functions calculated from Eq. (12) for m =0
and e, =4 and for m =0 and e, = —2, respectively.

To determine the moments associated with the singular
behavior in Eq. (12), the left-hand side of this equation
can be expanded as

Re[ A, (1—e'~) ln(1 —e'~)]

0.0

2.0 l I 1 l I 1 1 I l

(b)

l.0-

00 I I l l l l l I l

0.0 0.5 l.0

)& cos(kP —me, /4), (13)

FIG. 2. {a} Logarithmic divergence and (b} discontinuity
characteristic of two-dimensional solids as obtained from Eq.
(12}with m =0 and e, =4 and with m =0 and e, = —2, respec-
tively.
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will be produced by using asymptotic moments of the
orm

n PFE

vn'= l~sl 'g ( —1}+
l

I=O

Xsin[(n +1)8,+i', /4] (15)

in Eq. (3). Because the binomial coefficient {P)=m!/
[I!(m —1)!]vanishes whenever I & rn, the sum in Eq. (15)
consists of, at most, m +1 terms. The maximum number
of terms occurs when m &n In thi. s situation the sum
can be expressed as

I 1—n —1g ( —1)'

+i I (m +1)l {n —m +1)
(16)

I'(n +2)
This simple expression can also be obtained from the ex-

pansion of the asymptotic moments in Eq. (9). Setting

p =m +X for small X and with n & m, we have

I (n —p+1) I'(p+1)l {n —p+1)
I'(n +2)l'{—p) I'{n+2)n.sin p+1 m.

I {m +1)I (n —m +1)
( —1) +'I'{n+2)

(17)

where (~ ) is the binomial coefficient m!/[I!(rn —I)!]. It
is easy to see that singular behavior of the form

2 ~{,e—e, ) i(8—8, )

G,(x)- —Re[A, (1—e '
) ln(1 —e * )]

G(x)-x~(1 —x)s ( —1&p,q), (19)

then one solution to removing the singularities at the ends
of the interval would be to use as modified moments aver-
ages over the appropriate Jacobi polynomials. However,
these do not, in general, have the simple interpretation as
trigonometric Fourier coefficients that the moments based
on Chebyshev polynomials do, and thus reconstruction of
additional singularities in the interior of the interval is
then more difficult. In addition, if the behavior near the
end of the interval is of the form

parameters that produce various singular functions. The
sequences of corrections to a particular singular function
are listed together. The use of the singular function in
Eq. (5) with p =—1 and e, =0 also allows the analysis of
5-function singularities which arise in spatial Fourier
transforms of the densities.

Special treatment is needed in dealing with singularities
at the ends of the interval, that is, with behavior of G (x)
other than proportional to &x(1—x) near x =0 or 1.
The expansion in Eq. (6) is not appropriate at either x, =0
or x, = l. However, at these oints, sin(P/2) in Eq. (5)
can be simply written as x or /1 —x, respectively.
This change requires that the value of p or m must be
doubled to produce the corresponding singular depen-
dence at the ends of the interval. For example, the choice
of p = —1 with e, = +2 rather than p = ——,

' with

e, =+1 provides a one-dimensional minimum at x, =0.
The appropriate choices of parameters to produce singu-
larities at the ends of the interval are given in Table II.
Note that three-dimensional and higher odd-dimensional
"singularities" at the ends of the interval are, in fact, not
singularities at all for our choice of orthogonal polynomi-
als. The Chebyshev polynomials of the second kind au-
tomatically build in a dependence of G (x) proportional to
[x(1—x)]'~ near the ends of the interval. As a conse-
quence, three-dimensional and higher odd-dimensional
singularities are automatically incorporated in G(x) and
result in no slowly decaying asymptotic behavior in the
moments. Of course, if the behavior of the density at the
ends of the interval is of the form

The asymptotic character for large n of the moments in
Eq. (15) is easily determined using Eq. (16) and

( —1) +'1 {m+1)l(n —m+1)
I (n+2)

( —1) +'I (m +1)
(18)

(~ + 1)Ill+1

which gives moments equivalent to those in Eq. (4).
Thus, again, by choosing a slightly different expression
for v„' we are able to get exactly the s~e asymptotic
behavior but produce a much simpler form for the singu-
lar contribution to the density.

We have found it convenient to label these generalized
singularities with the dimensionality of the solid in which
they commonly occur. %'e can easily make an association
of the singular behavior produced by the exponent p with
the singular behavior characteristic of a 2(p + 1}-
dim. ensional harmonic solid. In Table I we have listed the

with q not an integer, then even the use of the appropriate
Jacobi polynomial will not remove the higher-order singu-
larity. For these reasons we have found it more useful to
employ the Chebyshev polynomials and build in the re-
quired behavior at the ends of the intervals as described
above.

The singular behavior in Eqs. (8) and (14) and the
asymptotic contributions to the moments in Eqs. (9) and
(15) can be used in Eq. (3) to obtain a very accurate ex-
pression for the density of states with the appropriate
singular behavior when the singular behavior is known.
One way in which the singular behavior can sometimes be
determined is through the expansion of the dynamical
matrix about a stationary point in the Brillouin zone and
subsequent analytic diagonalization to obtain the parame-
ters 8„p, e„and A, which determine the location, na-
ture, and amplitude of the singularity. When the loca-
tions of the stationary points are unknown, or when the
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TABLE I. Parameters defining singular functions at x, =sin (8, /2) from Eqs. (5) and (12) with
0 &x, & 1 where /=8 —8,=0 and H (P) is the Heaviside step function.

ape Dimension @or m Function

Delta

Minimum 1

2

1

2

3
2

5
2

—3

+3

Maximum 1

2

1

2

3
2

5
2

+1
+3
—3

Minimum —2

+4
+2

0

(n /2)P sgnP

Maximum +2
0

—2

(m/2)P" sgn( —P)

Logarithm +4
+2

0
—2

Saddle point (S1) 1

2

3
2

5
2

+3

Saddle point (S2) 1

2

5

2

behavior of the dynamical matrix near the stationary
point is too complicated because of a degeneracy, it may
not be possible to determine the location, nature, and
strength of a singularity in this manner. However, of the
most important characteristics of the %'PB method and of
that developed here is that the moments themselues can be
used to determine the singularities in G(x). Wheeler,
Prais, and Blumstein have very successfully used a dif-
ferential approximant method proposed by Joyce and
Guttmann and refined by Rehr, Joyce, and Guttmann
and a nonlinear least-squares method proposed by Golub
and Pereyra' on the known moments of the density to
determine the parameters for the singularities which are

not available through the analytic diagonalization of the
dynamical matrix. The densities calculated from this
moment-singularity method were found to be almost in-
distinguishable from the exact densities. The same tech-
niques can be used in conjunction with the method
developed here.

We have not found any significant differences in the
densities calculated using the asymptotic contributions to
the moments which are described in this section and those
which are described by WPB. The major improvement to
the method is the simplified application of the method be-
cause the singular behavior of the density is much easier
to calculate. The asymptotic contributions to the mo-
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TABLE 11. Parameters defining singular functions at x, =sin~(8, /2) from Eqs. (5) and (12) with

x, =Oand x, =l where/=8 —8,~0.

Delta

Dimension
Singular functions at x, =0

porm Eg Function

Minimum v'l4 I'sgn4

Minimum —2
+2
—2
+2

(n /2) v'
~ P (

~ sgn(()

ape
Delta

Dimension
Singular functions at x, =1

porm Function

Minimum

Maximum
(m/2)V'

~ P ~

~sgn( —P)

ments are simple to calculate and can still be connected to
the origin of the singularities in the Brillouin zone.

The use of additional singular corrections provides a
good method for the determination of the precise loca-
tions of the singularities. The number of known moments
which can be fit with the parameters and the existence of
other singularities which are not properly fit are the prin-
cipal limitations of the method.

A. Diatomic chain

The density of the diatomic chain provides a good test
of the ability of the moment-singularity method because it
has a band gap bounded by singularities between which
the function should vanish as well as singularities at the
ends of the interval where the weight function of the
Chebyshev polynomials of the second kind vanishes. The
exact density can be written as

III. APPLICATIONS

Pl M
X x(1—x) x- x—

rn+M m+M

' —1/2

In this section we illustrate the new moment-singularity
method with applications to three different densities of
states: (1) the density of a linear diatomic chain with
m/M = —,', (2) a density consisting of the average of the
densities for two diatomic chains, one with m/M =—,,
the other with m/M = —,', and (3) the density of states of
the two-dimensional triangular lattice with nearest-
neighbor interactions. These examples were chosen be-
cause they illustrate many challenging features encoun-
tered in applications of the method to solids, while at the
same time they are either exactly soluble or enough is
known about the density that a stringent test of the relia-
bility of the method is possible. In this section we
describe the results of the use of differential approximant
and nonlinear least-squares methods to identify the singu-
larities in each density. The effects of using various num-
bers of moments and using various corrections to the
singular behavior are described in detail for the calcula-
tion of the density of the diatomic chain.

(21)

for 0&x &m/(m+M) and M/(m+M)&x &1 and is
zero elsewhere. The density of the one-dimensional dia-
tomic chain is symmetric about x = —, with a band gap
between a one-dimensional maximum at x =m/(m +M)
and a one-dimensional minimum at x =M/(m+M).
The density also has one-dimensional extrema at x =0
and x =1. The Chebyshev modified moments of the first
kind for the density with m/M = —,

' have been published

by Wheeler. " In Table III we give the corresponding
Chebyshev moments of the second kind calculated by the
methods of Ref. 12.

The partial sum to the density of the diatomic chain
with m /M = —,

'
using 20 moments calculated froin

Chebyshev polynomials of the second kind does not repro-
duce the singularities at the ends of the interval well.
This partial sum is shown in Fig. 3(a). Moments calculat-
ed using Chebyshev polynomials of the first kind provide
a more recognizable density because the behavior of the
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TABLE III. Chebyshev modified moments of the second kind for the diatomic chain with

m /M =
2 on the interval 0 &x & 1. Odd moments are zero.

0
2
4
6
8

10
12
14
16
18
20
22
24

1.0
1.222 222 222 222 2222
0.851 851 851 851 SS19
1.249 657 064471 879
0.947 S68 968 145 0999
1.072 245 084 590 764
1.138 303 217 102 181
0.936781 944436 6046
1.175439 146 689 013
1.000 688 745 194373
1.046 571 332 S87 536
1.136250 983 340 722
0.960 329038 033 3390

26
28
30
32
34
36
38
40
42
44
46
48

1.141 567 236 381 853
1.032 045 S73 376 922
1.028 295 977 464 870
1.136395 012219425
0.976 503 460 585 0249
1.116672 387 589 492
1.055 394 731 8106SO

1.015 ".".".254 199506
1.134443 425 935 450
0.991498 972 347 3244
1.095 462 703 199955
1.073 870 355 076 524

weighting function [x(1—x)] '~z mimics the singulari-
ties at the ends of the interval. The partial sum using 20
moments calculated with Chebyshev polynomials of the
first kind is shown in Fig. 3(b). The use of larger numbers
of moments will improve this representation of the densi-
ty, but the nature and location of the singularities inside
the interval (0,1) will still be subject to daubt. While the
Chebyshev moments af the first kind fit the singularities
at the ends of the interval better, we have used the Che-
byshev moments of the second kind for the analysis of all
three densities described in this paper to illustrate the abil-
ity of the moment-singularity method to fit the singulari-
ties at the ends of the interval.

The differential approximant method of Joyce and
Guttmann was employed by WPB to identify singulari-
ties in the function

4 co

f(z)= —g v„z". (22)~ n=o

Singularities in f(z) on the unit circle z =e' are related
to singularities in the density 6 (x}through the identity

G{sin2(8/2})= liin Im[re' f(re' )] . (23)
r~l

We have found that this method can identify the locations
of the dominant singularities in a density when at least six
moments are available for each singularity. Thirty mo-
ments provide enough information to determine with
eight-digit precision the locations of the four singularities
in the diatomic chain. Twenty moments determine the lo-
cations of the singularities with one or two digits of pre-
cision. We have found a strong correlatian between the
error in the location of the singularity and the distance of
the singularity from the unit circle in the complex z plane.
This helps eliminate extraneous singularities. We have
also found a strong correlation between the error in the
value of the exponent and the size of the imaginary part
of the exponent. Without good precision in the location
of the singularity, however, there is seldom any precision
in the value of the exponent. The information about the
singularities obtained by this method can then be used in
the nonlinear least-squares routine.

The nonlinear least-squares minimization routine of
Golub and Pereyra'0 can be used to fit a set of asymptotic
contributions from knawn singularities and their correc-
tions at several locations to a set of known modified mo-
ments. We have found that the use of this routine always
leads to an accurate determinatian of the singularities
when as few as 20 moments are used and when the initial
locations of the singularities at x, = —,

'
and x, = —', are

within 10% of the exact locations. The singularities at
x, =0 and x, =1 have been fixed at the ends of the inter-
vals. In Fig. 4(a) we have plotted the density calculated

40
~

1 ( 1 t r

(o)

1.5

I.O

00
0.0 I.O

FIG. 3. Partial sum to the density of the diatomic chain with
m/M =

2 using {a) 20 Chebyshev moments of the second kind
and (b) 20 Chebyshev moments of the first kind.
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FIG. 4. Density of the diatomic chain with m /M =T calcu-

lated using 20 Chebyshev moments of the second kind with (a)

one-dimensional singular behavior at x =0, x = 3, x = 3, and

x =1 and (b) one-dimensional singularity at x =0 and x =1
and one-, three-, and five-dimensional singularities at x = —, and

x =
3 . (Indistinguishable from exact result on this scale. )

in terms of y =x, —x & 0. Near x, =0 the density can be
written as G(x)-(3/harv 8)x '~ + . The improve-
ments in the locations and coefficients of the one-
dimensional singularities at x, =0 and x, = —, using larger
numbers of moments are shown in Table IV.

The use of additional corrections to the singular
behavior of the density also improves the fit of the densi-
ty. In Table V we show the results of the nonlinear least-
squares minimization with as many as three corrections
(three, five, and seven dimensional} to the one-dimensional
singular behavior at x, = —, and x, = —, using 20 and 30
moinents. The precision in the locations of the singulari-
ties increases much more dramatically by adding another
correction to the singular behavior than it does by increas-
ing the number of moments from 20 to 30. The calculat-
ed amplitudes of the singular behavior are in good agree-
ment with the exact amplitudes, but do not seem to im-
prove with the use of additional corrections. This is also
the case when the locations of the singularities are fixed
exactly as is shown in Table VI.

Table VII shows a point-by-point comparison of the
densities calculated using 20 moments with increasinII
numbers of corrections to the singular behavior at x, = —,

and x, = —,. One-dimensional singularities are included at
x, =0 and x, =l. The improvement in the density ap-
pears to be less dramatic once we begin to add less singu-
lar corrections which appear to have only subtle differ-
ences in form. In Table VII we have also included the re-
sults of the calculation of the density using the method of
Corcoran and I.anghoff. 'i This method does very well

determining the density without any knowledge of the
singularities. However, the moment-singularity method
surpasses it because of the incorporation of additional in-

with one-dimensional singularity behavior at x, =0,
x 3 x 3 and x, = 1 using 20 moments. It is evi-

dent that the behavior of the density is fit well.
The use of the additional moments improves the fit of

the density at the locations of the singularities and in the
band gap. The use of the additional moments dramatical-

ly improves the location of the singularities and provides
amplitudes in good agreement with the exact amplitudes
of the singularities.

The coefficient of
~
x, —x ~& in the expansion of the

density about the singular point x =x, within the interval
can be compared with the quantity

Moments

Exact

Locations

0.000000
0.333 333

Singularities

1D
1D

Coefficients

0.337 619
0.194924

50 0.000000
0.332 952

1D
1D

0.337 591
0.195 896

TABLE IV. Locations and coefficients of singularities of the
diatomic chain using increasing numbers of Chebyshev mo-

ments of the second kind with one-dimensional (1D) singular
functions fixed at x, =0 and x, =1 and one-dimensional singu-

lar functions floating near x, = —,
' and x, = —, in a nonlinear

least-squares routine compared with exact values.

(2/n }
~
A,

~ [x,(1—x )]

where
~

A,
~

is the amphtude of the singularity deter-
mined by the nonlinear least-squares routine. For x, =0, 1

the coefficient of
~
x, —x

~

i'~ can be compared to
(2/n)

~
A,

~

2~+' with the appropriate value of p taken
from Table II. Near x, = —,

' the density of the diatomic
chain can be expressed as

30

20

0.000000
0.332 730

0.000000
0.332 227

0.000000
0.330671

1D
1D

1D
1D

1D
ID

0.337 566
0.196389

0.337 503
0.197298

0.337 287
0.199501

G(x)=(~3/ir~8)y ' '(1+—", y+ —,',y'+ "' y'+

(24)

10 0.000000
0.320753

1D
1D

0.335 587
0.211 182
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TABLE V. Locations and coefficients of singularities of the

diatomic chain using Chebyshev moments of the second kind

with one-dimensional singular functions fixed at x, =0 and

x, =1 and increasing numbers of (coupled) singular functions

floating near x, = —,
' and x, = 3 in a nonlinear least-squares rou-

tine compared with exact values.

TABLE VI. Coefficients of singularities of the diatomic
chain using Chebyshev moments of the second kind with one-
dimensional singular functions fixed at x, =0 and x, = 1 and in-

creasing numbers of (coupled) singular functions fixed at x, = —,
'

and x, = 3 in a nonlinear least-squares routine compared with

exact values.

Moments

Exact

Locations

0.000000
0.333 333

Singularities

1D
1D
3D
5D
7D

Coefficients

0.337619
0.194924
1.023 352
0.164467
5.386304

Moments

Exact

Locations

0.000000
0.333 333

Singularities

1D
1D
3D
5D
7D

Coefficients

0.337 619
0.194924
1.023 352
0.164467
5.386304

30

30

30

30

0.000000
0.333 325

0.000000
0.333 309

0.000000
0.333286

0.000000
0.332 227

1D
1D
3D
SD
7D

1D
1D
3D
5D

1D
1D
3D

1D
1D

0.337618
0.195 540
1.361 287

—1.192046
4.491 602

0.337 617
0.196508
1.011583

—1.015025

0.337614
0.195997
0.990427

0.337 503
0.197298

30

30

30

30

0.000000
0.333 333

0.000000
0.333 333

0.000000
0.333 333

0.000000
0.333 333

1D
1D
3D
5D
7D

1D
1D
3D
SD

1D
1D
3D

1D
1D

0.337619
0.195 521
1.050 871

—1.227 667
7.339251

0.337620
0.195 514
1.037 176

—1.187726

0.337 621
0.195 911
1.034204

0.337 796
0.194784

20

20

20

20

0.000000
0.333277

0.000000
0.333231

0.000000
0.333 143

0.000000
0.330671

1D
1D
3D
5D
7D

1D
1D
3D
5D

1D
10
3D

1D
1D

0.337615
0.195945
1.004492

—0.659 566
1.820318

0.337612
0.196 100
0.97S 673

—0.512465

0.337 601
0.196640
0.942996

0.337 287
0.199501

20

20

20

0.000000
0.333 333

0.000000
0.333 333

0.000000
0.333 333

0.000000
0.333 333

1D
1D
3D
SD
7D

1D
1D
3D
SD

1D
1D
3D

1D
1D

0.337620
0.19S957
1.045 040

—0.574 563
4.658063

0.337629
0.195688
1.016400

—0.846 123

0.337636
0.196318
1.012289

0.338071
0.194465

formation about the singular behavior of the density
determined from the moments themselues. The density for
the diatomic chain calculated from 20 modified moments
using the moment-singularity method with one-
dimensional singularities at the ends of the interval and
one-, three-, and five-dimensional singularities at x, = —,

and x, =—, is shown in Fig. 4(b). This density is superim-

posable on the exact density except in the very immediate
vicinity of the singularities.

maximum within the lower-frequency band at x, = —, and
a one-dimensional minimum within the higher-frequency
band at x, = —,'. The calculation of the moments for this

type of density has been described by Wheeler. " The
Chebyshev moments of the second kind are given in Table
VIII. The coefficients of the various singular contribu-
tions are given in terms of the expansion of the density:

G(x)- [(—,
' )'~ +(—, )'~ ]x '~ near x, =0,2'

B. Superimposed diatomic chains

The average of the densities for diatomic chains with
m/I = —,

' and m/M = —,
' contains the same features as

the previously described density plus a one-dimensional

G(x)- ( —,
' )' (x, —x)

2fr
1near x, = —, ,
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TAKE VII. Point-by-point comparison of the density of the diatomic chain calculated using 20 Chebyshev moments of the
second kind with oneWmensional singular functions fixed at x, =0 and x, = 1 and increasing numbers of (coupled} singular functions

fixed at z = —,
' and x,= 3 compared with exact values.

0.0017
0.005
0.010
0.020
0.050
0.100
0.150
0.300
0.330
0.3317
0.3333
0.335
0.340
0.350
0.400
0.450
0.500

1D

8.202 56
4.78804
3.395 55
2.424 37
1.572 56
1.17023
1.01130
1.231 42
3.437 63
4.876 69

33.7049
0.06109
0.051 61
0.032 22
0.013 10

—0.001 50
0.008 32

1,3D

8.19900
4.792 52
3.401 77
2.424 52
1.572 29
1.16729
1.01365
1.254 84
3.44664
4.886 37

34.0033
—0.007 51
—0.00479
—0.002 57

0.000 19
0.000 14

—0.00020

1,3,5D

8.19897
4.792 59
3.401 86
2.424 51
1.572 31
1.16722
1.01374
1.255 62
3.439 95
4.874 84

33.8979
—0.003 97
—0.001 79
—0.000 52
—0.000 10
—0.00001

0.00008

1,3,5,7D

8.19893
4.79270
3.401 96
2.42449
1.572 32
1.167 19
1.01374
1.255 87
3.442 60
4.879 18

33.9414
—0.00705
—0.00429
—0.00206

0.00020
0.00006

—0.000 18

Exact

8.19893
4.792 72
3.401 97
2.42449
1.572 32
1 ~ 167 18
1.01376
1.25660
3.435 30
4.86449

33.7678
0.0
0.0
Q.O

0.0
0.0
0.0

Ref. 13

5.854 58
3.259 75
2.482 78
1.603 67
1.15924
1.00766
1.221 88
2.97693
2.64228
2.25465
1.755 49
0.731 18
0.142 14
0.001 21

These coefficients are compared to thase obtained from
the nonlinear least-squares method in Table IX. The
averaged density far diatomic chains calculated using 30
moments and the moment-singularity method with one-
dimensianal singularities at the ends of the interval and
one-, three-, and five-dimensional singularities at x, = —,,
x, = —,', x, =—', , and x, =—', is shown in Fig. 5. This densi-

ty is again superimposable on the exact density except in
the vicinity of the singularities. The fit of this density is
slightly poorer than the previous one near the singularities
bemuse there are more singularities to fit with the same
number of moments. Even so, the fitting af this density

shows that the moment-singularity method is able to fit a
density with a band gap and singularities within the bands
with very good precision.

C. Two-dimensional triangular lattice

The exact dispersion relation and an approximate densi-
ty for the nearest-neighbor two-dimensional triangular lat-
tice were calculated by Dean. ' The density has logarith-
mic singularities within the interval and discontinuities at
the ends of the interval, that is, G(x) approaches a con-
stant at x =0 and x = l. In addition to these singularities
exhibited by Dean's calculation, our moment-singularity

0
2
4
6
8

10
12
14
16
18
20

24
26
28

1.0
1.5S5 5SS 555 555 555
1.074074074074074
1.113854 595 336076
1.209 114464258497
1.337905 807 041 609
1.155475 396 139928
1.045 875 898 422 088
1.353 586 234 826 107
1.233 069 999041 789
1.094 767 246 837 868
1.204 551 501 414533
1.249 669 239 452 023
1.251 676 138955 587
1.092 963 950056062

TABLE VIII. Chebyshev modified moments of the second
kind for the superimposed densities of a diatomic chain with
m/M =

2 and a diatomic chain with m/M =
5 on the interval

0&x &1. Odd moments are zero.

Moments

Exact

Locations

0.000000
0.166667
0.333 333

Singularities

1D
1D
1D

Coefficients

0.382 338
Q. 174 346
0.097 462

30 0.000000
0.166639
0.333 331

1D
1D
1D

0.382 337
Q. 174 786
0.097 729

20 0.000000
0.166 189
0.331 529

1D
1D
1D

0.382 345
Q. 171 807
Q. 101 811

TABLE IX. Locations and coefficients of the dominant
singular contributions of the superimposed densities of two dia-
tomic chains using 30 Chebyshev moments of the second kind
with one-dimensional (ID) singular functions fixed at x, =0 and

x, =1 and one-, three-, and five-dimensional singular functions
1 1 2 5near x, = 6, x, = 3, x, = —,, and x, = 6 in a nonlinear least-

squares routine compared with exact values.
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TABLE X. Chebyshev modified moments of the second kind

for the density of the two-dimensional triangular lattice on the
interval 0&x & 1.

0
1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1.0
0.0
0.333 333 333 333 3333

—0.222 222 222 222 2222
0.111 ill 111 ill llll
0.148 14S 14S 148 1481
0.102 880 658 436 2140

—0.246 913580 246 9138
0.781 893004 1152267

—0.908 398 1100442011
0.155 311690291 1142
0.354 620 738 708 5295
0.116005351 487 7486

—0.196447 018 577 7982
0,236 470 276 098 3831
0.284 384030086 7422
0.111675 6140380590

—0.396 582 122 944 9751
0.239 733 087 529 0926

—0.385 486 581 738 3356
0.309 864071 231 4028
0.379 384 684 5307129
0.327 484 254453 0498

—0.390891 716622 6604
0.409 7392S0005 4602
0.833 653 035 4920710
0.528 442 902 7133334
0.967 158622 930 1810

—0.560 309 955 949 2450
—0.307 237 179645 6187

2.0 iI
I

I

I

I

I

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

l

I
I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I
I

I

I

I

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

l

I

I

I

l

I
I

I
I

p

I.p
I I I & I I l & I I I"0.0 0.5

X

FIG. 5. Superimposed densities of the diatomic chain with
m /M =

2 and of the diatomic chain with m /M =
~ calculated

using 30 Chebyshev moments of the second kind with one-
dimensional singularities at x =0 and x =1 and one-, three-,
and five-dimensional singularities at x = 6, x = 3, x = 3, and

x = 6 . (Indistinguishable from exact result on this scale. )

TABLE XI. Locations and coefficients of dominant singular
contributions of the two-dimensional triangular lattice calculat-
ed using 30 Chebyshev moments of the second kind with two-,
four-, and six-dimensional singular functions fixed at x, =0 and
x, =1; with two-, four-, and six-dimensional singular functions
floating near x, = 3 and x, = 32', and with four- and six-

dimensional singular functions floating near x, = 4 compared

with exact values.

Moments

Exact

Locations

0.000000
0.333 333
0.750000
0.843750
1.000000

Singularities

2D
2D
4D
2D
2D

Coefficients

0.735 105
0.344662
2.940421

0.954930

50 0.000000
0.333 330
0.750200
0.843 753
1.000000

2D
2D
4D
2D
2D

0.735002
0.344738
2.816622
0.353 654
0.954728

0.000000
0.333 331
0.750601
0.843 745
1.000000

2D
2D
4D
2D
2D

0.735 208
0.344 531
2.781 383
0.354770
0.955 250

30 0.000000
0.333 328
0.751 792
0.843 934
1.000000

2D
2D
4D
2D
2D

0.734904
0.345 004
2.726460
0.354952
0.953 262

20 0.000000
0.333 129
0.768 701
0.847 406
1.000000

2D
2D
2D
2D
2D

0.732 766
0.342 620
4.914690
0.314259
0.946 292

method suggested the existence of a discontinuity in slope
at x, = —,'. This omission by Dean was undoubtedly sim-

ply due to the approximate nature of his calculation. The
density calculated using 30 Chebyshev modified moments
of the second kind and our moment-singularity method
with two-, four-, and six-dimensional singularities at
x, =0, x, = —,', x, = », and x, =l and with four- and
six-dimensional singularities at x, = —, is shown in Fig. 6.
The moments, calculated exactly using the Brillouin-zone
sampling technique of Isenberg' in conjunction with the
recursive product-trace method of Wheeler and Blum-
stein, are given in Table X. Subsequent to fitting the
density using the moment-singularity method, we
analyzed the two-dimensional Brillouin zone to determine
the exact locations of all singularities and the amplitudes
of all singularities except the one at x, = ~i. ' The com-
parison between the exact coefficients and the coefficients
calculated with the moment-singularity method is shown
in Table XI. The logarithmic singularities in the density
arise from two-dimensional saddle points in the dispersion
relation and the discontinuities arise from two-
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2.0

00

FIG. 6. Density of two-dimensional triangular lattice calcu-

lated using 30 Chebyshev moments of the second kind with

two-, four-, and six-dimensional singularities at x =0, x = 3,
x = ~z, and x =1 and four- and six-dimensional singularities at

x =
~ . (Indistinguishable from exact results on this scale. )

dimensional extrema. The discontinuity in slope at x, = —,

which is characteristic of singularities found in four-
dimensional solids arises from a cone-shaped crossover of
two bands of frequencies at the corners of the hexagonal
Brillouin zone. A more recent root sampling calculation
of the density by Hoover' does show evidence for the
discontinuity in slope at x, = —,'.

for the use of less singular corrections to the determined
singular behavior. The use of additional corrections in the
nonlinear least-squares method described in Sec. III pro-
vides a method to precisely determine the locations of
singularities in the density.

The moment-singularity method is able to provide in-
formation about singularities within bands, at band edges,
and at the ends of the intervals over which densities are
defined. In addition, this method provides such compel-
ling information about singularities that are not expected
to appear in densities that a two-dimensional singularity
(a discontinuity at x =O.OS) was found by WPB in the
density of a three-dimensional fcc lattice and that a four-
dimensional singularity (a discontinuity in slope at
x = » ) was found in the two-dimensional triangular lat-
tice described here.

The improvements in the moment-singularity method
described here retain the precision of the earlier method of
WPB. While the method of Corcoran and Langhoff prob-
ably provides the most accurate purely mechanical
method of calculating a density from its moments, the
moment-singularity method is shown to outperform it if,
in addition, one is willing to analyze the information
present in the moments and to build the appropriate
singular functions into the density. It should be em-

phasized that each of these methods uses only the mo-
ments generated from the interaction matrix of the lattice
to calculate the density. It seems likely that each of these
methods will find its uses. The method of Corcoran and
Langhoff has the advantage of being purely mechanical
and thus not subject to the interpretation of individual in-

vestigators. The moment-singularity method has the ad-
vantage of greater potential for the analysis and incor-
poration of singularities in the density from the moments.
In addition, the density of Corcoran and Langhoff repro-
duces the known moments only approximately, while that
of the moment-singularity method reproduces the known
moments exactly.
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