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Kinetic growth percolation: Epidemic processes with immunization
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Nonequilibrium phase transitions of kinetic growth percolation, a kinetic growth process which
exhibits a percolating-nonpercolating phase transition, are investigated on the basis of a mean-field

theory and/or a real-space renormalization-group method. Phase diagrams, critical exponents, and
spreading velocities are calculated explicitly for several models describing epidemic processes with
immunization or autocatalytic chemical reactions. The existence and the nature of phase transitions
and critical behavior are clarified.

I. INTRODUCTION

In recent years the kinetic growth of random clusters,
which describes chemical reactions, epidemic processes,
forest fires, etc., has received considerable attention. ' It
has been shown that some processes belang to the same
universality class as ordinary (isotropic} or directed per-
colation. ' Here we use the terminology of epidemic
processes but the following processes can also be described
as autocatalytic chemical reactians. In the last section, we
discuss this again. Each site (individual) can be suscepti-
ble, infected, or immune. We start with one infected site
and construct a cluster step by step. Infected sites infect
their nearest-neighbor susceptible sites with probability p.
At the same time, they become immune with probability
unity. When immunization is perfect and immune sites
are never reinfected, the process is equivalent to the usual
bond percolation and there exists a threshold p, such that
the probability of infinite spreading of the disease is zero
below p, and nonzero above p, . ' On the other hand, it
is known that some chemical reactians (Schlo 1's first
model ) are equivalent to directed percolation. In epi-
demic processes, this corresponds to the case without im-
munization where infected sites recover and return to the
susceptible state with probability unity. Note that the d-
dimensional process is equivalent to (d+ 1)-dimensional
directed percolation where the additional one dimension
corresponds ta time in the process. Extension and gen-
eralization are straightforward. For instance, consider an
imperfect immunization (resistance) process where im-
mune sites can be reinfected with probability r Obvious-.
ly, the special cases r =0 and r =p are equal to the perfect
and no-immunization processes (isotropic and directed
percolation), respectively. What happens at p & r &0 or
r &p? This problem was first addressed by Cardy, but
little is known about the general properties of phase tran-
sitions. A wide variety of growth phenomena is con-
sidered to exhibit similar behavior where the main issue is
whether a cluster spreads infinitel or not. We call this
kind of process kinetic growth percolation (KGP).

The study of KGP is considered to be interesting and
significant from a number of points of view. First, KGP
is a good model of real growth processes ranging from
chemical reactions to epidemic processes. Second, it is

II. MEAN-FIELD THEORY

A. Partial immunization process

Within a framework of a mean-field approximation, all
spatial fluctuations are neglected and the densities of each
site 1xmome spatially constant. Temporal evolution of the
partial immunization process is governed by

X=(1 u) Y cpXY, — —

Y= —Y+cpXY,

(2.1)

(22)

closely related to many subjects of much current interest,
among which are (i) application of percolation theories to
various dynamic processes, e.g., flow in porous media (in-
vasion percolation), flame ropagation (stirred percola-
tion}, and galactic evolution, (ii) kinetic growth of fractal
objects such as diffusion-limited aggregation, ' (iii} non-
equilibrium phase transitions and pattern formation, "and
(iv) (stochastic) cellular automata. KGP provides a typi-
cal example af these phenomena. The purpose of this pa-
per is to investigate KGP and to clarify the nature of
phase transitions. In this work we deal with two models,
both of which contain perfect and no-immunization pro-
cesses as special cases. One is a partial immunization pro-
cess where perfect immunization occurs partially, i.e., in-
fected sites are immunized perfectly with probability u

and return to susceptible sites with probability 1 —u.
Here perfect and no-immunization processes are described
by u=1 and u =0. The other is the imperfect immuniza-
tion process mentioned before. In Sec. II phase diagrams
and critical behavior of partial and imperfect immuniza-
tion processes are investigated on the basis of a mean-field
approximation. The next two sections are devoted to a
real-space renormalization-group (RSRG) approach. In
the kinetics of cluster growth, a spreading velocity of a
cluster or equivalently a time derivative of a cluster size is
the most fundamental and important quantity. In Six:.
III, therefore, we study the critical behavior of the spread-
ing velocity in perfect and no-immunization processes.
Phase diagrams and the tricritical behavior of partial and
imperfect immunization processes are treated in Sec. IV.
Finally, in Sec. V we summarize and discuss our results.
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Z=uY, (2.3)

where c is a coordination number and X, Y, and Z are the
densities of susceptible, infected, and immune sites,
respectively. The term cpXY describes infection of sus-
ceptible sites by nearest-neighbor infected sites and the
terms u Y and (1—u) Y represent immunization and
recovery of infected sites. Although there is only one sta-
tionary solution,

(2.4)

c-1

tb)

c-

the equation system (2.1)—(2.3) exhibits a phase transition.
Consider an initial-value problem under the initial condi-
tions

FIG. 1. Phase diagrams using the mean-fie1d theory. (a) Par-
tial immunization process. (b) Imperfect immunization process.

X(0)= 1 —5, Y(0)=5, Z(0) =0 (5 «1); (2.5)
(2.14}

that is, only a small fraction of sites are infected at t=O.
Substituting Eq. (2.3) into Eq. (2.1}and integrating it, we
have

A relaxation time v is also evaluated from Eqs. (2.12}and
(2.13) as

X —(1—u)/cp =A exp( —cpZ/u) .

The initial condition (2.5) gives

A =1—5—(1—u) jcp .

(2.6) ~=e '
(p &p. ),

r=e 'ln(2e /u5) (p &p„5~0) .

It follows that

(2.15)

(2.16)

On the other hand, the sum of Eqs. (2.1)—(2.3) leads to (2.17)

X+Y+Z=1.
From Eqs. (2.6)—(2.8), we find

(2.8) where g is a critical exponent defined by r ~ e

S. Imperfect immunization process

Z =u (1—Z —(1—u) lcp )—u(1 —5—(1—u)/cp )

X exp( —cpZ/u) . (2.9)

Equations of motion for the imperfect immunization
process are written as

When cpZ/u «1, we can expand exp{ —cpZ/u) in a
power series of cpZ/u and get

Z=u5+(cp —1)Z —(cp /2u)(cp —I+u)Z . (2.10)

X= —cpXY,

Y= —Y+cpXY+crZY,

Z= Y —crZY .

(2.18)

(2.19)

(2.20)

—1
pc =c (2.11)

Figure 1(a}shows a phase diagram.
Near p, as e=

~ p —p, ~
/p, &&1, solutions of Eq. (2.10)

become

Here we omit higher-order terms like 5Z and Z . Equa-
tion (2.10) shows that for cp &1, Z &u5 and Z stays at
the order of 5. Note that higher-order terms in Z are
negligible in this case. This means finite spreading of the
disease, because the asymptotic density Z( oo ) of immune
sites is in proportion to the initial density 5 of infected
sites. At cp & 1, in contrast, Z can grow up to the order
of 5 and the disease can spread infinitely. The threshold

p, is given by

In this case, Eqs. (2.18)—(2.20) have two stationary solu-
tions,

Y=O,

X =0, Y =1—1/cr, Z =1/cr (cr & 1),
(2.21}

(2.22)

Z —1/cr =AX"~~,

where an integration constant A is given by

A = —(1 5) ' ~/cr . —

(2.23)

(2.24)

and show a little complicated behavior. As before, we
solve Eqs. (2.18)—(2.20) under the initial condition (2.5).
Eliminating Y from Eqs. (2.18) and (2.20) and integrating
it, we get

Z(t)=(u5 je)(1—e ") (p &p, ), (2.12)
Substitution of Eqs. (2.8) and (2.24) into Eq. (2.23) yields

Z(t)=2e(1 —e ")/[1+(2e ju5)e "] (p &p, ) . (2.13) Z =(1—crZ)[1 —Z —(1 erZ)r~"(1 —5)] . — (2.25)

Below p„Z(ao )/5 represents a mean cluster size, while
above p„Z( ao ) stands for a probability of belonging to
the infinite cluster. Then Eqs. (2.12) and (2.13) "inform"
us that critical exponents P and y {Ref. 13) are indepen-
dent of u and equal to unity:

When crZ « 1, we can linearize Eq. (2.25) and obtain

Z=5+(cp —1)Z (c p +c pr 2—cr)Z /2 . (2—.26)

The same argument as that for the partial immunization
process shows that at cp & 1, Z remains at the order of 5
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and only finite spreading of the disease occurs. For
cp & 1, the disease can spread infinitely, but two different
phases appear. One is the case cr& 1, where the station-
ary (asymptotic} solution is given by Eq. (2.22), and the
other is the case cr~1 with the stationary solution Eq.
(2.21). A phase diagram is plotted in Fig. 1(b). In the
former phase, denoted II, both infected and immune sites
can spread infinitely and survive forever. In phase III the
infinite cluster of immune sites can be formed, but infect-
ed sites vanish. This suggests that during the formation
of the cluster, infected sites exist only in the perimeter.
This point is shown more clearly in Sec. IV.

By solving Eq. (2.26), we can calculate critical behavior
in the vicinity of the phase boundary ez= ~p

—p, ~ /p,
«1 (p, =c '),

Z(a )~8m~
'

(p &p, ),
Z(00) ~ez (p &p„r &r, =c '),

—1f'~ Ep

(2.27)

(2.28)

(2.29)

In phase II (p &p„r &r, ), Z(oo)=1/cr is the order of
unity. Thus, we cannot do linearization and cannot get an
analytical solution. Note that Z( oo ) shows discontinuity
on the boundary p =p, (r &r, ). Critical behavior near
the boundary e,:—

~
r r,

~
/r, &&—1 is also derived from

equations for X and Y corresponding to Eq. (2.25),

X=(p/r)[(1 cr)X+crX —(1—S) —"~i'X'+'~i'],

( Y/Y+crY cr +1)/{cp —cr)—
(2.30)

X( oo ) ~ e',~ (r & r, ),
Y(oo) 0:e, (r &r, ),

(r &rq} .

(2.32)

(2.33)

(2.34)

In phase III (r & r, ) the time dependence of X cannot be
obtained analytically, because linearization is not appli-
cable. Notice that the present calculation leads to the ex-
ponent cp for X( oo ), which depends on the value of p.

III. REAL-SPACE RENORMALIZATION-GROUP
APPROACH: SPREADING VELOCITY

In the first part of this section we construct a general
formalism to calculate a spreading velocity V and derive
scaling relations. Explicit calculations are made on a
square lattice in subsequent subsections. The present
scheme is quite similar to that for a diffusion coefficient
on percolation lattices developed before. ' The process is
described by three basic parameters: a lattice constant I,
an infection probabihty p, and a unit time w which
represents a real time necessary to advance one step. A11

physical quantities including V are determined from I, p,
and w. Hereafter we assume the existence of a RSRG
transformation. The self-similarity of percolation clus-
ters' justifies this assumption. We adopt a usual scheme

= [cp (r Y/pY+crY cr + 1)—/(cp cr) jI'~'(1 —8) .—

(2.31)

The results are

with a rescaling factor b,

I'= bl, (3.1)

where a prime denotes a renormalized quantity. The
product theorem' informs us that recursion relations for
p and w have the form

p'=g(p b»
'=wf(p, b) .

It also leads to

(3.2)

(3.3)

V(l,p, w;t) = Iw 'V'(p, r), (3 4)

where r:t/w, a—nd V" is a normalized dimensionless
velocity. In the spirit of a RSRG approach, relevant mac-
roscopic properties of the process are kept invariant under
the transformation, and

V(1',p', w', t) = V(l,p, w;r) . (3.5)

Substitution of Eqs. (3.1)—(3.4) into Eq. (3.5) gives a re-
cursion relation for V'

V (p, T)=bf 'V(g, Tf ') . (3.6)

Here we define V by a time derivative of an average clus-
ter size, e.g., a radius of gyration. Hence, we set

V(l,p, w;w) =plw (3.7)

p+i=g(p;} {po=p»
k —1

T=T = g f(p;, b) .
i=0

(3.10)

Using Eqs. (3.8)—(3.10), we can compute V' explicitly.
Critical behavior and scaling relations are also derived.

In the vicinity of a threshold p, as e=—
~ p —p, ~

/p, &&1,
recursion relations (3.2) and (3.3) are expanded as

e'=A~e+O(e ),
f =A, +O(e),

(3.11)

(3.12)

where A&=Bg/Bp ~z z and A. =f ~z z. Substituting

Eqs. (3.11) and (3.12) into Eq. {3.6), we get

V'(e, T)=bA'V'(kze, A, 'T) , . (3.13)

Then we find that V' is a generalized homogeneous func-
tion and satisfies scaling relations'

V'(e, T}=esF(e Tr ~")

with critical exponents

8:—ln(A, „/b )

/Inks'

——v( 1 —X )/X,

X = lnb/Ink, ~ =v/(8+ v),

(3.14)

(3.15)

(3.16)

where v=—lnb/ink& is a correlation-length exponent' and

because at t =w, i.e., after one step, a cluster spreads pl on
the average. Iterating the transformation k times and in-
serting Eq. (3.7},we have

k —1

V'(p, 7')=pa g b(f (p;,b)) (3.8)
i=0
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I' is a scaling function. Just at a threshold p =p, and in
the lang-time limit T~ oo, V' follows power-law
behavior,

Ve(p T) Tx—1

V'(e, oo) ~e

(3.17)

(3.18)

The relaxation time r of the process is estimated from

(3.19)

where g is a correlation length and Vr stands for an aver-

age cluster size. Then the critical exponent g for r is ex-
pressed as

/

l
I

I
I

0.39

I

0.6
I

0.8

-' 1.0

8
- 0.5 ~

1.0

/=8+ @=v/X . (3.20)

In the perfect immunization process (isotropic percola-
tion), P is equal to the minimum path exponent g;„'
whereas in the no-immunization process (directed percola-
tion}, P is same as the exponent v~~ for a correlation length
parallel to the anisotropy axis.

J '=g V»=2J '+2J ' 5p'+2J '. — (3.21)

This recursion relation is same as that for bond percola-
tion' and gives the exact threshold

(3.22)

Similarly, the recursion relation f for m is obtained by
computing an average step number n until the top site is
infected and by setting

A. Perfect immunization process

We now specialize to a square lattice and construct re-
cursion relations as follows. A b=2 cell-to-cell decima-
tion procedure is adopted and a group of sites and bonds
are combined into supersites and superbonds, as illustrat-
ed in Fig. 2.' On the original cell, we start with a config-
uration where only the origin (bottom site) is infected and
others are susceptible. The process is advanced until the
top site is infected or infected sites become extinct. Then
we calculate an infection probability of the top site and
equate it to that on the renormalized cell, viz. , p'. The re-
sulting recursion relation g for p is

FIG. 3. Asymptotic values of the spreading velocity
V (p, 00) for the perfect ( ) and the no- ( ———) immuni-
zation processes.

v= 1.43,
8=0.12,

X=0.92,

/=1. 55 .

(3.25}

(3.26)

(3.27)

(3.28)

The value of g and, equivalently, 8 and X, has already
been obtained by Hong and $tanley, 2 but the following
results about V' are new. The explicit values of V'(p, 00 )
are plotted in Fig. 3. Because of small value of 8,
V'(p, oo ) shows sharp increase near p, . Figure 4 presents

1.0-

cell. Equation (3.23) means that a real time until infection
of the top site is preserved under the transformation. It
follows that

tc'/~ =f(p) =2p'(2+3@ —7p'+3p')ig(p) . (324)

Again, the recursion relation f(p}g (p} is equal to that for
the minimum path of bond percolation derived by Hong
and Stanley.

Recursion relations (3.21) and (3.24) are used to calcu-
late critical exponents, a spreading velocity, and its scaling
function. Critical exponents become

w'n'=wn, (3.23)

where n'=1 is an average number on the renorrnalized

I

10

FIG. 2. 8=2 cell-to-cell decimation scheme.

FIG. 4. Time dependence of the spreading velocity V (p, T)
in the perfect immunization process at p=0.5 (~), 0.51 (), 0.6
(8), and 0.8 (4).
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O

gy kCN kQO

0

g2(P}=P(1+P' P—' 2—P'+7P' 9—P'+SP' P—'» (3 34)

g3(p)=1 —p+p +6p —15p +22p 3—4p +47p

8p +p (3.3S)

40

ko o ---03

FIG. 5. Scaling function F for the perfect immunization pro-
cess when a=0.01 (4 ), 0.001 (C3), and 0.0001 ().

f, (P)=2P (2—P+3P 7P—+7P 4P—+SP'
—12p +13p —6p +p' ),

f2(p) =2p'(1 —p)'(2 —p+4p' 8p'—+Sp' p'»—

f3(p)=2p (1—p) (2—p+8p —8p +10p —12p

+14p6—13p +6p —p ) .

(3.36)

(3.37)

(3.38)
the time dependence of V'(p, T). As p~p, from above,
the relaxation time increases and diverges at p p, . The
scaling function F is shown in Fig. 5. The scaling relation
holds well and the crossover occurs smoothly.

B. No-immunization process

The basic scheme for construction of recursion relations
in the no-immunization process is same as that in the per-
fect immunization process. In this case, however, the
same configurations appear repeatedly and a self-
consistent treatment becomes necessary. Consider a pro-
cess with m kinds of configurations. Generally, an infec-
tion probability P of the top site after starting with a
configuration i is written as

Pi —Pip+ g P—,gP~
j=1

where P~o is a direct infection probability from a configu-
ration i without passing through these m configurations,
and Pz is a transition probability from a configuration i
to j. Calculations of P;o and P~J are straightforward. By
solving the equation system (3.29), therefore, we can ob-
tain an infection probability from arbitrary configuration.
A similar formula holds for an average step number N;
from a configuration i until infection of the top site,

A threshold and critical exponents are given by

p, =0.39,
v= 1.07,
8=0.37,

7=0.74,

/=1.44 .

(3.39)

(3.40)

(3.41)

(3.42}

(3.43)

The value of /=1.44 is a little larger than the 1.27 of
known estimates. 6 In Fig. 3, V'(p, oo ) is plotted together
with that of the perfect immunization process. The larger
value of 8 causes the slower increase of V'(P, oo ) near P, .
The asymptotic value V'(p, ao) in the no-immunization
process is exactly equal to tang in directed percolation,
where P is the opening angle of the infinite cluster. 6

Hence, Fig. 3 can be regarded as a p-versus-tang phase di-
agram of directed percolation, which describes an interest-
ing characteristic of directed percolation, namely
direction-dependent critical behavior. The time depen-
dence of V'(p, T) and the scaling function F are shown in
Figs. 6 and 7. The divergence of the relaxation time and
the smooth crossover are observed.

P('Ni' —P;olV(o+ g P—qPq (NJ +¹gi),
j=l

(3.30}

where N;o is an average step number from a configuration
i without repeating any configuration and NJ is an aver-
age step number during the transition from a configura-
tion i to j. Here the term NJ represents the increase of a
step number due to the repeat of configurations. Thus, an
average step number from any configuration can also be
determined from N~o and N,i.

In the no-immunization process, two configurations are
repeated and we get

1.0-

Qt 05 ii

1$

p =g (p) =g 1 (p)~g3(p)

~'~~ =f(p}=[fi(p)gi(p)+f2(p)g2(p)

(3.31}

FIG. 6. Time dependence of the spreading velocity V (p, T)
in the no-immunization process at p=0.39 (~), 0.4 (&), 0.5 (~ ),
and 0.8 (Q).

+f3(p}g3(p))~g i (p)g3(p} (3.32)

gi(p)=p (2 p+p 6p +13p ——13p +6—p p)—
(3.33)
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IV. REAL-SPACE RENORMALIZATION-GROUP
APPROACH: PHASE DIAGRAMS
AND TRICRITICAL BEHAVIOR

FIG. 7. Scaling function I' for the no-immunization process
when a=0.01 (4 ), and 0.001 (0), and 0.0001 ().

with critical exponents

vi ——lnb /ink, i,
v2 ——lnb/ink, 2 .

Along the line e2 O——or ei ——0, g* obeys
—V)g'(ei, 0) ~ ei

P(O, e2) ~ e2

Similarly, Eqs. (3 4) and (3.5) are generalized as

V(l', x',y', w', t) = V(l,x,y, w;t)

=Iw 'V'(x, y, T) .

It follows that

V'(ei, e2, T)=bA, 'V'(A, i@i,A2e2, A, 'T)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

x'=g„(x,y),

y =gy(»y) ~

(4.1)

(4.2)

where we denote parameters by x and y. Assuming the
existence of an unstable fixed (tricritical) point (x„y, )

and linearizing Eqs. (4.1} and (4.2) around (x„y, ), we
have

In the partial and imperfect immunization processes,
there exists one more parameter u or r in addition to p.
This causes tricritical behavior near a tricritical point. As
in Sec. III, we first present a general formalism ' and then
make explicit calculations on a square lattice. Consider a
two-parameter RSRG transformation with recursion rela-
tions

V (ei,e2, T)=T 'Fy(ei T ',e2T '),
V'(O, O, T) T'-',

8)
V (ei,O, oo}~@i

8~
V (O, e2, ce ) ~ e2

ei ——ln(A, /b)/ink, , =v, (1—g)/g,

82 ——ln(A, /b)/Ink2 ——v2(1 —x)/x .

A. Partial immunization process

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.3)

~»y

A
yy

Bg, /Bx Bg„/By
(4.4)=

Bg, /Bx Bg„/By

where e = (x —x, )/x, and ey
—= (y —y, )/y, . Diagonaliza-

tion of Eq. (4.3) leads to

i= X i 6 i
'( 6'i =A i E»+Bi 6y )',

's2 =~262 (E'2=~26»+B2ey) ~

(4.5)

(4.6)

where A, i and A2 are eigenvalues of A and (A„B,) and
(A2,B2) are eigenfunctions of A. Critical behaviors of
physical quantities are derived from Eqs. (4.5) and (4.6).
Here we discuss a correlation length g and a spreading
velocity V. The product theorem' and the invariance
under the transformation yields

To construct a recursion relation gy for p, we apply the
same scheme as in Sec. III. Extension is lengthy but
straightforward. As for g„, we compute an immunization
probability of the origin until the infection of the top site
or the extinction of infected sites on the original cell and
set it equal to that u' on the renormalized cell. Here four
configurations appear repeatedly and obtained recursion
relations are rather complicated. Full expressions are
presented in the Appendix. Using these recursion rela-
tions, we can calculate a global phase diagram. The result
is shown in Fig. 8. Qualitative properties are same as
those by the mean-field theory [Fig. 1(a)] and two phases
appear. In phase I, p —+0 and the disease spreads only fin-
itely, while in phase II, p~ 1 and infinite spreading can
occur. It should be noted that except at u=0, u alvrays
goes to unity and the partial immunization process be-
longs to the same universality class as that of the perfect
immunization process. The tricritical point is

g( 1',x',y') =g(l, x,y) =lg'(x, y), (4.7) p, =0.39, u, =0 . (4.22)

where g' is a normalized dimensionless length. Inserting
Eqs. (3.1), (4.5), and (4.6) into Eq. (4.7), we get

Eigenvalues and eigenfunctions of the linearized transfor-
rnation matrix and critical exponents are given by

g'(e„e2) =bg(z, e„z2e2) .

Then P has the scaling form'
—V

( ', 'e)i=e2Feig(e'i e'2 )'
(4.8)

(4.9)

1.91

(A i,Bi )=(1,0),
v) ——1.07,

(4.23)

(4.24)

(4.25)
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0.5

-.:~0.39

0
0

0.39

0~
0

0.5

FIG. 8. Phase diagram of the partial immunization process
using the RSRG method. The star (*), sohd circles (~), and

open circles (0 ) denote the tricritical, other unstable, and stable
fixed points, respectively.

Hi ——0.37, (4.26)

A.2
——1.37,

(A2, B2)=(1,3.28),

V2=2.22 ~

Hp ——0.78 .

(4.27)

(4.28)

(4.29)

(4.30)

Both eigenvalues are more than unity. Then we find that
the fixed point (4.22} is truly tricritical and both parame-
ters p and u are relevant. 2' The former behavior is ob-
served along the line u=0 and equal to that of the no-
immunization process.

B. Imperfect immunization process

Again, a recursion relation g~ for p is determined in the
same way as before, whereas g, for r is obtained as fol-
lows. On the original cell, we start with a configuration
where the origin (bottom site) is infected, the top site is
immune, and the middle two sites are susceptible or im-
mune. An infection probability of the top site is calculat-
ed for each configuration of the middle sites and an aver-
age is taken over all configurations. As a weight for the
average, we use the probability that each configuration is
realized as a final configuration of the process in calcula-
tions of gz. Finally, we equalize the average probability
to that r' on the renormalized cell. Explicit formulas of
g& and g, are given in the Appendix.

Figure 9 shows a global phase diagram. As in the
mean-field diagram [Fig. 2(b}], there exist three phases.
Phase I is a nonpercolating phase where p~O, r~O, and
only a finite cluster is formed. Phases II and III are per-
colating phases where p~ 1 and an infinite cluster can be
formed. In phase II, r also goes to unity and infected sites
can survive forever. In phase III, conversely, r goes to
zero and reinfection of immune sites is prohibited. Then

FIG. 9. Same as Fig. 8 for the imperfect immunization pro-
cess.

p, =r, =0.39,
and tricritical behavior is described by

(4.31)

A, )
——1.91,

(Ai,Bi)=(1,1),
vi ——1.07,
H) ——0.37,

k2 ——1.48,

(A2, B2 ) = ( 1,—0.52},

vp ——1.77,

H, =0.62.

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37}

(4.38)

(4.39)

we find that in the length scale larger than a correlation
length g, infected sites remain only at the perimeter of the
cluster, as suggested before. Recent field-theoretical ap-
proaches have shown that the epidemic process with im-
munization belongs to the same universality class as that
of isotropic percolation. However, this statement is true
only for the perfect immunization process. When reinfec-
tion is allowed, the situation is not so simple. It should be
emphasized that the present diagram satisfies two qualita-
tive conditions. One is that on the line r= 1 the critical
point must be p=0, because in this case the disease spread
once never disappears. The other is that at p= 1 the criti-
cal value of r (threshold) must coincide with that of the
no-immunization process. Here the disease spreads infin-
itely with the velocity V' = 1. The formed cluster is com-
pact and composed only of infected and immune sites. In
addition, susceptible sites outside the cluster have no in-
fiuence on the reinfection process of immune sites inside
the cluster, because the spreading velocity of the reinfec-
tion is always less than unity, i.e., the spreading velocity
of the cluster itself. As a result, reinfection process inside
the cluster is equivalent to the no-immunization process.
The latter condition is satisfied by the mean-field diagram
but the former is not.

The tricritical point is
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As in the partial immunization process, both eigenvalues
are more than unity and Eq. (4.31) describes the true tri-
critical point. The first behavior appears along the line
r =P and is the same as that of the no-immunization pro-
cess. On the other hand, the second is observed when the
tricritical point is approached via phase III.

and inhomogeneous phases, respectively.
Throughout this article we have used the language of

epidemic processes. As mentioned first, however, all ex-
pressions can be translated into the language of (autocata-
lytic} chemical reactions. The partial immunization pro-
cess is described by

V. SUMMARY AND DISCUSSIONS

P
X+Y~ZY, (5.1)

KGP is a kinetic growth process which shows a
percolating-nonpercolating phase transition. The main
concern is conditions for the infinite growth and critical
behavior near thresholds. Such growth phenomena are
observed in a number of fields including physics, chemis-
try, biology, and even social sciences. In this paper, we
have investigated several examples describing epidemic
processes with immunization and calculated phase dia-
grams, critical exponents, and spreading velocities. As a
result, the existence and the nature of phase transitions
and critical behavior have been clarified.

The partial immunization process where perfect im-
munization occurs with probability u has only two
phases, the nonpercolating phase I and the percolating
phase II, and belongs to the same universality class as that
of the perfect immunization process (isotropic percola-
tion). On the other hand, three phases appear in the im-
perfect immunization process, where immune sites are
reinfected with probability r. Phase I is a nonpercolating
phase where the disease spreads just finitely, and phases II
and III are percolating phases with a nonzero probability
of infinite spreading of the disease. However, there is sig-
nificant difference between phases II and III. In phase II
infected sites can survive forever in the whole cluster,
whereas in phase III infected sites can exist only at the
perimeter of the cluster. It becomes evident that reinfec-
tion of immune sites is an important factor which causes
a qualitative change of the process.

First, we have adopted the mean-field approximation.
A mean-field theory is the most fundamental and well-
established approach to phase transitions, and most of the
existing studies about nonequilibrium phase transitions
are based upon it. As is shown in thermal critical phe-
nomena, however, spatial fiuctuations are considered to
play a crucial role and cause nonclassical behavior near
critical points. " Then we developed the RSRG technique
and obtained nonclassical exponents, etc. The importance
of spatial fiuctuations has been revealed and a RSRG
method has turned out to be a powerful tool in the study
of nonequilibrium and irreversible processes as well as of
thermal and geometrical (percolative) critical phenomena.

There is some analogy between tricritical behavior of
the imperfect immunization process and that of usual
thermal systems such as He- He mixtures and metamag-
nets. In general, thermal tricritical points are located at
the end of coexistence curves of three phases character-
ized as disordered, ordered, and inhomogeneous (separat-
ed) phases. In phase III of the imperfect immunization
process, infected sites exist only at the perimeter and the
cluster is inhomogeneous. In other words, phase separa-
tion between infected and immune sites occurs. Then
phases I, II, and III correspond to disordered, ordered,

1 —u

Y~X, (5.2)

(5 3)

and the imperfect immunization process is written as

X+ Y—+2Y,
1

Y~Z,

(5.4)

(5.5)

Z+ Y—+2Y. (5.6)
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APPENDIX: RECURSION RELATIONS

We have

1. Partial immunization process

[( 1 P22 }Pi+P12P2]
P =gp(p~ii}=

[(1—Pi i )(1—P22) —Pi2P2i ]

1 P10+ 13P3+ 14 4 ~

P2 ——P20+P23P3+P24P4

P3 P30 ~( 1 P33 }

1 —Pii ——1 up q (1—q ), —
1 —P22 ——1 upq up q (1—q ), — —
1 —P33 ——1 —upq,

1 —P~=1—~Upq',

P12=»S e
2

P21 =8%

The mean-field equations (2.1}—(2.3) and (2.18)—(2.20) ex-
press usual rate equations for these reactions. Here the is-
sue is whether the reactions proceed infinitely or not when
one F (autocatalytic) molecule is put in the sea of X (reac-
tant) molecules. The similar situation is thought to be
realized in a wide variety of real chemical reactions.

The study of growth processes from a viewpoint of
KGP seems to be quite interesting both theoretically and
practically, but this promising field of research has just
begun. Various types of applications are possible and
many open questions remain. We hope that this work
stimulates further researches on KGP.
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P t3 =2QPQ',

P,4 ——2u u2p q (1—q },
P23 u—u—p q (1—q ),
P24 up——q +u pq +uu p q ( 1 —q ),
P&0 ——p (1—q )+2u u p q (1—q },
P20 p+——p q+u p q +u up q (1—q ),
P3o=p +Qp g,
P4o=p +QUp g

[(1—P22}Ut+Pi2U2]
u'=g„(p, u) =

[(1 Pl, )(—l P—) P, P—, ]
'

Ui = Uio+Pi3U3+P&4U4

U20+P23 U3+P24 U4

U3 ——U30/(1 —P33),

U4 ——U40 j(1 P44), —

Uip ——u(p +q )+uvp (1—q )(1—u q ),
U2p =up +u pq +uup q(1 —uq +uq ),
U3o ——1 —Upq,

U4o ——up,

g =1—p,
U=1 —u .

2. Imperfect immunization process

P'=g&(p, r) =P32P2+P&3P3,

P2 (P20+P23P3+P24P4) j(1 P22)

[(1 P44 }P30+P34P—40]
P3 ——

[(1—
P33 )( —P44) —P34P43]

[(1 P33 }P40+P43P—3o]
P4 ——

[( P33 )( P44 ) 34P43 ]

1 —Pzz =1—0 r3 2

1 —P33 —1 —q r (1—s ),
1 P—44 1——q—r(s+2rs +qr q—rs ),
P)2 =2'

2Pi3=P»
2 2

P23 =pg r

P24 Pqs—+Pq r(1+s —s ),
P34 ——2q rs (1—s },
P43 =fr s3

Pzo=P+P Qr ~

2

P3o=1—e
2

P4o =P +Pgr

r'=g, (P, r) =RQR 3 +(1—Rp)R3

Rp ——2p q /[(1 qr )gz(p,—r)],
R ] —(R f0 +R t2R 2 +R |3R3 )j( 1 —R ) 3 )

[(1—R33)R2Q+R23R3Q]
Rz ——

t[(1—R22)(1 —R33) R23R32]

[(1 R 22 )R30+R 32R20]
R3 ——

[(1—R22)(1 —R33) R23R32]

1 —R~~ ——1 —q rs,2 2

1 —R22 ——1 rs (1+r rs )—, —

1 —R33 —1 —rs (1—s ),2 2 2

R&2=ps +pqrs (1+r —rs ),
R ~3

=prs ( 1 —s ),
2

R23 ——rs

R32 =2rs,

R,p qr +pqr s+——pr(1 —s ),
Rzo=r +r s3

R3o —r (1—s2),

g =1—p,
s=1—r .
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