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A model incorporating exciton-phonon interactions has been proposed as a mechanism for localiz-

ing and stabilizing energy transport in long-chain proteins. Previous analytical and numerical stud-

ies have not adequately addressed the effects of thermal phonons, which may act to disperse exciton

energy. We have performed numerical calculations which indicate that excitons are strongly

dispersed at biologically relevant temperatures. Furthermore, the propagation of the exciton-

phonon system at low temperatures makes a transition from a solitary-wave mode to a stationary,
self-trapped mode as the coupling between excitons and phonons is increased. We also report new

calculations of exciton —normal-mode coupling in the formamide diner, which indicate that more
sophisticated models are necessary to yield the true coupling constant in proteins.

I. INTRODUCTION

One of the central problems of bioenergetics is deter-
mining the mechanism or mechanisms by which energy is
transferred from site to site in large protein molecules. '

Exchange of energy from site to site along the protein
backbone via amide-I excitation has been proposed as a
possible vehicle for energy propagation in enzymes and
other protein molecules. Because the excitation energy
of an amide-I bond is slightly less than one-half of the en-
ergy released by hydrolysis of one molecule of adenosine
triphosphate, Davydov has proposed a model in which
two quanta of amide-I excitation energy are stabilized by
phonons in a combined excitation which pro~agates as a
solitary wave along a long a-helical molecule. Details of
this model, which treats the amide-I vibration as a molec-
ular exciton, have been presented in a number of papers
by Davydov, Scott, and others. " In essence, the
model is one dimensional, requires a nonlinear interaction
between excitons and acoustic phonons, and in the contin-
uum approximation predicts the stabilization of two or
three quanta of amide-I excitation energy in a solitary-
wave state.

Numerical calculations by Scott and Hyman et a1.
have tended to verify the results derived from the continu-
um approximation. The numerical models exhibit forma-
tion of solitary waves subsequent to excitation of two or
three amide-I bonds at the end of a long molecule. As
predicted from the continuum approximation, these lo-
calized disturbances are dynamically stable and persist for
times which are much longer than the estimated time for
dispersion of an amide-I excitation'3 which does not in-

teract with phonons.
Several issues need to be resolved before Davydov's

model can be apphed to proteins in a living cell. Among
these are the effects of thermal vibrations and the nature
(and strength) of the coupling between acoustic phonons
and amide-I vibrations. Although the bulk of the work on
the dynamics of the Davydov model is based on the as-
sumption that the temperature is absolute zero, Davydov
has derived equations for a long chain in thermal equili-
brium with a heat bath. s His main result is that thermali-
zation decreases the effective exciton-phonon coupling
and increases the exciton mass. Derivation of simple
closed expressions for the magnitudes of thermal effects
requires adopting several simplifying assumptions in addi-
tion to the continuum approximation. Furthermore, for
biologically relevant temperatures, the lattice energy con-
tributed by thermal phonons will exceed the energy contri-
buted by exciton-induced phonons. 'z This should lead to
qualitatively different effects of thermalization at dif-
ferent exciton-phonon coupling strengths.

II. DAVYDOV MODEL

Our computational model is given in previous pa-
pers' ' and by Hyman et al. The Hamiltonian for pho-
nons and excitons interacting in the protein a helix is
given as

H~l =~c.+Hph+0 nt

where H,
„

is the contribution of the unperturbed excitons,
H&h is the contribution of the unperturbed phonons, and
H~„, is the contribution of the interaction between exci-
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tons and phonons.
Before presenting an explicit formula for H~(, some ex-

planation of the structure of the protein a helix is neces-
sary. The protein backbone is a covalently bonded chain

R HR HR HR HR HR
I I I I I I I I I I I

II II II II II II
HO HO HO HO HO HO

The helical structure is given by a series af hydrogen
bonds between C=0 units and H—N units. Because the
number of peptide bonds per turn of the helix is approxi-
mately 2.7, the hydrogen-bonded chains form three spines
circling the helix in the opposite direction to the back-
bone. The sequence of bonds in a spine is given as

index in Eq. (5). Furthermore, we neglect all terms except
those arising from nearest-neighbor interactions in the
Heitler-London approximation. ' We may then write the
contribution due to unperturbed excitons:

H.„=~ g P„',—Jg (P„'„,P„,+P„',.P„„,)
n, i npl

H~h
——(I/2M) gp„i+(ic/2)g(u„;—u„ i;) . (7}

+L g(Pn, i+)P;i+Pn, iPn, .+i} ~

n, i

The parameters b„J,and I. are given as the excitation en-

ergy of an amide-I bond in the protein, the resonant cou-
pling energy between a particular amide-I bond and its
nearest neighbors along the hydrogen-bonded spine, and
the resonant coupling between a particular amide-I bond
and the nearest neighbors along the helix. '4

The phonon Hamiltonian is given as a one-dimensional
chain of harmonic oscillators:

npi n, i

@=II &(., )f
(n, i)

(3)

where the (1)(„;)fare eigenfunctions of the operator H„;.
(We are eeeoming that the overlap integral 1 g{,ttfg[ Jtf
may be neglected. )

The Davydov model is generally presented in the
second quantization. Following Davydov, b („;)fand

b(„i)fdenote the creation and annihilation operators of
the state f in the cell (n,i) The opera.tors associated with
the same cell (n, i) and state satisfy the Fermi commuta-
tion rules; if the state or cell is different, the operators
satisfy Bose commutation rules. In the second quantiza-
tion representation

+ex ~ ~fb(n, i)f~{n,i)f

+ 2 ~ b(n, i)f'b(mj)g'~(mj)gb(n, i)f

«f g I
I'(., )(,1) Igf& ~

where ef is the energy of state f and the second sum is
over all combinations such that n &m. (See Ref. 14.)

We write

Thus in the Davydov model each amide-I bond is in a cell
(n,i} where n is determined by the position along the
backbone (counting by groups of three residues) and i is
determined by the spine.

The exciton Hamiltonian is given by
1

Hex g Hn, i+ 2 g V(n, i), (m, j) r

(n, i) (n, i)
(m,j)

where the first sum is over the Hamiltonian operator for
isolated group and the second sum is over all cells such
that (n,i)+(m,j) (See R. ef. 14.) The wave function is
given by the product

(See Ref. 15.) In Eq. (7) the parameters I and u)

represent the mass of a peptide unit and the spring con-
stant af the helix.

The interaction between excitons and phonons is given
by

+in(=X( QPn, iPn, i'("n+(, i un, i)—
n, i

+X2 g (P„iP„+i;+P„+i;P„;)
n, i

&&(un+i, l un, i) r—
where Xi gives the coupling originating fram a change of
amide-I excitatian energy and X2 gives the coupling ori-
ginating from the change of exchange energy due to
stretching of the helix between groups n + 1 and n (See.
Refs. 5 and 7.) Various estimates of Xi and X2 have ap-
peared in the literature. Hyman et al. employed the esti-
mate Xi ——X2 ——X where X was taken to be in the range
2)(10 "—6X10 "N. Scott, in a later publication, es-
timated Xi by the following farmula:

3J

where J=7.8 cm ' and d=4.5 A. This gives X2——10
N. Scott also assigned Xi a value of 3.4X 10 "N. Our
calculations have thrown this estimate into question. As
discussed in Appendix A, we obtain much lower values.
Also, as may be seen from examination of the dynamical
equations in Appendix B [Eq. (B10)],the effects of Xi and
X2 are indistinguishable in energy transfer from excitons
to phonons and thus in the formation of solitary waves or
self-trapped states.

III. DYNAMICAL EQUATIONS

~{n,i)f ~(n, i)P (n, i)f ~

{n i)f {n,i)f (n, i)0

(5)
We define a wave function

I ti) ) )= g C„;(t)P„;exp[a (t)] ~
0), (10)

We adopt a two-level model, so we may suppress the third where
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IO&=~4'(., lo

is the ground state and

(t)= (i/g) g [P»(t)p m—n;(t)tin;] . (12)

(See Refs. 5 and 7.)
The equations of motion for the C„;(t}and P„;(t)are

derived in Appendix B. %'e assign the same numerical
values to the parameters of the model as in Hyman et al. 9

This gives the following coupled system of second-order
equations:

idCn;/dt =(1.41)C„ig [(dp„ildt) +(pn~, i —p„i)] 0—058(C„ l i+C„+li)+0 092(Cn;~l+Cni l)

+0.372(10"X)[(i—5iv)(P, + l; P;—}C,i+(1—5o)(Pn i Pn —1 i )Cn i

+(1 5N)Cn+i i(pii+l, i Pn i)+(1 5O}Cii —l, i(Pni Pn-l, i)] (13a)

d P„;/dt =(1—5it()( P„ i, —+P, )+(1—So)(P, —P —i, )

+o 132(10"»[(1—5iv)(1 —5o}(
I
C.+i, i I

'—
I Cn i, i I

-')

+5o( I C.+i, I'+
I C., I'}—5it(( I

C.-i. I'+
I C., I')

+Cn, i(C +l, i
—Cn —l, i }+(Cn+l,i

—Cn —l, i)Cn, i] (13b)

The time variable in these equations has been normalized
by factaring out (w/M)'~. The delta functions 5o and

5iv account for the boundary conditions at the n=0 and
N ends of the helix, respectively.

During our computations we used values of 0.5 X 10
1.0X10 ', 1.5X10 ', and 3.0X10 ' N for the non-
linear coupling constant. Chain length was set ta 200
residues. Various initial conditions were employed, to
generate the effects af various levels of excitation and the
effects of thermal phonons. We permitted the chain to re-
lax for 20 psec before introducing amide-I excitations.
The potential energy, which was introduced by chain dis-
tortion, corresponded for each temperature to the total
phonon energy expected at that temperature.

IV. THERMAL FLUCTUATIONS

In this treatment of the interaction of excitons and pho-
nons in a thermalized linear chain, Davydov calculates
the function

H= gpM~,
(~q )

where q is a wave number, (v~) represents a particular
phonon state af the chain

(14)

Furthermore, H is the operator H„lfor a linear chain and

&= i(, )&=+i,&, (15)

the p are the diagonal elements of the density matrix of
phonon states, and

that is, 1(i l „denotes the thermalized wave function corre-

sponding to the wave function 1(i l defined in Eq. (10).
Given these definitions for H and g l „

it is possible to
calculate the dynamics of the chain for a particular choice
of occupation numbers (vz }. Davydov, in calculating the
function H by averaging over all possible phonon occupa-
tion numbers, applies the random-phase approximation,
which neglects correlations among the phonons.

Because numerical studies have shown formation and
propagation of a Davydov soliton only over a narrow
range of coupling parameters (Refs. 7—9) one might ex-
pect that the random fluctuations in distances between ad-
jacent peptide residue would have strong effects upon the
propagation of excitons along the protein a helix. Appli-
cation of the random-phase approximation smooths out
these fluctuations by neglecting the correlations. Further-
more, it would be extremely difficult to predict the
behavior of a three-spine helix from analysis of a linear
chain, were correlations significant. Our approach, there-
fore, is to assign random phonon occupation numbers
consistent with the prescription of the fluctuation-
dissipation theorem and calculate the dynamics of the
chain for each specific assignment. Analysis of chain
dynamics for several specific assignments of phonon oc-
cupation number establishes whether a soliton is likely to
form and thus whether Davydov's averaging procedure is
valid.

We turn now to a discussion of the phonon spectrum.
The fluctuation-dissipation theorem gives the expected
phonon energy. We assume classical dynamics for the
acoustic phonons. In this model the system observables q
are driven by external forces fP(t). ' The Hamiltonian
may be written'

4soi.v= g Cn(t)~neo& Un(t)
I
~&, (17) H =H(l+ QFP(t)Q;; (18)
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the spectra G,J(co} of the Q s in thermal equilibrium may
be expressed in terms of the admittance functions of the
system. Specifically, assume the Fourier transforms of
(dgldt) and FP(t),

aj(co)=[I/(2m )' ) f dt e 1"'(dg; /dt ), (19a)

y;(co) =[1/( 2n. )' ] f dt e J"'FP(t), (19b)

are related by the admittance functions Yj (cp):

uk(t) = Yk(t)u„(0)+~k(t)uk(0)
t

+ YktFkt —V

This gives the transfer function

Yk(cp) =(1/M)[icp/( cp —+cop coi—v)],
where

cop (2E——/M)[1 —eos(ka)] &0 .

(29}

(30)

a, (cp)= gy;(cp)Y;, (cp) . (20)

Then the power spectra G,J defined as the Fourier
transforms of the correlation functions —,

'
I gt, Q~(t) j+ in

thermal equilibrium,

Gq(cp)=[1/(2n)'~ ) f dte '"'
—,
' (Ig;,QJ(t))+),

ReF=— 1 N V

(~2 ~2)2+ 2P (31)

The function Yk(ip) can be taken as an admittance func-
tion because of the relation of the force term Fk(t) and
the normal mode (observable) in Eq. (28}.

By Eq. (29),

are given in terms of the blackbody function

E(cp,P) =(irtcp/2)coth(IiPco/2)

(21)

(22)

The power in the kth normal mode may be calculated by
insertion of Eq. (31) in Eq. (23} and integrating over cp. If
v is assumed to be small, this leads to

G(cop)= f G(cp)dc'

P= 1 /ktt T . (24}

In order to apply this theorem to acoustic phonons in
an a helix, we treat the system as three uncoupled one-
dimensional lattices of point masses coupled by linear re-
storing forces. The equation of motion for the classical
case may be written

Mii„=K(u„+i—u„)—E(u„—u„,) vMu„+F—„,(25)

where v is a disspation term [not to be confused with the
use of v in Eq. (14)], F„is the forcing function, K is the
restoring force, and u„ is the displacement of the nth
mass. '

Assuming that a is the equilibrium distance between
units, this system may be decomposed into its normal
modes,

u„=uk(t)exp(ikan),

F„=Fk(t)exp(ikan),

(26a)

(26b)

where k is the kth normal mode, and rewritten as a series
of uncoupled equations in the time-varying amplitudes
uk(t):

Mii I, =Euk [2eos(ka) —2]+vMuk+Fk .

The solution to this equation is well known

(27)

and the admittance functions Ytj(cp):

Re"'G2 (co) = (2/m—)'~ [E(cp, P)/cp )Re'"YJ (cp),

(23a)

Im"G2(cp)= i(2/n)' —[E(cp,P)lcp ]Im"YJ(cp) .

(23b)

In these equations the superscripts (s} and (a) of an ex-
pression denote the portions of the function which are
symmetrical and antisymmetrieal in the subscripts i and j,
respectively. The quantity P is defined in terms of tem-

perature T and Boltzmann's constant ks.

=(2/n )'i E(cop,P)(n/2copM) . (32)

V. RESULTS

The results of our calculations are represented in Figs.
1—11. With the exception of Fig. 7(b) each of the plots
depicts the evolution of the probability amplitudes

~ C„;(t)
~

. The horizontal axis of each plot is the residue
number. The vertical axis represents a superposition of

This corresponds to the power in the kth normal mode
which would be obtained in the v~O limit on applying
the usual Landau co~cp+ie prescription for the treat-
ment of susceptibilities. In applying this approximation
we are assuming that the clamping time constant is less
than the time constants given by the frequencies of in-
terest.

The average value of the square of the phonon displace-
ments ( ~B ~2) may be written as

n/a

(
~

B ~') = g coth(~~, ),
k =elNa k

k =n/Na, 2m/Na, . . . , via,

P= 1lkttT, and cpk= Vp/a [1—cos(ka)] .
The following constants were used in our calculations:
I p=1 15X10 m/sec=phonon velocity, M =3(1.17
X 10 kg) =3 X mass of peptide unit, %=66=num-
ber of cells (3 peptide units), a =4.5 X 10 ' m =distance
between adjacent turns of helix.

The differential equations (6) were solved on a VAX
11/780, using double-precision arithmetic. A third-order
Adam-Bashford-Moulton method was used to perform
the integrations. The code was set to maintain a relative
error of 0.000001 during each time step. This was suffi-
cient to maintain g„,.

~
C„;

~

I at a value les—s than
0.0001 during the computation, where I=the number of
amide-I bonds initially excited and C„;describes the exci-
ton probability amplitude along the ith chain.
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FIG. 1. Exciton propagation. Horizontal axis: residue num-

ber. Vertical axis: probability amplitude modulus and time su-

5 10 ' N, initial excitation is one quantum o
amide-I bond energy in first residue, temperature is . e

. The small disturbancebulk of the energy is in dispersive wave. The
h' h ropagates at about half the velocity of the dispersivew ic propaga

n solitawave is a so' rylitary wave. Note interference between ry
wave and reflected dispersive wave.

time and amplitude. The time increment from each hor-
izontal plot to the next is 0.4 psec.

In general, varia ion oal, t' of the nonlinear coupling constant,
' ' 'al ditions and nominal temperature aB have pro-

. The en eralfound effects on the dynamics of the system. The g
effmts are as follows.
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FIG2 Exciton propagation Axes co~pl~~g t t d
t rature are as in Fig. 1. Initial excitation is two quanta (intempera ure a
first two resi ues o c ain.'d f h in). Both a large-amplitude solitary
wave and a ispersive waved a' '

wave form. Dispersive wave develops
interference patterns at the chain boundary. The solitarystrong in e e

wave may seena be seen to have trailing disturbances, whic p p g
ions withatas g y sowli htl slower velocity. These also exhibit interactions wi

has cam lexthe reflected dispersive wave. Solitary wave has camp ex
1 t t e exhibiting internal oscillations w ic prop-

agate as small wavelets running counter to the motion o e
f 3 4 sec before dispersing. This produces an

oscillation of the energy between spines, as observed y co
{Ref.7).

(I) N nlinear coupling constant. Transport changes0n sn

10 ' Mi1 a iverual't t l between values of X equal to 0.5X
ed between1.0X10 ' N. Another change was observed

1.5 &( 10 and3.0X10 ' N. 8 h l' ry d
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FIG. 3. Exciton propagation. Axes, etc., are as in Fig.Fi . 1. In-
itial excitation is three quanta, one each in the first three resi-
dues of the chain. The probability amplitude of the solitary
wave increases in Figs. 1—3 while the amplitude of the disper-
sive wave remains constant.

FIG. 4. Exciton propagation. Axes are as in F'g.in Fi . 1. Cou-
pling constant is 1 5 X 10 'o N with one quantum initial excita-
tion. Solitary wave forms, in contrast with the case of coupling
constant of 0.5&10 '~ N. Solitary wave decelerates and radi-
ates a dispersive wave.

dispersive waves were observed .or X eq~ r ~ ual to 0.5&10
N solit -wave propagation alone at 1.0 and . Xand 1.5&10
N, and a localized disturbance at 3.0X 10-"N. E th
latter case the propagation appeared to be by a hopping
motion.

(2) Initial condition Soliton forma. tion requires two or

quantum is sufficient to produce a localized wave at
higher values. Multiple quantum excitation at 3.0)& 10
N gives a localized excitation which is attracted to the en

of the chain.
re stron lg) Thertnalization. Solitary woes are strong y

dispersed by introduction of thermal phonons at a nomi-
nal temperature of 240 K or higher. Although a localized

be ins to ropagate under some conditions for cou-
10' N, itisling constants of 0.5, 1.0, and 1.5Xp

dispersed before traveling more than ten residues a galon a
spIne. n e cI th ase of a coupling constant of 3.0X10 'o N,
no localized disturbance appears at all, and motion o e
exciton appe irs to be diffusive.
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FIG. 5. Exciton propagation. Axes are as in Fig. 1. Cou-
pling constant is as in Fig. 4, two quanta initial excitation.
Dispersive wave forms as well as solitary wave. ~ohtary wave
persists after reAection.

FIG. 6. Exciton propagation. Axes are in Fig. 1. Couphng
constant is 3.0X10 ' N, with one quantum initial excitation.
Solitary wave forms and decelerates to zero velocity. The exci-
ton then osciBates between adjacent sites on the same spine, then
hops randomly to an adjacent site on the spine.

Energy propagation under nonthermal conditions
occurs in three modes, phonons, excitons and a bound-
state combination of phonons and amide-I excitation.
Figures l —3 show the dynamics for the lowest value
chosen for the nonlinear coupling, and Figs. 4—7(a show
the dynamics for the other values chosen during our
study. In general, the bound state propagates as a solitary
wave, while the phonons and excitons propagate disper-
sively. The equations for free exciton and phonon propa-

gation may be obtained by setting the coupling constant
equal to zero:

ih (dC„(jdt) = —J(C„+);+C„);)
+L (C„;+(+C„;1)+WC„;, (35)

(36)M(d P„gldt )=w(P„+i( —2P„g+P„
Equation (35) may be taken to describe the dispersive ex-
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ed Solita -wave disturbance is associated with large-amplitude'd ber vertical axis is time and displacement superimpose . o itary-~ave iis ress ue num r,
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solita disturbance.displacement. Note scattering of phonons during formation of the so i ary i

citon propagating ahead of the solitary wave in Figs. 1—3.
Phonons (not shown) were also seen to propagate freely in
the records corresponding to these figures during the first
hundred picoseconds. Exciton velocity is seen to be t~ice
the velocity of the exciton-phonon bound state for cou-
phng constant 0.5X10 ', phonon velocity about five
times that of the bound state.

Interaction between propagating phonons and the
dispersive exciton in Figs. 1—3 was seen to be neg 'gibe ne li 'ble.

The interaction between phonons and the solitary wave is
also minor, but as may be seen from the figures, the in-
teraction between the reflected exciton and the solitary
wave is quite strong. Although the solitary wave is seen
to begin reforming after interacting with the reflected ex-
citon, the completion of the process was interrupted by
the solitary wave colliding with the end of the chain.

The ratio of the probability amplitude of the exciton
and the bound states depends both upon the initial excita-
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tion and the nonlinear coupling constant. A solitary wave
forms for a one quantum initial excitation at coupling
constant 1.0X10-"N. At higher values for the coupling
constant the amide-I excitation is trapped at a single site
and appears to propagate by a random hopping motion.
The probability for formation of a free exciton appears to
be negligible at coupling constants greater than or equal to

The motion of the exciton at the highest value of the
nonlinear coupling constant, 3.0X10 ' N, more resem-

bles that of a small polaron than a freely propagating ex-
citon. This is also verified through comparison of Figs.
7(a) and 7(b). Figure 7(b) shows the evolution of the
coherent phonon states on the same time scale as ig. a .Fi . 7(a).
The amide-I excitation is seen to make hopping transi-
tions when it interacts with phonons reflecting between
the ends of the chain. This is not an accident, because as
Davydov has shown, a Hamiltonian very similar to that
presented in Eqs. (1) and (2) describes the interaction of an
electron interacting with phonons along a one-dimensiona
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FIG. 8. Exciton propagation under thermal conditions. Axes
as in Fig. 1. Coupling constant is 1.0&10 ' N, initial excita-
tion is three quanta, thermal phonons correspond to 240 K. Ex-
citon is dispersed rapidly over wide region of the chain.

FIG. 9. Exciton propagation. Same conditions as in Fig. 8,
except initial excitation is two quanta. Dispersion is more rapi
than shown in Fig. 8.
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chain. In the case of a small polaron, a self-trapped elec-
tron, the electron may tunnel to an adjacent site when lat-
tice vibrations prepare a potential well near the polaron
which is equivalent to the energy of the well already occu-
p1 y c ccced b the electron. The tendency of the amide-I excita-
t1On tO gO Ot o to the end of the chain as in Figs. 6 an a
may also be explained by this model. Because the phonon
wave train interacts with itself when it is reflected rom
the end of the chain, the density of sites available for hop-
ping transitions increases toward the ends the chain.
Furthermore, as observed by Hyman et al. , free boun-
daries make the ends of the chain most favorable energeti-
cally for exciton occupation.

Propagation of amide-I excitation energy seems also to
exhibit qualitative changes in behavior under thermal con-

Although some degree of localization is apparentdkt1OnS. Oug
10 ' N asinfor coupling constants of 0.5 and 1.0)&, as

'

Figs. 8—10 we did not observe any evidence of a stable
solitary wave. The wave system in Fig. 10 preserves some
of the features of the corresponding zero-temperature
case, but the wave which should correspond to the soliton-
1'k tit of Fig. 3 continues to spread, so it is not
d 'cally stable. Propagation of excttatson a eynamica

~ n 10—10h' h t oupling constant in our calculations, 3.0)&1g cs c
' . 11.was always completely random, as in Fig.
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FIG. 10. Exciton propagation. Couphng constant is
0.5)&10 ' N, initial excitation is three quanta, the phermal honons
are at temperature of 300 K. Dispersive wave is visible as in

Figs. 1—3 but solitary wave does not form.
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FIG. 11. Exciton propagation. Coupling constant is
3.0)&10 ' N, two quanta excitation, temperature is K.
Propagation appears as a purely diffusion process.

VI. DISCUSSION

Although the dynamics exhibited by the Davydov
model at biologically relevant temperatures casts some
doubt on the existence of amide-I solitons in the proteins
of living cells, the model is still of interest because it
shows a wide range of behavior at low temperature. We
have observed at least two bifurcations in the low-
tcmperature dynamics as the nonlinear coupling constant
is increased from 0.5 to 3.0&10 ' N. The model exhib-
its transitions from coherent (single excitation, low cou-
plin ) to solitonic (multiple excitation, low coupling}
propagation and from solitonic to highly localized, in-
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coherent (high coupling) propagation. Both coherent and
incoherent propagation of excitons have been treated ex-

tensively in the literature: In particular, our calculations
recover the dynamics described by Agronovich and Gala-
nin' for excitons and by Emin for the formally simi-
lar case of small polarons.

The continuum limit for the dynamical equations (89)
and (810) has been given by Scott in normalized space and
time coordinates:

k ik2X

(1—s )c6
. aa a'a

(37)'a +
ag'

where
~

A
~

is the longitudinal density of amide-I excita-
tion energy X=X,+X2, c is the longitudinal sound speed,
and sc is the speed of propagation of a solitary wave.
Further, ki and k2 may be calculated from the parame-
ters of the model by noting Eqs. (89) and (810) reduce to

. aA a A
i — + = —kiXpA

ax
(38)

2 1
2 2
P =k,X

ax c at2 ax 2

where

p=aP/aX .

There are two interesting limiting cases for Eq. (37).
The first, obtained by setting X=0 in Eq. (38), corre-
sponds to the continuum limit of Eqs. (35). This might be
denoted a coherent exciton and corresponds to the situa-
tion in Fig. 1. The second, obtained by setting the time
derivative equal to zero in Eq. (37), corresponds to the sit-
uation in Figs. 6 and 7. It is interesting to note that the
equation specified by Emin,

R' a' z'
P(x) 12 P(x) =EP(x), (39)

2M ax2 s

is formally similar to the stationary case of Eq. (37). This
inspection of the continuum equation for a Davydov soli-
ton shows that it is an intermediate state between a
coherent exciton and a polaronlike state or an incoherent
exciton. Thus, the existence of a Davydov soliton in a
molecular crystal at low temperatures depends on the
value of the nonlinear coupling parameter being within
the correct range and the material being sufficiently aniso-
tropic to permit exciton propagation only in a preferred
direction.

Given that such materials exist, a further question is
how this intermediate state may be observed. One sug-
gested approach is via measurement of Raman lines. '

Our previous calculations indicate that the phonons gen-
erated by the nonlinear coupling are difficult to distin-
guish from the normal modes of short protein segments. '

Another approach would be to consider the optical prop-
erties. The recent development of femtosecond pulse light
sources makes possible measurement of transient pertur-
bations of the optical properties of crystals. One such ex-
periment, demonstrating the existence of an inverse
electro-optical effect, has recently been reported by Aus-
ton et al. In this experiment a Cherenkov cone of elec-

tromagnetic rabat, ion produced by a pulse is detected by a
second probe pulse. An analogous experiment may deter-
mine whether there is a nonlinear coupling between exci-
tons and phonons generating a self-trapped state in a
molecular crystal.

The microscopic model for the experimental system in-

volves photons, excitons, and phonons. This would seem
to be a hopelessly complex many-body problem, but con-
siderable simplification is possible. One may treat the
phonons classically as time-varying perturbations in a po-
lariton model. This treatment has the advantage that the
crystal-field Hamiltonian (exciton, phonon, and interac-
tion terms) may be diagonalized in terms of Bose opera-
tors representing annihilation and creation of polaritons.

In particular, we may write

H = g (&6+&ikik)+ (40)
E

where the ellipsis denotes phonon terms, and where EEI
and Ei are (slowly) time-varying functions dependent on
the phonon-perturbed interatomic distances in the molec-
ular crystal and gl and gi are polariton annihilation and
creation operators. The calculations are a straightforward
modification of those presented by Turlet et al. In par-
ticular, this model gives time- and space-varying disper-
sions for photons in the neighborhood of a system of
propagating solitary waves. In this region, small shifts in

resonance frequency such as those induced by- changes in

intermolecular distances would produce large changes in

propagation of a second probe pulse. In particular, a
pump pulse near resonance would generate excitons. The
probe pulse would interact with the phonons generated via
the phonon-exciton coupling. The phonons would pro-
duce time- and wavelength-dependent changes in the
propagation of the probe pulse.
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APPENDIX A: CALCULATION
OF EXCITON-PHONON COUPLING CONSTANTS

According to Kuprievich and Kudritskaya, ' the
exciton-phonon interaction parameter consists of a reso-
nance component (X2) and two nonresonance components
(Xi,X& ). The X2 term can be obtained from the known
magnitude of the resonance interaction between the transi-
tion dipoles associated with the amide-I vibration in a-
helical polypeptides. The nonresonance components are
best determined from a theoretical treatment of exciton-
phonon coupling at the microscopic level. This treatment
involves the use of quantum-mechanical self-consistent-
field molecular-orbital (SCFMO) procedure.

The Hamiltonian for the interaction of vibrational exei-
tons with acoustical phonons in a discrete chain of N
molecular units forming a regular one-dimensional lattice
was derived by Kuprievich and Kudritskaya ' in a form
differing slightly from that reported by Davydov:
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H;„i=g PitPiii[X) (uiii+i —uiii)+Xi (uiii —uni i}]

+ g (P P~ i+P~ iP )X2(urn —uiii 1) . (Al)

X+=(e/Z )a(a'E .„/aQ.')/aR

X, =(iri/2')B(B E,/BQ, )/M

X,=(X/2~)a(a'E. „/aQ aQ „)/aR .„,(A3)

(A4)

where r0 is the intramolecular amide-I vibrational frequen-
cy, R +i is the distance or hydrogen-bond length be-
tween groups m and m + 1, E +~ is the interaction en-

ergy (or total energy in the Born-Oppenheimer approxi-
mation } of groups m and m + 1, and Q; is the normal-
mode coordinate for the amide-I vibrations in groups m
and m + 1. Since the second derivatives of the total ener-

gy of the dimer with respect to its vibrational normal
coordinates are proportional to the harmonic force con-
stants for these modes, the coupling parameters in Eqs.
(A2)—(A4) can be viewed as the first derivatives of the
harmonic force constants for the amide-I vibrations in the
dimer with respect to the intermolecular distance R~ ~+ i.
Thus, the acoustical phonons of the a helix which are de-
fined principally by chan es in R +i (i.e., changes in
the pitch of the a helix ' ) are coupled to the amide-I vi-
brational excitons.

A value of 10 ' N for X2 can be derived from the
known magnitude of the resonance interaction between
the amide-I vibrational transition dipoles. Kuprievich
and Kudritskaya argue that X, is negligible with respect
to Xi . The principal reason is that the dominant contri-
bution to the amide-I vibrational normal mode in a pep-
tide group is the C=0 bond stretching motion. 26 29'M As
a result, the amide-I vibration of group m will be much
more perturbed than that of group m + 1 by changes in

The calculation of the interaction energy E ~+i of the
two peptide groups as a function of the intra- and inter-
molecular coordinates is fundamental to the determina-
tion of X+, . In the Born-Oppenheimer or adiabatic ap-
proximation, the interaction energy is equivalent to the
total energy E for the system, which is calculatable using
quantum-mechanical ab initio SCFMO procedures
(Schaefer, Ref. 31).

The mapping of the E surface for a dipeptide system as
a function of its intra- and intermolecular coordinates is a
formidable task. However, as outlined by Kuprievich and
Kudritskaya, one can obtain a crude estimate of Xi by
investigating the simplest system that contains two pep-
tide groups connected by a hydrogen bond, i.e., the for-
mamide dimer. To do this, we determined an equilibrium
geometry for the dimer and approximated the amide-I vi-

In this expression X+i and Xi are the parameters defining
nonresonance interaction of a unit with its neighbors and

Xz is the parameter defining the resonance interaction be-
tween neighboring units.

The explicit formulations of Xi, Xi, and X2 for a
dimeric group consisting of peptide groups m and m + 1

are as follows:

brational normal mode as a C=O bond stretching
motion.

Both Kuprievich and Kudritskaya's and our SCFMO
calculations of the total energy of the formamide dimer
were performed with the minimal atomic-orbital basis set
composed of 36 Slater-type orbitals (STO), each being ap-
proximated by three Gaussian functions (3G) (Ref. 32).
The STO-3G basis set is good only for qualitative analyses
of the geometries of amide compounds. i ' ' For example,
an energy-minimized geometry of the formamide mono-
mer calculated using the STO-36 basis set was not in
complete agreement with the experimentally determined
giximetry for the molecule. The major differences were
that the calculated geometry was slightly nonplanar, while
the observed one was planar, and that the calculated C-
N bond length was 0.1 A longer than the observed one.

The specific differences between Kuprievich and
Kudritskaya's and our approaches to the calculation of
X+i are the determination of an equilibrium geometry for
the dimer and the manner in which the C=O distance
was changed. Our equilibrium geometry was derived
from an energy minimization of the complete geometry of
the dimer. This was accomplished by utilizing energy
gradient and optimization routines. The only constraint
on the geometry optimization was that the dimer had to
be planar. This constraint was implemented because the
observed geometry of the formamide monomer is pla-
nar.

k (N/m)'
I) (NX10")

Present work' Ref. 26d

1150
(monomer, Ref. 33)'

1380
(monomer, Ref. 30)~

1540
{monomer, Ref. 26)~

1473
{dimer, Ref. 26)"

1581
(dimer, present work)'

—0.27

—0.22

—0.20

—0.21

—0.20

—3.64

—3.03

—2.72

—2.84

—2.65

'The diagonal force constant for the stretching of the C(1)=
O{1)bond.
'The nonresonance exeiton-phonon coupling parameter.

g~ ——(Ace/2K)(8 Jt. /BR) =(Acu/2E)(~/hR ), where Ace =the
experimental mean frequency of the amide-I vibration (1660
cm ' =3.297X10 io J}. E as defined in e. E=6(4E)/bg,
where g reflects the carbonyl bond length.
'The value of g+~ determined using AC/LA calculated in the
present work.
The value of g+~ determined using EI( /hR calculated by

Kuprievich and Kudritskaya.
'Derived from spectroscopic data.
Calculated using the ab initio SCFMO method with the 4-31G

split-valence basis set.
I 'Calculated using the ab initio SCFMO method with the
STO-36 basis set.

TABLE I. Calculated values of the nonresonance exciton-
phonon coupling parameter for different diagonal force con-
stants for the C=O bond in the formarnide dimer and mono-
mer.
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The change in C=O distances should correspond to
the motion of the carbon and oxygen atoms in the C(1)=
O(1) bond stretching motion. We elected to move both

the C(1) and O(1) atoms in increments of 0.01 bohr, so
that E was calculated at 0.0, 0.02, and 0.04 bohr.

Table I lists Kuprievich and Kudritskaya's and our cal-
culated values of X+, for different harmonic force con-
stants for the C=O bond stretching vibration in the for-
mamide dimer and monomer. The disagreement between
Kuprievich and Kudritskaya's calculated value for X~

and ours was disturbing, so we recalculated X+~ using the
exact procedure of Kuprievich and Kudritskaya, zs obtain-
ing a calculated magnitude of 0.7)& 10 "N for X+~. Al-
though this is

lardier
than our original calculated magni-

tude of 0.2)&10 N, it still is less than the minimum
value of 3.5X10 " N predicted by Scott to sustain a
Davydov soliton.

A more sophisticated ab initio SCFMO calculation em-

ploying the 4-31G basis set yielded a magnitude of
1.3)& 10 "N for X+&. This magnitude is less than Scott's
minimum value, but it has increased relative to the one
calculated using the STO-3G basis set. Therefore, as one
improves the sophistication of the SCFMO calculation,
one would expect X~ to increase. Because X& is propor-
tional to the hydrogen-bond binding energy, the stronger
the hydrogen bond, the greater the value of X& . There is
no doubt that the hydrogen bond for the formamide di-
mer is stronger than what we have calculated using the 4-
31G basis set, because we have neglected the van der
Waals forces. Furthermore, the strength of hydrogen
bonds between molecular units in a hydrogen-bonded po-
lymer chain can be double that of the hydrogen bond in a
dimer. By including van der Waals forces in our
theoretical formalism and by increasing the number of
formamide monomer units in our model of the polypep-
tide, we would expect the calculated X~ to increase to a
value perhaps greater than 0.35)& 10 "N. From the per-
spective of the quantum-mechanical calculation of X~, the
presence of Davydov solitons in a-helical polypeptides is
still not resolved.

tT(t)=exP Qjlfi[Qq zq'(t')bq +'zq (t)bq ]

where

zq, , =(A/2MNQq, )' g mn; exp(jnq)

(85}

+j A'Qq iM /2N g P„;exp(j nq) . (86)

Furthermore,

az
ac„,

Writing Eexplicitly, we obtain

(88)

dCN, !=[ o+ +X~(Pn+t. i
—Pn-i, i)]Ca,i

—J(C„+),;+C„(i)+L (C„;+,+C„;,)

+Xz[(pn+ i, i
—pn, i )Cn+ i, i

+(P., —P.-i, )C.-i, ] (89)

from Eq. (88) and

(We have used the notation j for v' —1.} This shows that
the functions p„;(t)and nn;(t) represent coherent phonon
states. '5 The canonical Hamiltonian equations hold in
this case, so

aFqt„;(t)=,p„„(t)=n„,;(t),
n, i

where

APPENDIX 8: DERIVATION OF THE
DYNAMICAL EQUATIONS

By Eqs. (10) and (12),

p„;(t)={/~(t)
~
u„;~p &(t)), (81)

gg gM z' —u (P„+i;—2P„i+P„ i;)t'

+X2[C„'ifC„+); C„);)—
Furthermore, if M is the mass of each oscillator and N is
the chain length, ' +(C„'+),;—C„' ),;)C„,;] (810}

u„i = g (fi/2MNQq i)(bq i+b q i)exP(jnq),
q

P„;=—j g (h Qq;M/2N) '~2

q

(83) from Eqs. {87},where

dP„;
+w(p„;—pn ~;)

X (bq, ; bq, )exP(jnq) . — (84)

Substitution of these identities into the expression for cr(t)
gives

To obtain the explicit form used in the calculations we
make the following assignments: M=1.17X10 kg
{peptide group + CH3), w= 76 N/cm, J=7.8 cm
L= 12.4 cm ', X, =X2—X (a variable parameter).
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