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Numerical studies of integrable (Toda lattice) and nonintegrable (modified Toda lattice and
Fermi-Pasta-Ulam model) Hamiltonian systems indicate the possibility of interpreting analogies and
differences between the two in terms of dynamical stability properties. At large energy densities, ac-
cording to Siegel’s theorem, a small perturbation of an integrable system produces chaotic behavior
and equipartition of energy. On the other hand, at low energy densities all the models we have con-
sidered show a similar ordered behavior and the absence of equipartition. In this region, soliton
solutions of the corresponding continuum equations can provide a unified dynamical description of

the properties of the discretized systems.

I. INTRODUCTION

Ergodicity and integrability are in a certain sense two
opposite properties of nonlinear Hamiltonian systems; the
former property is characterized by chaotic motions all
over the phase space, with a rapid loss of any regularity in
the evolution determined by the equations of motion; on
the other hand, a regular or quasiperiodic motion is the
typical feature of the latter. In the past, the main conse-
quence of this double-faced situation led to different
motivations and approaches in the study of these systems.
As far as ergodicity is concerned, attention is concentrat-
ed on the behavior of a system of N particles interacting
via a nonlinear potential; some fundamental theorems,
e.g., the Kolmogorov-Arnold-Moser! (KAM) and the
more recent Nekhoroshev? theorems, provide general cri-
teria to investigate this behavior. Such an approach im-
plies a wide use of numerical techniques (measure of the
Lyapunov characteristic exponents, energy exchange
among normal modes, Poincaré sections, etc.). The physi-
cal relevance of these studies relies upon the investigation
of the nature of chaos in Hamiltonian systems and, more
generally, on the possibility of obtaining a mechanical
foundation of statistical mechanics.

As far as integrable models are concerned, only a few
results are known for discrete systems and interest is
focused on the class of continuum integrable equations,
such as the Korteweg—de Vries equation. Their solutions
are investigated by analytic techniques (e.g., the inverse
scattering method), which, in general, reduce the equa-
tions to a set of linear problems; particular attention has
been devoted to the study and classification of soliton
solutions. The main area of interest in the study of these
integrable systems has not been that of their stability with
respect to perturbations in the Hamiltonian parameter
space (structural stability).

The fundamental problem is to understand how the ex-

33

istence of integrable systems may be representative of
some real physical situation and, on the other hand, what
are the relations with the dynamics of a generic Hamil-
tonian system. From this point of view a first result is
Siegel’s® theorem which states that in the parameter space
of analytic Hamiltonians, nonintegrable Hamiltonians are
dense; i.e., integrable ones are rare, as rational numbers
are among real ones; in this sense integrability appears to
be an irrelevant feature in the study of Hamiltonian
dynamics with many degrees of freedom.

In this paper we show the necessity of going beyond the
concepts of integrability and ergodicity and concentrating
our attention upon general stability criteria, which can
reinterpret both aspects within a unified description.

A good candidate to perform a stability analysis is the
famous Toda-lattice model,* which is fully integrable® and
can also be studied by numerical methods:>’ a compar-
ison with the properties of a class of nonlinear Hamiltoni-
an models [including the Fermi-Pasta-Ulam (FPU)
model®] will contribute significantly in clarifying analo-
gies and differences.

Another interesting aspect of a stability analysis of in-
tegrable models is the study of spatial patterns at the on-
set of chaos: a simplified description in terms of a few
degrees of freedom could be valid for some values of the
control parameter (e.g., the energy density) and this could
simplify the understanding of the region of transition to
chaos.” This is probably true, for instance, for the
Fermi-Pasta-Ulam model, where continuum soliton solu-
tions are quasistable at low energy density.'°

The structure of this paper is the following: in Sec. II
we shall comment on the relevance of Siegel’s theorem
with respect to numerical simulations; in Sec. III we shall
present and discuss the results of numerical simulations
performed on the Toda lattice and on some perturbed ver-
sions of this model in comparison with the results for the
FPU a model. Section IV will be devoted to some con-
clusions.
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II. MOTIVATION FOR A NUMERICAL STUDY
OF INTEGRABILITY

Let us first recall the definition of completely integrable
systems in Hamiltonian mechanics. Given the phase
space ',y with coordinates §;=(p;,q;), i=1,...,N, the
Hamiltonian H (p,q) is called completely integrable if
there exist N independent functions of the phase space
I;(p,q) such that

{H,I,}—_—'O, {I“IJ} =0;

the I; are said to be in involution, due to the second prop-
erty. This means, in other words, that any I; generates
Hamiltonian flow which has the same set of integrals of
motion as H. Moreover, one can in principle find a
change to “action-angle” variables!!

(p,~,qﬂ—>(1,~,6,-) .

In the new variables the equations of motion take the sim-
ple form

I;={H,I;}=0,
6;={H,0;} =w;(I)
so that the solution is
I;=I;(0), 6;(t)=w;t+6;(0).

The task of finding these variables is, in general, very dif-
ficult and in fact it has been accomplished only for a few
models.

More often the study of the integrability has been ap-
proached by numerical simulations. For instance, some
years ago Saito et al.® and Ford et al.” studied numerical-
ly some dynamical properties of the Toda lattice. The
first authors analyzed the energy exchange among the
Fourier modes and concluded that a ‘“quasistochastic”
behavior sets in as the energy density reaches a critical
value. This was interpreted as evidence of the nonintegra-
bility of the Toda lattice. Ford approached the numerical
analysis of this model working with a few degrees of free-
dom and looking at the Poincaré surface of sections in the
phase space.

Completely ordered structures, i.e., periodic motions,
survived also in the “stochastic” region observed by Saito
et al. The conclusion was that the Toda lattice was prob-
ably integrable. A few months later Henon and Flaschka®
proved rigorously that the model was completely inte-
grable and this, in a sense, solved the question.

The main justified consequence of this result was a
quick change from numerical investigations to mathemat-
ical studies concentrated on the analytic properties of the
“lattice soliton” solution of the Toda lattice.'?

The interest in a detailed comparison between the
dynamical properties of the Toda lattice and those of
nonintegrable models (e.g., the FPU a model®) has been
scarce.

Only when some particular continuum limits of these
models were considered—e.g., the limit of the integrable
KdV equation—it was realized that they were equivalent
(see, e.g., Refs. 13 and 14). On the other hand, it is quite
sensible from a physical point of view to accept the idea

that, at least for small nonlinearities, these two models
resemble one another, since the nonlinear potential of the
FPU a model represents the leading term of the Taylor-
series expansion of the Toda potential.

Since we are interested in the interpretation of all these
aspects in a unified framework it is necessary to introduce
a numerical technique able to describe chaotic as well as
ordered dynamical behaviors. Anyway, the definition of a
numerical technique suitable for the study of a generic
nonlinear Hamiltonian problem is far from trivial and the
above quoted failures show it.

Let us consider the Hamiltonian which describes a
one-dimensional lattice composed of N particles, with
periodic boundary conditions:

2

N pi
Hipgi}= 3 —+V{4a}), q1=qn+

) (2.1)

where the {q;] are the displacements with respect to
equilibrium positions and the {p;} are the conjugate mo-
menta.

Hamilton’s equations can be expressed in the form

E=J gradH|£} ,

where £=({g;},{p;}) and J=(°; {), with I representing
the N XN identity matrix. Let us make a transformation
of variables &'=f(£); then, £'=S&, where S/ =09¢; /9€;.
&’ satisfies the equation

£'=SJSTgrad.H (E(£)} ,

2.2)

(2.3)

where S7 is the transposed matrix. The transformation f
maintains the Hamiltonian structure if and only if S is
symplectic, i.e., SIST=J.

The numerical integration of Hamilton’s equations can
be performed by an approximate integration algorithm
dependent on a finite time step A¢. This algorithm must
be selected in such a way that it guarantees the local rep-
resentation of a Hamiltonian flux, i.e., it maintains the
symplectic structure of the theory.

In this respect a good fourth-order algorithm is Verlet’s
“leap frog” algorithm,!® defined as follows:

qi(t +At)=gq;()+ AtDy(1) ,
(2.4)
D;(t +At)=D;(t)+ AtF({q;(t +A1)}) ,

where the auxiliary variables D; (with D;=Dy ) ap-
proximate the momenta and F({q;})=—9V({q;})/ 9g;.
It can immediately be verified that such an algorithm sat-
isfies the following desired properties:

(i) The map (24), after the identification
§'=({qi(t +A0)},{D;(¢ +An)}) and £=({g;()},{D;(n)}),
is a symplectic transformation;

(ii) as a consequence detS =1 and the map is volume

preserving.
It is possible to generalize this algorithm to higher orders.
It is also necessary to observe that the numerical integra-
tion of any differential equation produces an unavoidable
numerical noise, which introduces an indetermination on
the trajectories in the phase space.

For Anosov flows, which are characterized by chaotic
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some
)16, 17

motion, theorems exist (e.g., Anosov-Bowen
theorem which provide some general stability criteria.
If the errors at each integration step are small enough,
computations are reliable even for infinite time. On the
other hand, for integrable systems we have Siegel’s result.’

Let us consider the parameter space of all possible ana-
lytic Hamiltonians, i.e., the vector space of the coeffi-
cients of the convergent Taylor series of the Hamiltoni-
ans. Given a point H in this space, corresponding to an
integrable Hamiltonian and a § neighborhood of H with
||8]] arbitrarily small, then in this 8 neighborhood a point
H'’ exists, which corresponds to a non integrable Hamil-
tonian (this is true in any “reasonable” topology). Then,
even a little perturbation in principle is sufficient to des-
troy integrability.

On this basis one could conclude that the numerical
noise makes numerical simulations unsuitable for study-
ing integrable models. In spite of this we think that
Siegel’s theorem is inconclusive with respect to the prob-
lem of the stability of the features on an integrable
motion. In fact, although the numerical noise modifies
the integrability of the model, this does not necessarily
imply that the dynamics described by the numerical algo-
rithm cannot remain very close to the true one for ex-
tremely long integration time.

III. NUMERICAL STUDIES OF INTEGRABLE MODELS
AND STRUCTURAL STABILITY

A. Integrability and equipartition

There is no apparent reason to investigate the Fourier
decomposition of the Toda model. As the model is fully
integrable and one knows how to pass to action-angle vari-
ables,’ the natural coordinates in which one can study the
properties of this model are the latter ones. There are,
however, many reservations. First of all, the Fourier
space is the most suitable for analyzing the transition to
energy sharing among the degrees of freedom, when a
small nonlinear term couples the modes of the Fourier
decomposition. The method can be applied to any form
of potential in the weak-coupling limit. Therefore, one
can give a unified description of many models and of their
dynamical properties; for instance, one can analyze, as we
will, stability properties of integrable models in the space
of the parameters which describe Hamiltonian systems.

Historically the Fourier decomposition of the Toda
chain was studied® and no difference was found with
respect to the Fermi-Pasta-Ulam model: an analogous
transition to energy-sharing among the Fourier modes was
clearly observed in numerical experiments. We shall clari-
fy this point by introducing a distinction between
“energy-sharing” and “equipartition.”

We would like to point out that the knowledge of the
action-angle representation does not help very much in the
coprehension of the dynamical evolution in the “physical”
phase space for a generic initial condition; this remains, in
general, a difficult problem.?

The Hamiltonian of the Toda chain is the following:

1165
N pl
H=|3 = |+Va}),
i=1 2
(3.1)
é g. b(qi-H_qi)_l) :
= b
the corresponding equations of motion are
4i=pi
(3.2)
pi=ale —b(qi_qi—l)___e_b(qi+1—9,'))
=F({q:}),
and we choose periodic boundary conditions
91=4N+1 - (3.3)

We follow the time evolution of the real Fourier
transform components A4,(¢) and B,(t) defined as follows:
N/2
gi(t)= 3, A,(vsin[k,(i —1)]+B,(t)cos[k,(i —1)] (3.4)
n=0
with k,=2mn/N. As a consequence of the conservation
of total momentum the zero mode (B,) is determined up
to a constant and therefore the number of effective de-
grees of freedom is reduced to N. In order to apply the
fast Fourier transform algorithm, our N’s are always
powers of 2.
We have chosen various initial conditions, but they are
in general of the form
A+AR—1
> Apsin[k,(i —1)]+B,cos[k,(i —1)]

n=n

q:(0)=

corresponding to the excitations of a packet of Fourier
modes. The initial momentum 3 p;(0) was always
chosen to be zero as to avoid a systematic growth of the
displacements.

Our first aim was to show, by direct Fourier analysis,
the absence of an equipartition state in the Toda model.
To study this we have used the “entropy,” an equiparti-
tion indicator which has already proved powerful in the
analysis of the equipartition transition in the FPU
model.'®

This entropy is defined in terms of the weight of the
nth mode:

N/2
Pn()=E,(1)/E, E= Y E;, 0<p,(1)<1, (3.5)
i=1
where E, is the linear energy in the nth mode,
E,(t)=5[A}4+B%+02(42+B})], (3.6)
w,=2Vab sin(rn/N), n=1,...,N/2 . (3.7

Here we are selecting the information contained in the
N /2 energies, leaving aside the equally interesting content
of the N /2 phases.

The frequencies w, are those of the chain of coupled
harmonic oscillators which is the small-amplitude (or
b—0) limit of the Toda model. For this reason we have
fixed a relation between the parameters a and b in (3.1) in
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order to obtain the coefficient 5 in front of the quadratic
term of the Taylor expansion of the Toda potential
(ab=1).
Let us finally come to the definition of entropy S(t),
which follows the usual Boltzmann definition:
N/2
S(t)=— 3 pa(t)inp,(t) . (3.8)

n=1

This quantity is bounded:
0<S(t)<In(N/2)=8ax - (3.9

It reaches the upper limit when the system is at the
equipartition (E, =cost) and it is minimal when only one
mode is excited. It is therefore a good parameter for es-
tablishing the degree of equipartition of the system.

First of all, we are interested in studying the long-time
relaxation properties of S(¢), if they exist. In fact, we
have already found in many models of coupled anharmon-
ic oscillators'® that S(t) actually reaches an asymptotic
value on available computer times, apart from fluctua-
tions on time scales of the order of the periods ¢, of the
harmonic limit 7 <t, <[7/sin(w/N)]~N. The equations
of motion (3.2) are integrated by the algorithm (2.4). We
have chosen a time step At =0.01—0.05, which is 2 orders
of magnitude smaller than the lowest harmonic period.
This guarantees the conservation of energy and momen-
tum up to 0.1% (other integrals of motion were not
checked systematically and, in general, momentum was
better conserved).

We have found these good relaxation properties of S(¢)
also in the Toda model and Fig. 1 is an illustrative exam-
ple of the behavior in time of S(z): it already fluctuates
around a mean value after a time of ~ 300 in natural units
(number of integration steps X At).

It is not surprising that for an integrable model the en-
tropy grows from the initial value, which means that the
evolution is towards a more disordered state. This can be
understood for the Toda model in terms of solitons. In

0 2000 4000 t

FIG. 1. S(t) vs t for the Toda model (a=5,b=0.2):
£=0.87, At =0.05, n =4, A =8, N =128.

fact, if we initially excite a wave packet in Fourier space
this corresponds to a superposition of solitons which then
evolve in time.

At any one time the Fourier transform of the solution
corresponds to the excitation of all the Fourier modes and
therefore, in general, it corresponds to a larger entropy.
However, what should be noted is that S (¢) does not reach
the maximum available value (in the case of Fig. 1, In64).

In order to clear up the fluctuations we have performed
a smoothing on the energy per mode E,:

t+7T/2
E=r [, Bathdr,
where T is larger than the largest typical time of the
linear chain [ O (N)].

Since we are going to vary the number of degrees of
freedom in our numerical simulations, we shall use the
normalized quantity

nz[smax"'s(t)]/(smax —Smin) ’

(3.10)

(3.11)

where S, is the minimum value reached by S(¢). The
bounds of 7 do not depend on N:

0<n<l. (3.12)

7 is zero when S(¢) reaches its maximum value, indicat-
ing that the system is at the equipartition, while its value
is 1 when the energy is concentrated: a situation corre-
sponding to the maximum order. With this definition 7 is
the dual “order” parameter of the “disorder” parameter S.

In Fig. 2 we report the behavior of 7, [defined by
(3.11) with S(t)—S 4] as a function of the energy density
e=H{p(0),q(0)} /N for the Toda model and for the FPU
a model whose Hamiltonian is of the type (3.1) with the
potential

—qi )

N (g
Vi{g}) =3 —ii%——— (3.13)
i=1

a
+3 @i >

The value of @ was chosen such that the coupling con-
stant in the cubic term of the potential of the a model
coincides with the third-order coefficient of the Taylor-
series expansion of the Toda model (a=—b/2).

As € is varied the FPU a model shows an evident tran-
sition to equipartition which is, on the contrary, absent in
the Toda model. However, also in this case there is a
clear tendency for the energy-sharing among the modes to
increase as € increases, but a plateau is reached at large
values of &.

In other words, energy-sharing is present also in the
Toda model in a space which is not that of its proper
modes (this is the phenomenon observed in Ref. 6), but,
being that the model is integrable, it never reaches
equipartition of the energy among the degrees of freedom.

It must be said that while for the @ model the 14 curve
is built up of many different initial conditions, this has
not been done for the Toda model, for which the value of
14 may present a stronger dependence on the initial con-
ditions. In all the simulations we have taken 7 and An
both proportional to N, in such a way that the wavelength
of the excited mode (~7 /N) was kept constant as well as
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FIG. 2. n4 vse, i=N/32, Ai=N/16, with N =64 128, 256 for the FPU a model (triangles), and the Toda model (stars) and its
perturbed version (dots), see Eq. (3.14). A typical relaxation time of 7(¢) to its asymtotic value 7, is O(10%).

the density (A7i/N) of the initially excited modes (this is
reminiscent of the thermodynamic limit).

B. Structural stability

Now, in order to study the stability of the Toda model
in the space of the Hamiltonians, in the sense of Siegel’s
theorem (see Sec. II), we perturb it by adding a random
quenched potential to Eq. (3.1),

0.6

Voer({ai})= 3 —3—(4.-+1—q.-)3 , (3.14)

i=1
where ¢; is a random process with zero mean value and
whose distribution is uniform in the interval
(—0.15,0.1b).
The effect is sizeable and quite evident if we look at the
corresponding curve for 7 4(¢g) (see again Fig. 2). The per-
turbation of the cubic term in the expansion of the ex-
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FIG. 3. 7 vs ¢ for the modified Toda model with N =64 at different values of .
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ponential potential drives towards the FPU a model as,
intuitively, one would have expected.

We want to remark that the chosen perturbation expli-
citly breaks translation invariance and, therefore, momen-
tum is no longer a conserved quantity. A similar pertur-
bation of the a model does not cause any effect: the
1.4(€) curve is the same as that of the unperturbed model.

One can also perturb the Toda model in a systematic
way, without losing the momentum integral; for instance,
one can subtract the cubic term in the development of the
exponential. We do not report in this case the 7,(¢)
curve, but we show in Fig. 3 how 7 relaxes in time. One
observes that, for small €, n fluctuates around a mean
value, different from zero, which it attains very early,
while, for € sufficiently high, —0 in a time which shor-
tens as € increases.

The value of € at which the relaxation properties of 7
change is in the region of the equipartition threshold of
the FPU 8 model whose potential is.

N (gip1—q)
Viah=3 |2y By —art].
i=1
In this comparison one has to consider the control pa-
rameter R given by the mean value of the ratio between
the nonlinear and linear parts of the potential (3.15) (Ref.
18),

(3.15)

B N
== 3 (giy1—a)*. (3.16)
N i=1
For the modified Toda potential one considers only the
first nonzero nonlinear term of the Taylor-series expan-
sion. The critical value of the control parameter R,

above which one has equipartition, is'®
R.=0.03. (3.17)

It should also be noted that the change in the relaxation
properties of 1 is very sharp at R ~R,: the relaxation
time diverges very sharply at R.. This suggests that this
phenomenon cannot be understood in terms of perturba-
tion theory and, moreover, it recalls some analogies with
what happens at a phase transition.

C. Qualitative study of the dynamical properties

A deeper understanding of the dynamics of the models
that we have introduced in the previous sections can be
obtained by studying the “phase plane” (7(t),7(1)),"°
where, now, the smoothing operation (3.10) is omitted
and, therefore, the dynamics is followed at each time step.
It should be noted that the choice of the (7,7) variables is
an alternative to the first step in the embedding in higher
dimensions of the signal 7(z).

Clearly, (7(t),7(t)) are not canonical variables, i.e., this
phase plane is not connected by any canonical transforma-
tion to the proper phase space of the model. But 7(¢) has
other good features as an energy-sharing indicator; in par-
ticular, its dynamics can provide a qualitative description
of the different dynamical behaviors in the Fourier space
as the energy density varies. Regular motions in the
(n(2),m(2)) plane indicate the existence of recurrence times
in the energy distribution among the normal modes, while
irregular motions are interpreted as a relaxation of the
system towards a thermal equilibrium state.

S. ISOLA, R. LIV], S. RUFFO, AND A. VULPIANI 33

Let us observe that the integration of a harmonic chain
produces a point in this plane:

(n(2),m(2))=(1,0) . (3.18)

Therefore, a motion different from this fixed point is due
only to nonlinear effects.

At low energy densities the Toda model [Eq. (3.1)] and
the FPU a model [Eq. (3.13)] both show the multiperiodic
motion reported in Fig. 4. Figure 4(a) shows the Toda
model, while Fig. 4(b) refers to the FPU a model integrat-
ed up to about half of the integration time of Fig. 4(a), in
order to show the evolution. The orbits in the (1,7) plane
substantially coincide at fixed € and for the same initial
conditions. The return time near the initial condition,
(,1)=(1,0), is more than 1 order of magnitude greater
than the maximum harmonic period.

T T v T v T v T v 1
0S5 n 19
FIG. 4. The dynamics in the (7,7) plane. (a) Toda model in-
tegrated up to fy,, =400, (b) FPU a model up to f,,, =200. In
both cases we have chosen Ar=0.01, i=1, AA=1, N=16,
€=0.12.
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We could interpret this recursive phenomenon on the
basis of the dynamic of solitons, whose configurations on
the lattice are recurrent. The motion in Fig. 4 appears to
be the projection on the plane (7,7) of the motion on a bi-
dimensional torus.

The most interesting effect, clearly shown in Fig. 5, is a
transition to a qualitatively different motion when the en-
ergy density is increased above a certain threshold value,
which is in the region of the equipartition transition
(e.~1) of the FPU a model.

For very long times the trajectory is no longer closed
and it spends a long period in a region where the mean
value of 77 is lower than the initial one n=1. We call this
qualitative change breakdown phenomenon. It is common
to both an integrable model and a nonintegrable one and
reveals the transition to energy-sharing which was already
observed by Saito et al.®

~10-4

"' wM

H”

i il
)

-10-4 |

— T T T LA E
05 n 10
FIG. 5. The dynamics in the (1,7) plane. (a) Toda model. (b)
FPU a model. In both cases we have chosen At =0.01, i=1
Afi=1, e=1.8, ty =400.

3

The quantitative difference between the Toda and the «
model can be observed at longer times and is clearly
shown in Fig. 2: in the case of a nonintegrable model one
observes the transition to equipartition (7, =0) while for
the Toda model 7, is bounded at values different from
zero.

IV. CONCLUSIONS

Some authors® have shown the existence, at low energy
densities, of solitons for the class of Hamiltonian models
that we have studied in the previous sections. The com-
mon features of these models can be related to the fact
that they are described by the same effective continuum
equation. The best candidate is probably the KdV equa-
tion since it can be obtained as the continuum limit both
of the Toda model and of the FPU a model.!>!*

The periodicity of the orbits in the (7,1) plane can be
explained in terms of recurrences of configurations of sol-
itons on the lattice. More precisely, at low energy density
(e—0) the lattice can be considered a good approximation
of the continuum (lattice spacing h—0) as far as its
structurally stable properties are concerned.

One can imagine that at low € the analyticity properties
of solition solutions are well resolved by the lattice, just as
a sampled signal is resolved when the sampling frequency
is sufficiently high. As € increases, at fixed A, solitons be-
come more numerous and narrower and therefore they
cannot be resolved by the lattice. This effect can explain
the breakdown phenomenon of the discretized system and
the transition to energy-sharing or equipartition.

Similar problems happen for the discretization of field
equations when one studies the statistical mechanics of a
continuum medium.?® It can be easily proven'>'* that our
models give rise, at the lowest order in A, to hyperbolic
equations, which can develop shock waves.?! For in-
stance, as far as the Toda and the a models are concerned,
the corresponding hyperbolic equations produce a discon-
tinuity in the derivative of the solution for times
t~0(1/pA) where u=2ah for the @ model and p=>bh
for the Toda model, and where A4 is the amplitude of the
initial condition.

The presence of energy-sharing or equipartition at large
€ in the lattice models could be explained in terms of ef-
fective continuum equations which develop real singulari-
ties in a finite time. This is different from the soliton
scenario at low €. However, one should not forget that
the Toda lattice maintains analytic solutions and integra-
bility independent of €.

Anyway, our numerical analysis in the Fourier space
shows a breakdown phenomenon and a transition to
energy-sharing also for the Toda lattice. The difference
between the Toda lattice and a nonintegrable one is that
for the latter the breakdown phenomenon leads to equipar-
tition, while for the former it corresponds to a transition
from a structurally stable situation to an unstable one.
Above the transition a generic perturbation of the Toda
model breaks integrability and leads to equipartition; this
provides a confirmation of Siegel’s theorem.

However, Siegel’s theorem is inconclusive below the



1170 S. ISOLA, R. LIV], S. RUFFO, AND A. VULPIANI 33

transition where integrable and nonintegrable systems
show similar dynamical behavior. It seems that the pres-
ence of space-time patterns, such as solitons or “quasisoli-
tons”, is the relevant dynamical feature of a class of
models.

Finally, let us remark that the description of a lattice
model in terms of different effective continuum equations
as € varies cannot be restricted to the construction of
some ad hoc limits. One must derive a sort of renormali-

zation scheme coherent with the observed phenomenolo-
gy-
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