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Fractal measures and their singularities: The characterization of strange sets
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We propose a description of normalized distributions (measures) lying upon possibly fractal sets;

for example those arising in dynamical systems theory. %'e focus upon the scaling properties of
such measures, by considering their singularities, which are characterized by two indices: a, which

determines the strength of their singularities; and f, which describes how densely they are distribut-

ed. The spectrum of singularities is described by giving the possible range of a values and the func-

tion f{a}.We apply this formalism to the 2" cycle of period doubling, to the devil's staircase of
mode locking, and to trajectories on 2-tori with golden-mean winding numbers. In all cases the new

formalism allows an introduction of smooth functions to characterize the measures. %'e believe that

this formalism is readily applicable to experiments and should result in new tests of global universal-

ity.

I. INTRODUCTION (M;)e-l ', q=1,2, 3, . . . . (1.3)

Nonlinear physics presents us with a perplexing variety
of complicated fractal objects and strange sets. Notable
examples include strange attractors for chaotic dynamical
systems, ' configurations of Ising spins at critical points, s

the region of high vorticity in fully developed tur-
bulence, ' percolating clusters and their backbones, and
diffusion-limited aggregates. ' Naturally one wishes to
characterize the objects and describe the events occurring
on them. For example, in dynamical systems theory one
is often interested in a strange attractor (the object) and
how often a given region of the attractor is visited (the
event). In diffusion-limited aggregation, one is interested
in the probability of a random walker landing next to a
given site on the aggregate. In percolation, one may be
interested in the distribution of voltages across the dif-
ferent elements in a random-resistor network.

In general, one can describe such events by dividing the
object into pie:es labeled by an index i which runs from 1

up to N. The size of the ith piece is l; and the event
occurring upon it is described by a number M;. For ex-

ample, in critical phenomena, we can let Mt be the mag-
netization of the region labeled by i Such a.picture is
natural in the droplet theory of the Ising model, where
one argues that if the region i has a size of order l, the
magnetization has a value of the order of

M;-P,
where y (or y ) is one of the standard critical indices.
Since these droplets are imagined to fill the entire space,
the density of such droplets is simply

{1.2}

where d is the Euclidean dimension of space. In fact, in
critical phenomena we define a whole sequence of ye's by
saying that the typical values of (M;)e vary with q and
have the form'o

Typically, our attention focuses upon the values of ye that
are greater than zero and we haue only a few distinct
ualues of these. "

In this paper we are interested not in critical phenome-
na but instead in a broad class of strange objects. Howev-

er, we specialize our treatment to the case in which M,
has the meaning of a probability that some event will

occur upon the ith piece. For example, in experiments on
chaotic systems one measures a time series Ix;I;
These points belong to a trajectory in some d-dimensional

phase space. Typically, the trajectory does not fill the d-
dimensional space even when N~ oo, because the trajec-
tory lies on a strange attractor of dimension D, D &d.
One can ask now how many times, N;, the time series
visits the ith box. Defining p; =limn (Ã, /N), we gen-
erate the measure on the attractor dp, (x), because

&'= Jth~ """
In many nonlinear problems, the possible scaling

behavior is richer and more complex than is the case in
critical phenomena. If a scaling exponent a is defined by
saying that

ps pQ

then a [roughly equivalent to ye/q in Eq. (1.3)] can take
on a range of values, corresponding to different regions of
the ineasure. In particular, if the system is divided into
pieces of size l, we suggest that the number of times a
takes on a value between a' and a'+da' will be of the
form

da'p{a')l f' ', (1.5}

where f(a'} is a continuous function. The exponent f(a')
reflects the differing dimensions of the sets upon which
the singularities of strength a' may lie. This expression is
roughly equivalent to Eq. (1.2), except that now, instead
of the dimension d, we have a fractal dimension f(a)
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1 lnX(q)
Dq =11m

o q —1 lnl
(1.6)

where

x(q) =gp,q. (1.7)

Do is just the fractal dimension of the support of the mea-
sure, while Di is the information dimension and D2 is the
correlation dimension. '

As q is varied in Eq. (1.7}, different subsets, which are
associated with different scaling indices, become dom-
inant. Substituting Eqs. (14) and (1.5) into Eq. (1.7), we
obtain

X(q)= I da'p(a')1 f' 'lq (1.8)

Since 1 is very small, the integral in Eq. (1.8) will be dom-
inated by the value of a' which makes qa' —f(a') small-
est, provided that p(a') is nonzero. Thus, we replace a' by
a(q ), which is defined by the extremal condition

, [qa' —f(a')]

We also have

which varies with a. Thus, we model fractal measures by
interwoven sets of singularities of strength a, each charac-
terized by its own dimension f(a). The rest of our for-
malism attempts to unravel this complexity in a vrorkable
fashion.

The concept of a singularity strength a was stressed in
the context of diffusion-limited aggregation in indepen-
dent work of Turkevich and Scher' and of Halsey, Mea-
kin, and Procaccia. The latter group pointed out the sig-
nificance of the density of singularities and expressed it in
terms of f.

In order to determine the function f(a} for a given
measure, we must relate it to observable properties of the
measure. We relate f(a) to a set of dimensions which
have been introduced by Hentschel and Procaccia, the set
D» defined by's

II. EXACTLY SOLUBLE STRANGE SETS

A. Preliminaries

We begin by introducing a more general definition of
the dimensions D&. Consider a strange set S embedded in
a finite portion of d-dimensional Euclidean space. Imag-
ine partitioning the set into some number of disjoint
pieces, Si,S2, . . . , Sz, in which each piece has a measure

p; and lies within a ball of radius 1;, where each 1; is re-
stricted by 1; & 1. Then define a partition function

N p&
I (q, », I Sg },1)= g

i 1
(2.1)

Eventually we shall argue that, for large N, this partition
function is of the order unity only when

in this paper. In the next section we develop the formal-
ism outlined here in somewhat more detail and apply it to
systems with strong self-similarity properties. In Sec. III
we apply the formalism to some important examples of
measures arising in dynamical systems. We examine the
2 cycle of period doubling, ' the devil's staircase of
mode locking in circle maps, ' ' and the elements of the
critical cycle at the onset of chaos in circle maps with
golden-mean winding number. " Although all of these
cases have been examined previously, we are able to find a
smooth function with which to characterize them. Fur-
thermore, these characterizations are universal. Other at-
tempts to study these measures have led to nowhere
smooth scaling functions. ' ' ' Since the characterizations
are functions rather than numbers, they offer much more
information than fractal dimensions. Unlike power spec-
tra, these functions possess an immediate connection to
the metric properties of the measures involved, and do not
call for cumbersome interpretation. Therefore, we believe
that experimental ineasurements of Dq, and thus of f(a),
should replace more common tests of universality in the
transition to chaos. We give many examples of the pro-
cedures employed, and we hope to encourage experiments
to follow these lines.

d
, [qa' —f(a')]

d(a')2 a'=a(q)

» =(q —1)Dq .

To make this argument, consider now two regions:

(2.2)

f'(a(q) )=q,
f"(a(q) }&0 .

It then follows from Eq. (1.6) that

(1.9a)

(1.9b)

Dq = [qa(q) —f(a(q ))] .
1 (1.10)q

Thus, if we know f(a), and the spectrum of a values,
we can find Dq. Alternatively, given Dq, we can find a(q}
since

region A: q&1, ~&0,

region B: q&1, ~&0.
(2.3a)

(2.3b)

In region A, adjust the partition IS; } so as to maximize
I . In region B, adjust it so that I is as small as possible.
Then define

I (q, r, l )=Sup Pq, ~, j S;},1) (region 3 ),
I (q, r, l) =Inf I (q, », (S;},I) (region g) .

(2.4a)

(2.4b)

The supremum in region A will exist as long as there are
constants a & 0 and ao & 0, so that for any possible subset
of S, IS;},we have

and, knowing a(q), f(q) can be obtained from Eq. (1.10}.
Equations (1.9)—(1.11}are the main formal results used p;&a(1;) '. (2.5)
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Then I (q, r, 1 ) will exist and be less than infinity whenever C. Exactly so1uble examples

ao(q —1)&r . (2.6) 1. Power-law singularity

Next define

I (q, r) =lim [ I( q, r, l)] .
I-+0

(2.7)

ao for r&r(q),
0 for r&r(q) . (2.8)

Notice that I (q, r) is a monotone nondecreasing function
of r and a monotone nonincreasing function of q. One
can argue that there is a unique function r(q) such that

One of the simplest possible applications of this formal-
ism is to a probability measure with only one power-law
singularity. Imagine a probability density p(x)=ax
on x E [0,1],where 0 & a & 1. Let us partition the interval
into %segments [x;, x;+M], with M=X ' Th. e total
probability measure on all of these intervals except for
that adjoining zero is well approximated by p(x; }dec. The
probability upon the segment adjoining zero possesses a
probability po ——(M ) . The partition function is therefore

Equation (2.8) permits us to define D~ as

(q —1}D&——r(q} . (2.9)

ax; '(M)~
I q, r, rhx =

(M )';+q (lb& )'

There are (du } ' terms in the sum, so that

(2.13)

Once D& is known, Eqs. (1.10) and (1.11) will then give
a(q) and f(q). Notice that our definition of Dz is precise-
ly the one which makes Do the Hausdorff dimension.

(2.14)

Thus, since we require that I neither go to zero nor infin-
ity, we have that

B. Connection to previously defined D»

Hentschel and Procaccia'3 also defined a Dq, which we
now denote as D& To rel.ate the two quantities, recall
that the authors of Ref. 13 defined a partition in which all
the diameters 1; had the same value 1. We know that

or

r=min{q —1, aqI,

1
Dq= min{q —1 aqI

q —1

(2.15a)

(2.15b)

I (q, r 1) .

N

&1 'g pf (region A)

N

&1 ' g pf (region 8 } .
(2.10)

Thus for q & q' = 1/(1 —a), the dimensions correspond to
a value of a=a and of f=0, while for q &q' the dimen-
sions correspond to a= 1 and f=1. Thus, in this exam-
ple the f-a spectrum consists of two points, corresponding
to the two types of behavior in the measure.

If r is chosen correctly, i.e., r=r(q), the left-hand side of
Eq. (2.10) will neither go to zero nor diverge very strongly
as 1~0. In particular, we guess that 1(l) is no worse
than logarithmically dependent upon these quantities.
Then

lim[lnl'(q, r(q), I ) /lnl ]~0 .
1-+0

We have now

2. Cantor sets and generators

If a measure possesses an exact recursive structure, one
can find its D~. Suppose that the measure can be generat-
ed by the following process. Start with the original region
which has measure 1 and size 1. Divide the region into
pieces S;, i =1,2, . . . , N, with measure p; and size 1;.
Suppose that the maximum of 1; is given by 1. Then at
the first stage we can construct a partition function,

(2.16)

'T ( lim
q —1 I 0

N

ln gpf
i=1

(lnl )(q —1)

The right-hand side of (2.11) is Dz . We thus find

(2.11)

I (q, r, l }=[I (q, r, l }] (2.17)

Continue the Cantor construction. At the next stage each
piece of the set is further divided into N pieces, each with
a measure reduced by a factor pj and size by a factor 1J.
At this level the partition function will be

(2.12)

Since we believe that Eq. (2.10) will often be an order of
magnitude equality when r=r(q), we think that Eq. (2.12)
will be an equality in most cases of interest.

At this point we turn to some simple examples to illus-
trate the quantities r(q). These examples will enable us to
gain intuition about the quantities a(q) and f(a).

I (q, r(q), l)=1 . (2.18)

If a partition with finite N yields a I which obeys (2.17),
that partition is called a generator.

We see at once that, for this kind of measure, the first
partition function I (1) will generate all the others, and
that r(q) is defined by
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FIG. 1. The construction of the uniform Cantor set. At each
stage of the construction the central third of each segment is re-

moved from the set. Each segment has measure po ——( 2
)" and

scale l() ——( Y~ )", where n is the number of generations.

3. Uniform Cantor set

A simple example is the classical Cantor set obtained by
dividing the interval [0,1] as shown in Fig. 1. We initially
replace the unit interval with two intervals, each of length
1=—,'. Each of these intervals receives the same measure

p = —,'. At the next stage of the construction of the mea-

sure this same process is repeated on each of these two in-
tervals. Thus, for this measure we require

( —,
' )e

2
() )'

(2.19)

which yields

r=(q —1)[ln(2)/ln(3)] [or De =ln(2)/ln(3)] . (2.20)

If /0 is the length scale of the intervals at a particular lev-

el of the partitioning, and p0 is the measure for such an
interval, then

I ln(2)/in(3)po= o (2.21)

Calling the index of the singularity a, i.e., p0-10, we
have here a=in(2)/ln(3}. If we further ask what is the
density of these singularities, we find immediately that it
is simply the density of the set,

FIG. 2. A Cantor-set construction with two rescalings

l~ ——0.25 and l2 ——0.4 and respective measure rescalings p~
——0.6

and p2
——0.4. The division of the set continues self-similarly.

I (q, ~,lz)=, +, =1 (2.24}

(}inl'(13 ) =0.
dtn

(2.26)

Using the Stirling approximation, we find that Eq. (2.26)
is equivalent to

In(n/nt —1)+q ln(pi/p2)

ln(l i /lz )
(2.27)

Since we expect that the maximal term dominates the
sum, we have a second equation,

results in a r that does not depend on n The .value of ~
depends, however, on q. In Fig. 3 we show Dz
=~(q}/(q —1) as a function of q, as obtained numerically
by solving Eq. (2.24). To further understand this curve,
we can examine the quantity I (l3 ) for this case explicitly:

I (q, r, l")=g p~p'" "(I,I" ) '=1 . (2.25)
m

We expect that in the limit n ~ ao the largest term in this
sum should dominate. To find the largest term we com-
pute

1
) ( lo ) = I) (3)/)n(3)

0
(2.22)

I I I I I0 g)

and Eq. (1.5) leads to f=ln(2)/ln(3). Thus in this exain-

ple, a =f, and also

Rq)=qa —f . (2.23) 0.8—

Although Eq. (2.23) is trivial here, we shall see that its
analog, Eq. (1.10), also holds in the most general cases.

4. Tauo-scale Cantor set

A somewhat less trivial example is obtained by con-
structing a Cantor set as in Fig. 2. Here we use two re-
scaling parameters I ~ and 12 and two measures p~ and pq,
and then continue to subdivide self-similarly. %'e assume
that I2~1&. It is apparent that this example also has a
generator, since the condition 2.

04—
0 o

l

-40
l

-20
I l I

0 20 40

q

FIG. 3. D~ plotted vs q for the two-scale Cantor set of Fig.
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mq (n —m) (2.28)

n
(/Nl/(II —Nl) )f (2.30)

Inserting Eq. (2.27) into Eq. (2.28) leads to an equation for
n /m. After some algebraic manipulation, one finds

ln(n /m )ln(/i /12) —1n(n /m —1)lnl i

=q(lnpi ln/2 —lnp2 ln/, ) . (2.29)

We thus see that for any given q there will be a value of
n/m which solves Eq. (2.29) and, in turn, determines r
from Eq. (2.27). This maximal term which determines r
actually comes from a set of (~) segments, all of which
have the same size /i /2" '. Their density exponent f is
determined by

0

0.6 =

0.4—

0.2—

0.2

+J. I

0.4 0.6 0.8 I.O

or
(n /m —1)ln(n /m —1)—(n /m )ln(n /m )

lnl i +(n /m —1)ln/2
(2.31)

FIG. 4. The plot of f vs a for the set in Fig. 2. Note that

f=0 corresponds to a values D „=ln(0.4)/in(0. 4)=1.0 and
D„=ln(0.6)/ln(0. 25)=0.3684.

The exponent determining the singularity in the measure,
a, is determined by

m (n —m) (/m/(n —m) )a (2.32)

or

lnp i +(n /m —1)lnpta= (2.33)
ln/i +(n /m —1)lnl2

Thus, for any chosen q, the measure scales as a(q) on a
set of segments which converge to a set of dimension

f(q). As q is varied, different regions of the set deter-
mine Dq. It can be shown that Eqs. (2.27), (2.29), (2.31),
and (2.33) again lead to

r=(q —1)Dq ——qa(q) —f(q) . (2.34)

We can also understand the spectrum of scaling indices
a by considering the "kneading sequences" for the seg-
ments. In the first level of the construction there are two
segments of sizes li and 12 and measures p, and pz which
we can label L (left) and R (right). At the next level we
have four segments, which we can reach by going left or
right: LL, LR, RL, and RR. Thus the measure and the
size of any segment are determined by its address, the
kneading sequence of L's and R's. For example, the size
of a segment is 1 i /q" ', where m and n —m are, respec-
tively, the numbers of L's and R's in the kneading se-
quence. Clearly, the sequence I.JI.. . .L,I.I.. . . is associ-
ated with a=1 (np)i/1 (n/) iD„, which lies on the edge
of the spectrum, while the sequence RRR. . .RRR. . . is
associated with the singularity lying on the other edge of
the spectrum. Other, less trivial kneading sequences lead
to values of a between these two extremes. We note, how-
ever, that it is only the infinite "tail" of the sequence that
determines the asymptotic scaling behavior. The number
of sequences leading to the same singularity a may be
simply found, and leads via Eq. (2.30} to exactly the same
results for f(a }as the partition-function analysis above.

Finally, in Fig. 4 we display the curve f(a). The curve
has been obtained for /i ——0.25, 12 ——0.4 and pi ——0.6,

pi ——0.4. The leftmost point on the curve is

f =0, a=in(0. 6)/ln(0. 25). This is the value that in Eqs.
(2.31) and (2.33) obtains for n =m. At any level of the
construction there is exactly one such segment (f =0) and
the singularity is

lnp i /In/i ——Inf I lnp i /lnl i, lnp2 /ln2 I .

This value of a is also D„. The rightmost point on the
graph again corresponds to f=0, but now

a = lupi/ln/i ——Sup{ lnp i /ln/i, lnp2/ln/2 I .

This is also D „.Whereas D„corresponds to the re-
gion in the set where the measure is most concentrated,
D „corresponds to that where the measure is most rare-
fied. For q =0 we simply obtain f=Dp, where Dc is the
Hausdorff dimension of the set. This is the maximum of
the graph f(a).

Certain features of this curve are quite general, and fol-
low from Eqs. (1.9)—(1.12). From Eq. (1.9) we find im-
mediately that

(2.35a)

(2.35b)

Thus, for any measure the curve f(a) will be convex, with
a single maximum at q=0, and with infinite slope at
q=+ao. Also from Eq. (1.10) with q=l, we find that
a(1)=f(1}.The slope Bf/Ba there is unity. This general
behavior of the curve f(a) will be seen in all cases where
the measure possesses a continuous spectrum.

Although this example is rather simple, it contains
many of the properties of the richer sets considered in Sec.
III. In particular, we wi11 not lose this intuitive view of
the meaning of a and f.
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5. Other types of spectra

We can obtain more insight into the meaning of the f a-
spectrum for a measure by considering two examples of
measures on continuous supports. Many of the most in-

teresting measures encountered in applications lie on con-
tinuous supports, including the growth measure for
diffusion-limited aggregates and strange attractors for
systems of ordinary differential equations.

The first example is a simple generalization of the two-

scale Cantor set defined by (2.24). A umt interval is sub-

divided into three segments, two of length li and one of
length li. The two former intervals each receive a pro-
portion of the total measure given by pi, and the latter in-

terval receives a proportion given by pi. We imagine that
ii+212 ——1 and that pi+2p2 ——1. We also imagine, for
the sake of the argument below, that pi!12&pi/li and
that 12 & l i. Each of these three intervals is then suMivid-
ed in the same manner, and so forth. Although the mea-
sure on the line segment is rearranged at each step of the
recursive process, the support for the measure remains at
each step the original line segment. Thus we expect that
Dp for this measure will be 1. Furthermore, the densest
intervals on the line segment contract not to one point (as
was the case in the two-scale Cantor set), but to a set of
points of finite dimension. Thus, we expect the lowest
value of a, and hence the value of D„, to correspond to a
nonzero value of f. Note that there is always only one
segment at the lowest value of the density, so that we still
expect D „ to correspond to a value of f=0. The con-
dition (2.18) above on I requires that

(2.36)

The solution is simple and is displayed in Fig. 5. As
predicted above, f(q~ 00 }&0,so that the leftmost part of
the f acurv-e resembles a hook.

The second example is a set generated according to a
different rule than the Cantor sets. The method is
displayed in Fig. 6. At each stage, only the regions which

2 2

) 2 )2 1) 2 ) P,
2 2

, P~, PzP~, Pz,

FIG. 6. The partitioning process for the measure yielding the
partition function (2.37). Only those segments receiving a mea-
sure multiplied by p2 at any stage of the construction are fur-
ther subdivided. This measure is far less self-similar than those
generated by the Cantor process.

r(q) =minIq —1, qa fI, — (2.38)

with a=in(pq)/ln(12), and f=ln( —,')/in(lz). This example
corresponds to a discrete, rather than a continuous, f-a
curve, consisting of a point at (a,f ) and a point at (1,1).
This result should not surprise us, as this measure is prop-
erly described as a nonsingular background interrupted by
singularities upon a Cantor set of dimension f.

have had their measure multiplied by a factor p2 in the
preceding stage are subdivided further, while the regions
which have had their measure multiplied by a factor pi
are not suMivided further. Thus the expression for the
measure density of any region, at any stage of the iterative
construction, will have, at most, one factor of p, . The
measure generated by this construction is much less self-
similar than that considered in Sec. III C4. For this mea-
sure the partition function is given for large n by

I (q, i-, l")=(pf/l;)I (I" ')+2(p(/1')I (I" '),
(2.37)

where I U is the partition function for a uniform measure
on a line segment. It is easy to show that

III. EXAMPLES FROM DYNAMICAL SYSTEMS

In this section we examine the implications of the for-
malism of Sec. II for three examples: (i) the 2" cycle at
the accumulation point of period doubling, (ii} the set of
irrational winding numbers at the onset of chaos via
quasiperiodicity, and (iii) the critical cycle elements at the
golden-mean winding number for the same problem. In
all cases we calculate numerically the Dq, and use Eqs.
(1.10) and (1.11) to extract a(q), f(q), and a plot of f(a).
In all three cases we can find theoretically D„,D, and
thus a(q = + 00 ).

FIG. S. The function f(a) for the measure defined by Eq.
{2.36}. Note that D„corresponds to a nonzero value of f.
Also, Do ——1.

A. The 2" cycle of period doubling

Dynamical systems that period double on their way to
chaos can be represented by one-parameter families of
maps M)(x), where Mi.. R ~R, and F is the number
of degrees of freedom. At values of A, =A,„ the system
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T 5I

-0.5 0.5 !.0

FIG. 7. The construction of the period-doubling attractor;
the indices refer to the number of the iterate of x =O. The lines

represent the scales I;. Note the similarity ~ith Fig. 2. 0.4 0.6 0.8

gains a stable 2"-periodic orbit. This period-doubling cas-
cade accumulates at A, „,where the system possesses a 2"
orbit. We generated numerically the set of elements of
this orbit for the map x'= A(l —2x 2}, with lt.„
=0.837005134. . . . '5 The points making up the cycle
are displayed in Fig. 7. The iterates of x =0 form a Can-
tor set, with half the iterates falling between f(0} and

f (0) and the other half between f2(0) and f (0). The
most natural partition, tS; I, for this case simply follows
the natural construction of the Cantor set as shown in
Fig. 7. At each level of the construction of this set, each
1 is the distance between a point and the iterate which is
closest to it. The measures p; of these intervals are al 1

With 2"-cycle elements we solved numerically I'=1,
thereby generating the De-versus-q curve shown in Fig. 8.
From these results we calculated a(q) from Eq. (1.11) and

f(a) from (1.10). The curve f(a) is displayed in Fig. 9.
To understand the shape of the curve in Fig. 9 we first

consider the end points of the curve (for which f=0}. As
with the example solved in Sec. II C 4, we expect these two
points to be determined by the most rarefied and the most
concentrated intervals in the set. As has been shown by
Feigenbaum, " these have scales 1 apD alld
1 — " respectively, where apD ——2.502907875. . . is

15the universal scaling factor. Since the measures there

FIG. 9. The function f(a) for the period-doubling attractor
of Fig. 7.

are simply p „-2 ", we expect these end points to be
lnp „/lnl „and lnp„/lnl„, respectively. These values
are also D „and D„,so that we find

D „= =0.755 51. . . ,
lnQpo

D-= '" =037775
lnapD

(3.la)

(3.1b)

These values are in extremely good agreement with the
numerically determined endpoints of the graph. The
curve f(a) is perfectly smooth. The maximum is at
Do ——0.537. . ., in agreement with previous calculations o
the Hausdorff dimension for this set. Since the slope of
the curve f(a) is q, a(q) will be very close to D+„even
for ~q ~

—10. However, Fig. 8 indicates that Dq is far
from converged to D+„even for q-+40. Thus, the
transformations (1.10) and (1.11) lead more easily to good
estimations of D+„ than do direct calculations of the
Dq S.

B. Made-locking structure

07—

0.5—

-40 -20 0 20
I

40

Dynamical systems possessing a natural frequency co&

display very rich behavior when driven by an external fre-
quency co2. When the "bare" winding number Q=coi/c02
is close to a rational number, the system tends to mode
lock. The resulting "dressed" winding number, i.e., the
ratio of the response frequency to the driving frequency,
is constant and rational for a small range of the parameter
Q. At the onset of chaos the set of irrational dressed
winding numbers is a set of measure zero, which is a
strange set of the type discussed above. The structure of
the mode locking is best understood in terms of the
"devil's staircase" representing the dressed winding num-
ber as a function of the bare one. Such a staircase is

16, 17shown in Fig. 10 as obtained for the map

8 +i ——8„+Q— sin(2ir8„),K
"+' " 2~

(3.2)

FIG. 8. D~ vs q calculated for the period-doubling attractor
of Fig. 7.

with E = I, which is the onset value above which chaotic
orbits exist.
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To calculate D+ „analytically we make use of previous
findings that the most extremal behaviors of this staircase
are found at the golden-mean sequence of dressed winding
numbers

I I I t0

O.S—
F„/F„+i~w' =(~5—I)/2=0. 6108. . . ,

where F„are the Fibonacci numbers, (Fo ——0, F, = 1, and

F„=F„ i+F„2for n & 2) and at the harmonic sequence
1/Q~O. ' ' The most rarefied region of the staircase is
located around the golden mean. $henker found that the
length scales 1; vary in that neighborhood as
1 „-F„-(to')",where 5=2.1644. . . is a universal
number. ' The corresponding changes in dressed winding
number are I

-40
I l

20 40
I

-20

p -F„/F„+i F„+t—/F„+i-(w'} " .

We thus conclude that FIG. 11. Dq vs q for the staircase of Fig. 10.

1np

lnl
=—=0.9240. . . .2

5
(3.3a) the same problem by other authors. 's' ' Note that the

maximum on Fig. 12 gives the fractal dimension Dc of
the mode-locking structure as D0-0.87. . ., in agreement
with the predictions of Refs. 16 and 17. The rightmost
branch of the curve f(a) in Fig. 12 (i.e., for q &0) con-
verges vary rapidly within the Farey partition. This is,
however, not the case for the leftmost branch (i.e., for
q & 0). To improve the convergence of this portion of the
curve substantially, we made use of the following trick.
In general, the partition function (2.1) will be of the form

For the 1/Q series it has been shown that changes in
dressed winding number go as the square root of changes
in bare winding number, i.e., that p;-1 .' This series
determines the most concentrated portion of the staircase
(Fig. 10},which means that p „—1„,leading to

D„=lnp„/lnl„= —, .1 (3.3b)

To construct the curve f(a) we generated 1024 mode-
locked intervals following the Farey construction, which
also defines the partition IS; I.' For each two neighbor-
ing intervals (see Fig. 10) we measured the change both in
bare and in dressed winding numbers. The changes in
bare winding numbers determined the scales 1; of the par-
tition IS; j, whereas the changes in dressed winding num-
bers were defined to be the measures p;. Solving then the
equation I =1 we generated Dq as shown in Fig. 11 (for
q & 0 we accelerated the convergence as wi11 be described
shortly). Figure 12 shows f(a) for this case. Again the
curve is smooth, in contrast to scaling functions found for

(3.4)

where a and y are constants. The convergence is often
slowed down by the prefactor a and by the logarithmic
dependence on 1. However, by considering instead the ra-
tio

ri~
I'(21)

(3.5)

we find that a and I do not appear in the equation. We
thus determine 7(q} by requiring that

I

6

3 5.

5

026 P—3

35 '--
1 8-
3

3
t3.

I
2
9

t4

2
f 7 022—

0.2—
f

5

025 0260
1

027
I

Q6Q.Q 0.2 Q.4 Q.8 1.0

FIG. 10. The "devil's staircase" for the critical circle map of Eq. (3.2). The "dressed" winding number is plotted vs the "bare"
winding number (Ref. 16).
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I l I I I
D

l.0—
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-40
I

-20
I I I

0 20 40

0.5 0.7 0.9

FIG. 13. D~ plotted vs q for the critical trajectory of a circle
map with golden-mean winding number.

FIG. 12. A plot of f vs a for the mode-locking structure of
the circle map. The left portion of the curve is found by ac-
celerated convergence as described in Sec. III B.

In general, the denominator can be chosen to be of the
form Pbl), where b is a constant. The leftmost portion
of the curve was generated with this method by calculat-
ing I'(l(1452))/I'(l(886))=1 [where l(1452) and l(886)
are the maximal scales for partitions with 1452 and 886
intervals, respectively], and we observe that it passes
through the point (D„,0). We found empirically that this
method usually did not give reliable results for large
values of

~ q ~. Still, this method did successfully gen-
erate the entire curve in Fig. 12. We emphasize the ease
of this measurement. The rightmost branch of the f-a
curve of Fig. 12 converges very rapidly, even when only
8—16 mode-locked intervals are available.

F„,F„+i.' This corresponds to the most rarefied region
so that l „-aGM. The corresponding measure scales as

p „—1/F„-(co')", leading to

D =, =1.8980. . . .
1naGM

(3.6a)

D„= 3
——0.6326. . . .

in+6M
(3.6b)

Figure 14 shows that the curve passes very close to the
points (D„,O) and (D „,0). Again, however, we find

The map (3.2) for E =1 has at 8=0 a zero slope with a
cubic inflection and is otherwise monotonic. The neigh-
borhood around 8=0, which is the most rarefied region of
the set, will therefore be mapped onto the most concen-
trated region of the set. As the neighborhood around
8=0 scales as aoM when the Fibonacci index is varied,
the most concentrated regime will scale as aoM due to the
cubic inflection. This means that I„=atiM" and
p„=(ic')",so that we obtain

C. Qnssiperiodic trajectories for circle maps

Circle maps of the type (3.1) exhibit a transition to
chaos via quasiperiodicity. A well-studied transition takes
place at EC =1 with dressed winding number equal to the
golden mean, m'. ' 2 %e have at this point studied the
structure of the trajectory 8i,82, . . . , 8;,. . .. To perform
the numerical calculation we chose 8i ——f(0) and truncat-
ed the series 8; at i=2584= E~7. The distances

I; =8;+F„—8; (calculated mod 1) define natural scales for

the partition with measures p; = 1/2584 attributed to each
scale. Figure 13 shows Dz versus q calculated for this set
and Fig. 14 shows the corresponding function f(a).
Again the curve is smooth. Shenker found for this prob-
lem that the distances around 8-0 scale down by a
universal factor aoM ——1.288 5. . . when the trajectory 8; is
truncated at two consecutive Fibonacci numbers,

0.6—

0.2—

0.6
l

I.O l.4 I.B

FIG. 14. A plot of f vs u for the golden-mean trajectory for
the circle map.
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r„+i br„——— sin(2m8„),
K

n+ n

and studied the critical cycle for b=0.5, again truncated
at i=2584=Fi7. We defined the scales by the Euclidean
distances

'; =[(8;+~„8;)'+—(r;+F„«;)')'—'. (3.8)

We found that the convergence for the two-dimensional

(2D) case was slightly slower than for the one-dimensional

(1D) case. This is, however, to be expected since it was

found by Feigenbaum, Kadanoff and Shenker that the
convergence of the scaling number aGM is slower for the
2D case than for the 1D case. '9 To improve the conver-
gence we again made use of the ratio trick as embodied in

Eqs. (3.4) and (3.5). For this case we calculated the parti-
tion function for two consecutive Fibonacci numbers,

Fi6 ——1597 and Fi7 ——2584, and found r from the require-
ment

Dl(Fig))
I (l(Fi6))

[l(Ft) are the maximal scales for the partitions]. This im-

proves the convergence significantly, and the f a curve
for this 2D case coincides almost completely with the
curve found for the 1D case and displayed in Fig. 14.

IV. CONCLUSION

Most previous characterizations of strange sets arising
in physics have followed the example of critical phenome-

that the dimensions De are far from D+„even for

q —+40.
To check for universality it is important to investigate

f(a) for a higher-dimensional version of a circle map.
%e chose the dissipative standard map,

8„+i——8„+0+br„— sin(2n. 8„),E
2m

na in relying upon a few universal numbers to character-
ize the physical systems generating these sets. Thus,
strange attractors are characterized by their Hausdorff di-
mensions, or by the scaling exponents of particularly
divergent regions of their measure. However, these num-
bers reflect only a small part of the universal scaling
structure of these systems. Feigenbaum introduced scal-
ing functions in order to describe the complex scaling
properties of attractors at the onset of chaos. " These
scaling functions contain all of the geometric information
about the attractor, in contrast to the partial information
furnished by local scaling exponents. These functions are,
however, nowhere differentiable, and are thus very diffi-
cult to use. The full complexity of this scaling structure
is more conveniently refiected by the continuous spectrum
of exponents a and their densities f(a), of which previ-
ously investigated scaling exponents and Hausdorff di-
mensions comprise only a part.

Not only does this spectrum enrich our conceptual vo-
cabulary, it should enrich our experimental vocabulary as
well. The numerical studies of Sec. III were straightfor-
ward and did not require large investments of computer
time in order to obtain extremely accurate results. Furth-
ermore, this spectrum can be measured, and has been
measured, in experiments upon physical realizations of
dynamical systems. z The measurement of this spectrum
should result in new tests of scaling theories of nonlinear
systems.
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