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Independent coordinates for strange attractors from mutual infoiiiiation
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The mutual information I is examined for a model dynamical system and for chaotic data from
an experiment on the Belousov-Zhahotinskii reaction. An NloglV algorithm for calculating 1 is
presented. As proposed by Shaw, a minimum in I is found to be a good criterion for the choice of
time delay in phase-portrait reconstruction from time-series data. This criterion is shown to be far
superior to choosing a zero of the autocorrelation function.

In recent years much progress has been made in under-
standing low-dimensional chaos in fields as diverse as hy-
drodynamics, ' epidemiology, chemistry, 3 and solid-state
physics. Insight into chaotic behavior has been achieved
by quantitatively characterizing the pest-transient phase-
space orbits ("strange attractors"} in terms of fractal di-
mension, metric entropy, and the spectrum of Lyapunov
exponents. A crucial development responsible for much
of the recent progress was the realization that multidi-
mensional phase portraits could be constructed from mea-
surements of a single scalar time series. ' Portraits are
constructed by expanding a scalar time series s(t) into a
vector time series X(t) using time delays T:
X(t)= Ixo(t),x i (t), . . . , x„(t),. . . I, where x„(t}=s(t
+nT) For an. infinite amount of noise-free data, the
time delay T can in principle be chosen almost arbitrari-
ly.s However, experimental' show that the quality of the
portraits depends on the value chosen for T, and experi-
rnenters and theorists note that there are no criteria for
choosing T in the literature. In this paper we present
mutual-information calculations for data from strange at-
tractors in the Belousov-Zhabotinskii reaction and the
Rossler system and explain why such calculations pro-
vide an excellent criterion for choosing T in most systems.
Also, we propose that mutual information could provide a
quantitative characterization of chaotic spatial patterns.

If delay coordinates are used with a very small T for a
two-dimensional reconstruction in the presence of experi-
mental noise, xo(t) and xi(t) will be indistinguishable,
and all trajectories will appear to lie on the line xo ——x&.
To avoid this, the chosen T should make xo and x~ in-
dependent. A naive choice of T, which is equivalent to
requiring linear independence, is the value for which the
autocorrelation function first passes through zero.

Mutual information, to be defined precisely later, mea-
sures the general dependence of two variables; therefore, it
provides a better criterion for the choice of T than the au-
tocorrelation function, which only measures linear depen-
dence. Shaw has suggested' that the value of T that pro-
duces the first local minimum of mutual information be
used for phase portraits. The two criteria are compared in
Fig. 1. The phase portrait on the left, constructed for T
corresponding to the first zero in the autocorrelation func-
tion, has high mutual information because most of the
probability lies in the dark line along the upper left edge.

Much of the stretching and folding occurs in this region
where the trajectories are experimentally indistinguish-
able; hence, it is difficult to deduce quantitative informa-
tion about the dynamics from this phase portrait. In con-
trast, in the phase portrait on the right, which corre-
spends to a minimum of mutual information, the begin-
ning of a fold can be seen at the bottom of the central
band; the chaotic dynamics can be qualitatively and quan-
titatively deduced from this portrait. The figure demon-
strates that mutual information can be very different from
autocorrelation, and that mutual information selects supe-
rior T values.

We now consider a model system, the Rossler attrac-
tor, because the original phase space is available and the
data are precise and easy to obtain. Its representation in
the original phase space will be compared to delay recon-
structions from simulated experimental measurements of
a single variable. The system is defined by

x= —z —y,
y =x+ay,
z=b+z(x —c) .

We examine this model for parameter values a=0.15,
b=0.20, and c=10.0, considering a trajectory generated
using the Runge-Kutta method with a fixed time step of
m/100. The trajectory was integrated from an initial con-
dition of (10,0,0); after discarding the first 1000 steps to
allow the trajectory to fall to the attractor, a file of
1048 576 points was recorded. Figure 2(a) shows part of
this trajectory. Over the entire file the average time for
one orbit was found to be 193.3 integration steps. Hence-
forth, time for this model will be given in terms of this
average orbital time. Experimental measurements were
simulated by adding noise to the x values of the file each
time they were read. The noise was flat over +0. 1 while
the rms deviation of x was 11.7, yielding a signal-to-noise
ratio of 46 dB. In Fig. 2 the plots in the first row are de-
rived from the original x and y coordinates, while the
plots in the second and third rows are derived from siinu-
lated measurements for different time delays.

An isolated x measurement constrains the system to a
stripe of points in phase space, as illustrated in Fig. 2(b).
A good second measurement is one that provides new in-
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FIG. 1. Phase portraits of the Roux attractor (Ref. 3} in the Belousov-Zhabotinskii reaction. The dependence of the mutual infor-
mation I and the autocorrelation function C on T are shown for calculations over 32 76S points. The coordinates used in constructing
the portrait on the left are linearly independent (zero autocorrelation}, while the coordinates used in the portrait on the right are more
generally independent (local minimum of mutual information).

formation about the system state by dividing this stripe
into as many parts as possible. Figure 2(c) indicates that
T=0.23 orbits roughly corresponds to a coordinate rota-
tion of 80'. Such a rotation provides a good second mea-
surement. Figure 2(e) shows that a later measurement at
T=3.26 orbits is also good at subdividing the stripe; how-
ever, the folds in the later measurement can never be
resolved for data of finite resolution.

The goal is to choose a good delay without looking at
the original phase space. The key to such a choice lies in
the histograms of the second row of Fig. 2. Good delays
correspond to fiat histograms, which in turn roughly cor-
respond to small values of the mutual information I. In a
chaotic system (one with positive metric entropy) any
measurement stripe will eventually spread back to the in-
variant measure. This is accomplished by stretching and
folding like that in Fig. 2(e). To avoid this type of spread-
ing, earlier fiat histograms are preferred to later ones;
hence, the first local minimum of I is preferred to later
minima. It is possible that for some systems the spread-
ing could be fast enough to dominate the rotation, defeat-
ing our method.

Shannon's information theory" provides a formalism
for quantifying the concepts of spreading and new infor-
mation. For information theory to apply, the probabilities
of the messages considered must exist, and to use the

theory the probabilities must be accessible. %e are apply-
ing information theory to strange attractors, and the mes-
sages we are considering are the values that measurements
of the attractors might take. Strange attractors are ergo-
dic and have well-defined asymptotic probability distribu-
tions. Thus the probabilities of the messages we consider
exist, and long-time averages converge to the probabilities.

Information theory is usually discussed in terms of a
signaling system Consider a process in which messages
are sent to an experimenter across the channel of his in-
struments. Let S denote the whole system which consists
of a set of possible messages s „s2, . . . , s„, and the associ-
ated probabilities P, (si ),P, ( ),s.q. . , P, (s„). P, maps
messages to probabilities. The subscript is necessary be-
cause more than one such function will be considered at a
time. If the possible messages are continuous, S denotes
the system, s denotes a possible message, and P, (s) is the
probability density at s.

The average amount of information gained from a mea-
surement that specifies s is the entropy H of a system,

H(S)= —QP, (s;)logP, (s;) . (2)

H(S) is the quantity of surprise you should feel upon
reading the result of a measurement. If the log is taken to
the base two, H is in units of bits. In Fig. 2(a) the proba-
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FIG. 2. Rotation and spreading in the Rossler attractor. The entire attractor projected on the original x,y coordinates is shown in

{a),and (f) shows a histogram of x measurements for this attractor for 64 equiprobable bins. The measurements corresponding to bin

20 are shown in (b), and the corresponding histogram is (g); figures (c), (d), and (e) show these points at later times, and the corre-
sponding histograms are (h), (i), and (j), respectively. For short times the points are essentially only rotated, as (c) illustrates, while for
long times there is spreading as well as rotation, as (e} illustrates. Phase portraits constructed by the time delay method for the delays
in (b)—(e) are shown in (1)—(o), respectively, where the tick marks indicate bin 20. [Histograms (g)—(j) are given by the probability
densities between the tick marks. ] The mutual information (calculated over 65 536 points) is shown as a function of T in (k).

bility of an isolated measurement being in any one of the
64 bins is ~ [shown in Fig. 2(f)J and H is —log2{ ~ ) =6
bits. If the grid consisted of 128 equiprobable bins, H
would be 7 bits. This dependence of H on grid is related
to the fact that if s were a continuous variable, the value
of H would depend on the coordinates. %Rile the limit of
the sinn for the discrete case diverges as the partition be-
comes finer, the integral

H(S)= —IP, (s)logP, (s)ds (3)

does not diverge, but its value depends on the coordinates
chosen. The reason is that the argument of the log func-
tion in (3) has the same units as 1/ds. Individual entro-
pies of continuous systems depend on coordinates, but we
are interested in a coordinate-independent difference of
entropies. So we will continue our development with the
discrete case and then consider the continuous limit of our
result.

%e are interested in measuring how dependent the
values of x(t+T) are on the values of x (r). By making
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the assignment [s,q]=[x (t),x (t +T}],we can consider a
general coupled system (S,Q) and ask, "Given that s has
been measured and found to be s;, what uncertainty is
there in a measurement of q'?". The answer is

(Q lsi}= Q—P»(s(qj I
} og[ q(s(qj I

J

g—[P~(s, ,q~)/P, (s; )]

(4)

X log [P~(s;,q~ )/P, (s; )],

QP~(s;—,qI)log[P~(s;, qj )/P, (s; )]

=H(S,Q) —H(S),

where

H(S, Q) = —Q P~(s;,qj )log[P~(s;, qI)] .

where Pq ~, (q~ ~
s;) is the probability that a measurement

of q will yield qj, given that the measured value of s is s;.
Figure 2(h) shows the probability distribution of x in the
Rossler system after a time of 0.23 orbits, given that x be-
gan in bin 20. The conditional entropy is H(Q ~s20)
=5.86 bits.

The next question is, "Given that x has been measured
at time t, what is the average uncertainty in a measure-
ment of x at time t+T?". The answer is given by
averaging H(Q

~
s; ) over s;, which yields

H(Q iS)=QP, (s;)H(Q is; )

portraits are shown in Fig. 2. The first minimum in I
yields the best choice of time delay, T=0.23 orbits.

The principal difficulty in calculating mutual informa-
tion from experiinental data is in estimating P,» from his-
tograms. If a box in the (s,q) plane of size dehq has N~
points in it, we estimate P~ to be X&/X„~ihshq uni-
formly across the box. Choosing any box size has advan-

tages and liabilities. For a given number of data, larger
boxes have more points, and hence the estimate of the
average probability is more accurate, but the estimates of
Pz are too flat, underestimating I(S,Q). Smaller boxes
let one follow changes in P& over short distances, but al-
low the fluctuations that are due to small sample size to
be interpreted as small-scale structure in P,q, overestimat-
ing I(S,Q). No single box size is best over the whole (s,q)
plane.

We have developed an algorithm that covers the (s„q)
plane with a partition in which the size of each element is
tailored to the local situation. We define a sequence of
partitions of the (s,q) plane, 60,6i,G2, . . . , G~, . . . ,
such that each partition is a rectangular grid of 4 ele-
ments generated by dividing each axis into 2 equiprob-
able segments. R (K~) denotes an element of G~, and
K is an index that takes one of 4 possible values. Ap-
plying such a partition to a continuous probability density
function P,q produces a discrete probability mass function
P~(R (K ) }. Since the elements are rectangular it
makes sense to also define P, (R~(K )) and Pq(R (K~ )).
Associated with the sequence of partitions is a sequence
io,i i, ii, . . . , which converges to I(S,Q), where

i~ =gP~(R (K ))

H(Q) is the uncertainty of q in isolation, and H(Q
~
S) is

the uncertainty of q given a measurement of s. So the
amount that a measurement of s reduces the uncertainty
of qis

&(log[P~(R (K ))/P, (R (K ))Pq(R (K ))] .

(10)

I(Q,S)=H(Q) —H(Q i S)

=H(Q)+H(S) —H(S, Q) =I(S,Q) . (8)

One representation of K is ordered pairs K =(i,j),
where i indicates a range of s values, and j indicates a
range of q values; see Fig. 3. With this notation and

This is the mutual information It is th. e answer to the
question, "Given a measurement of s, how many bits on
the average can be predicted about q'?". If S and Q are
continuous,

I(S,Q) =f P&(s,q)log[P~(s, q)/P, (s}P»(q)]ds dq .

The argument of the log in (9} is dimensionless so the in-
tegral is independent of the coordinates chosen. It is im-
portant to remember that mutual information is not a
function of the variables s and q, but that it is a function-
al of the joint probability distribution I'~. It is a global
measure of the bumpiness of P~. If s and q are the same
to within the noise, then I(S,Q) specifies the relative ac-
curacy of the measurements in bits, i.e., how much infor-
mation one measurement gives about a second measure-
ment of the same variable.

If Q is a delayed image of S, then a delay phase portrait
gives the estimated joint distribution P~, and I is a statis-
tic calculated on the portrait that evaluates how redun-
dant the second axis is. The values of I for four phase

P, (R (i,j))=Pq(R (i j)}=(—, )

i~ =m log(4)+ g Pz(R (i,j))l o[Pg~( R(i,j))] . (11)
ij =0

The algorithm is recursive and requires a recursive ap-
proach to the definition of I(S,Q), so we organize 6 as
a tree rather than as a matrix. To get Gi from 60,
Ro(KO) is divided into four subelements R, (0), R, (1),
Ri(2), and Ri(3). To get Gz, each element of Gi
is divided into four subelements [R2(ki, k2): ki, k2
E [0,1,2,3I ]; see Fig. 3. In this fashion each element of
6 can be specified by R (k„k2, . . . , k }. The ele-
ments of the partition are the same as those in the matrix
organization, but the 4 values of K are represented as
m tuples rather than as Cartesian pairs.

We now look at what happens to the element R (K~ )
of 6 in going from m to m+1. Here K is a particu-
lar m tuple (ki, k2, . . . , k ). Define Cr as the contribu-
tion to i~ of R~(K~) and CJ as the contribution to i~+i
of the subelement R +i(K~,j ). Then we have
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/
g0~

qI Oo

Cr =Pz m log(4)+Prlog(Pr ),
where Pr P~(R——(K~ )). Similarly,

(12)

C& PJ(m +—1}log(4)+Pilog(Pi }, (13)

where PJ P&(R —+—&(K,j)). The contribution of the
areacoveredby R (K ) to i +& is

3 3

g CJ.=Pr(m+1)log(4)+ g Pl o(gP )j. (14)
j=0 j=0

Notice that to go from level m to level m+1 [from

I

FIG. 3. Two steps in the sequence of partitions. The shaded
element of G2 is labeled R2(1,1) in the matrix notation and
R2(0,3) in the tree notation. In G3 the shaded element is labeled
R3(3,2) in the matrix notation and R3{0,3,1) in the tree notation.

F(R (K )}=P~(R (K ))log[P~(R (K ))],
»d if P& is nonuniform over R~(K ),

F(R (K ))=P,»(R (K })log(4)
3

+ g F(R +)(K,j)) .

(16a)

(16b)

This results in a mixed partition being used to calculate
I(S,Q). The recursion goes deeper in areas where P~ has
finer structure, yielding smaller partition elements where
they are needed.

For experimental data P~(R (K )) is estimated by
N(R (K ))/Np, where N(R~(K~)) is the number of
events observed in partition element R~(K ), and Np is
the total number of events observed. Substituting these
estimates into (12) and (14) produces

(12) to (14)] a term Prlog(4) is added and the term
Pz log(Pr ) is replaced with QPilog(Pi). This is the basic
recursion step. Also notice that if P& is flat over

), then Pp =Pi =P2 =P3 =Pr/4 and Cr =Cp
+C~+C2+C3', thus there is no point in subdividing the
element. Now we can write I(S,Q) in terms of a recur-
sive function,

I(S,Q) =F(Rp(Kp)),

where if P,» is uniform over R~(K ),

Cr ——(1/Np)IN(R (K ))m log(4) N(R (K —))log(Np)+N(R (K ))log[N(R (K ))]I, (17)

g CJ =(1/Np} N(R (K ))m log(4) —N(R (K ))log(Np)+N(R (K ))log(4)

3

+ g N(R +&(K,j))log[N(R +&(K,j))] (18)

Thus the recursion step consists of replacing the term

N(R (K ))log[N(R (K ))]

by

N(R~ (K~ ) )log(4)+ Q N(R~+ )(K~,j))log[N(R~+ )(K~,j))] .

I(S,Q) =(1/Np }F(Rp(Kp))—log(Np),

where if there is no substructure in R (E ),

(19)

This step only operates on numbers of events and is in-
dependent of normalization, so we can write

We use a X-square test to check for substructure in
R (K ). The null hypothesis is that P~ is flat over
R (K ), which implies that the distributions for
IN(R +)(K,i)): 0&i &3I and IN(R +2(K,i j)):
0 &i & 3 and 0 &j& 3 J are fiat rnultinomials. If we let

F(R (K }}=N(R (K ))log[N(R (K }}], (20a)

and if there is substructure in R~ (K~ ),

F(R (K ))=N(R (K ))log(4)+ g F(R +&(K,j)) .
j=0

(20b)

and

N =N(R~(K~ )), —

a, =N(R~+)(K, i)),

bgj. =N(R~+2(K~ ij )),
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—", (1/N) g (a; N—/4) & 1.547, (21)

the reduced X-square statistics and 20% confidence levels
are

We have found the present algorithm, which operates
on two-dimensional sets of data, helpful for choosing de-
lays for higher-dimensional reconstructions, but it would
still be useful to generalize it to higher diinensions. Recall
that

3

Xi5 225 ( 1/N) g (&tj N/16) & 1 287 (22) I(Xp,Xi ) =H(Xp)+H(Xi ) —H(Xp, Xi ) .
f,J =0

If either of these inequalities fails we conclude that there
is substructure in It! (K ).

Our algorithm operates on a pair of sequences of num-
bers whose lengths are a power of 2: {[x(t),y(t)]:
0 & t & 2"J, where t is an integer. If a phase portrait is be-
ing evaluated, y will be a delayed version of x. Each in-
put sequence usually consists of floating point numbers in
which the range and the density over intervals of the
range is unlmown. %e change variables to obtain se-
quences of known range and uniform density. The vari-
able change goes from floating point (x,y) to integer (s,q)
representation in a fashion that preserves orderings, with
the constraints that if x(ti ) & x(t2), then s(t

~ ) &s(t2) and
if y(ti) &y(t2), then q(ti) &q(t2) and 0&s(t) &2" and
0&q(t) &2". This requires Is(t)] and [q(t)] to be permu-
tations of the sequence I0 to 2"—1]. The change of vari-
able is done using a quick-sort algorithm. If the binary
representations of s(t) and q(t) are available after the
change of variable, then [s(t),q(t)] can be assigned to the
appropriate element of any partition G~ by inspection.
The final step is to invoke (19) to evaluate I(S,Q) using
(21) and (22) to test for substructure in R~(K ).

If the number of events is Np, the time the algorithm
takes for the slowest case is proportional to NplogNp.
The change of variable is done by an N logN sort. The
other time-consuming operation is dividing up the events
at each branch of the tree. The worst case for this step is
if s (t) =q(t) for all t. In this case the events are divided
into two groups at each branch, and the number of levels
goes as logNp. Since all the events must be dealt with at
each level, the time for the algorithm goes as NplogNp.
We have implemented the algorithm in the C language on
a Digital Equipment Corporation VAX computer and
have found that for each value of T it takes 97 sec to cal-
culate I(X(t),X(T+t)) over 16384 points.

There are refinements, extensions, and applications of
the algorithm that can be pursued in future work. We
would like to develop a more sophisticated statistical test
for flatness. The present test is crude and the 20%%uo confi-
dence level was chosen arbitrarily. The recursion stops
when the data imply that the parent distribution is fiat, or
when the data become too sparse to reveal any structure,
without indicating which. If it stops because the data are
sparse, the algorithm could grossly underestimate I. A
test that calculated error bars for I would be better.

One can generalize by defining

I„(Xp,Xi, . . . ,X„)=g[H(Xj ) —H(Xp, X„.. . ,X„)].
J

I„ is the number of bits that are redundant in a vector
measurement (Ii is the old mutual information). The
redundancy occurs because knowledge of some com-
ponents of a vector measurement can be used to predict
something about the other components. In an algorithm
that calculated I„, elements would be subdivided into
2"+ ' parts at each level instead of just 4 and the statistical
test would be altered, but otherwise the algorithm could
be the same as the present version. If the vector were a
time-delay reconstruction, plots of I„(T), like those in

Figs. 1 and 2, could be used to choose delays for higher-
dimensional reconstructions. If n were large enough
(larger than the number of degrees of freedom), I„should
be a monotonically decreasing function of T, and the
slope of I„ln should give an estimate of the metric entro-

py. Shaw' has used Ii to estimate the metric entropy of
a one-dimensional map and has discussed the technical
problems.

The mutual information provides a key to quantifying
spatia! coherence or chaos, a subject of current in-
terest. ' ' Our method could be applied directly to a
scalar field to analyze the space analog of a two-variable
delay reconstruction, X= [x (rp ),x (rp+ 5)]. If the
method were extended to multiple spatial delays 5, the
slope of a plot of the generalized mutual information
I„(h)ln would give the spatial analog of the metric entro-

py
In conclusion, we have presented a recursive method of

calculating mutual information. Using this method we
have demonstrated for two systems that the first
minimum in the mutual information provides the best
available systematic criterion for choosing time delays for
phase portraits. We have also successfully used the
method on other systems. We hope that the method will
be widely used, and that it will yield new insights into the
temporal and spatial behavior of nonequilibrium sys-
tems. '6
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