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The very recent experimental results on the new phenomenon of resonant activation in current-

biased Josephson junctions [M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke, Phys. Rev.
Lett. 53, 1260 (1984)] are completely accounted for via a theoretical approach which settles the

problem of determining the rate of escape of a highly inertial Brownian particle from a potential

we11 in the presence of a radiation field. To get this very satisfactory agreement with experiment a
theory was developed, the main features of which are as follows. (1) The subtle problem of elimina-

tion of irrelevant variables is dealt with by devoting special attention to the case where the time scale

of the system of interest is not well separated from that of the irrelevant variables. (2) A perturba-

tion approach is used which, in the absence of stochastic force, is proved to coincide with the well-

known method of multiple time scales. (3) It is assumed that the process of excitation-relaxation

within the well is much faster than the process of escape from the well itself. The theory of this pa-

per predicts analytically the frequency position for the maximum escape rate in terms of a suitable

renormalized anharmonicity parameter a. In the conditions of the aforementioned experiment this

theory predicts the shift from the natural frequency to be 2a (with an agreement with experiment of
+1%). Furthermore, theory predicts that if the friction is lowered, a new phenomenon takes place:
the shift of the maximum from the natural frequency is reduced to a. Analytical predictions on the
friction region where this transition takes place are made.

I. INTRODUCTION

The generalization of the Kramers theory' to radiative-
ly activated rate processes is an intriguing problem which
is not completely solved. In the overdamped case it is
possible to build up a Fokker-Planck-like equation for the
space variable where the influence of the radiation field
appears via a suitable diffusion term. t This theory, how-
ever, leaves completely unexplored the field of photoselec-
tive chemical reactions, where inertia should play a fun-
damental role.

On the other hand, we feel challenged to study precisely
this region by the results of a recent experiment on a
Josephson junction, some relevant features of which are
left theoretically unexplained. These are the following.
(1} The escape rate reachs its maximum value at a fre-
quency lower than that corresponding to the natural fre-
quency of the junction. (2) The line shape is asymmetric
around the maximum and appears broader in the low-
frequency region. The theory developed in the present pa-
per will be proven to satisfactorily account for both prop-
erties. Moreover, the agreement is also quantitative as
theory predicts the frequency position for the maximum
escape rate within the accuracy of the experiment itself.

The particular problem treated in this paper touches
also a theoretical aspect of more general interest, which
has been the subject of many related papers, that is,

how to avoid the technical difficulties associated with the
summation at infinite order. This paper sheds further in-

sight into this issue.
The outline of the paper is as follows. Section II is de-

voted to deriving the equation for energy diffusion which
will be applied to evaluating the rate of escape in the pres-
ence of a radiation field. This rate of escape relies on an
analytical expression which, in turn, rests on the amount
of energy absorbed from the field per unit of time. Sec-
tion III will aim mainly at determining, via different tech-
niques, this significant information. Section IV will show
this new theory at work by comparing the recent experi-
mental results of Ref. 5 with the theoretical predictions.
The concluding remarks will be presented in Sec. V.

II. ENERGY DIFFUSION

The system under study in this paper is

V —yu+F(t) .
(2.1}

x and u denote the space coordinate and velocity of a
Brownian particle which undergoes the influence of a con-
servative field associated with the potential
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V(x)= —,
'

toox 2 ——,Px (2.2) from which, by applying the standard Stratonovich as-
sumption,

a friction term —yv, and a time-dependent force F(t),
which in turn is divided into two parts

F(t)=fg(t)+f,(t),
p(x, E,t) = W 2( xt

~
E)a(E,t),

with

(29)

fz(t) being a Gaussian white noise defined by

(fs(0)fs(t) ) =2Ds5(t) =2yktt T5(t), (2.4)

W, (x, t ~E)~
1

[E—V(x}]'" ' (2.10)

E=-, v +V(x) (2.5)

and f,(t) the force produced by the interaction with a ra-
diation field of frequency roti. Throughout this paper we
will devote our attention to the extremely underdamped
regime (y ~0).

The basic assumptions on which the theory of the
present paper rests are the following.

(a) The variable energy

and contracting over the variable x we get

DT

2y .

+2 ~ DT, o(E,t),
B' ~(E)

BE' (2.11)

is much slower than the variables x and v, thereby mak-
ing it possible to build up a diffusion equation for this
variable alone.

(b) The process of escape from the potential well is ex-
tremely slow when compared to the motion of the
Brownian particle within the well.

These two assumptions will allow us to focus first on
the problem of describing the energy diffusion within the
well without paying attention to the escape process. Then
the escape process will be accounted for via a first-passage
time method relying precisely on the energy-diffusion
equation determined through the first step.

In principle, the energy-diffusion equation may be ar-
rived at by rewriting Eq. (2.1) in terms of x and E. This
provides

x = I2[E—V(x)]I'", (2.6a)

E= 2y[E —V(x)—]+F(t)I2[E —V(x)] I
' . (2.6b)

If the dynamics of the system, the infiuence of which on
E is simulated by the force F(t), is extremely fast, it is
safe to define F via

where

p(E): J„dx[E —V(x)]'~~, — (2.12)

R being the region characterized by E)V(x). The major
difficulty involved by highly resonant systems is that
these are very far from the condition where the picture of
the irrelevant system, as given by Eq. (2.7), is reliable.
However, we shall show that an equation of the same type
as Eq. (2.11) is really allowed provided that Dtt is not re-
garded as completely independent of the dynamics of the
system of interest.

A. Correctly eliminating the radiation field
freedom degrees

According to the spirit of the "reduced" model theory'
(RMT) we must detail, via suitable auxiliary variables, the
dynamics of the system resulting in the force F(t) of Eq.
(2.1). Special care must be devoted to describing the
dymunics of the radiation field since this will significantly
affect the system of interest via resonance 'phenomena.

Thus, let us replace Eq. (2.1) with

(F(0)F(t)) =2D~5(t),

where

DT ——D, +Dg,

(2.7a)

(2.7b)

X=V,

v' = yv+f—s(t)+toty- ,
Bx

(2.13)

and D, is a contribution coming from the radiation field.
In such a case the Fokker-Planck equation associated with
the system of Eqs. (2.6a) and (2.6b) reads

P

p(x, E, t)= — [2—[E—V(x) ] I
'iB B

Bt Bx

g=N,

~tie ~~+fa(t»
where fji(t) is a Gaussian white noise defined by

(ftt(0)ftt (t)) =2' 5(t) =2k (ivi)~5(t) . (2.14)

B DT
+2y E V(x)——

BE 2y
A, (2coa (2.15}

The field will produce resonance effects when condition

B2
+2 Dr[E V(x}] p(x, E,t), —

BE
(2.8)

is fulfilled.
The Fokker-Planck equation corresponding to Eq.

(2.13) reads
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a a av a a a'
p(x, U,y, w, t)=&p(x, u,y, w, t)= ' —U + +7' U+ksT

au
L

2a—Nl
aU

+ —w +co)ty +A, w+(w ),~ 2

a 2 a a 2 a
w aw "aw' p(x, u,y, w, t) . (2.16)

Let us define I/rt( as the largest of the two parameters A,

and toa', that is

1 =—max(A„cua ) . (2.17)

1=—= max(y, ~ o) .
~X

(2.18)

Let us also assume the anharmonic term of V(x) to be
weak enough as to make it possible to characterize the
dynamics of the system of interest via the parameters y
and o)o. ' We define

W=Wo+Wi=W. +Wb+Wi

~,:——U + +y v+kaTa av a 'a a'
X X U U au

(2.20)

Ws= —w +o)iiy +A, w+(w )~a 2 a a 2 a

y aN w ~aw2

2

U

As usual, '2' we must apply the Zwanzig projection
method to the interaction picture:

~P. &&&x ~ (2.19)
p= W—i(t)p,

at
(2.21)

we are allowed to choose the latter term between square
brackets of Eq. (2.16) as the unperturbed part of the
operator W. In the present paper Eq. (2.19) is not ful-
filled. We are thus obliged to define the unperturbed part
of W as also including the former term between square
brackets, i.e.,

where

p=—e "p,

Wi(t) =—e ~W(e

By making the Born assumption we then obtain

(2.22)

4
(W +ipse&i( —i,/2)(S —s) ao(xut)=&—,o(xut)+ (y )~ g dr e '

.
" o(xut). (2.23)

For taboo we have

a
tr(x, u, t)=—&,tr(x, v, t)+ (y )& g 0(x,u, t) .

F01 1

iPtox—
(2.24)

It is also possible to write Eq. (2.24) as (see Appendix A)

$14 all am—o(x, v, t) =W, tj(x, u, t)+ (y )~ 2 W~+ IV,„+ g „W„+ o(x, u, t) . (2.25)

When dealing with a weakly anharmonic system, we are allowed' to neglect terms which break the Fokker-Planck struc-
ture. Furthermore, we can replace the diffusion operators IV~ and IV with their mean values, evaluated over the
equilibrium distribution in the absence of radiation field. This leads us to

~'

o(x,u, t) =W—,o(x,u, t)+ ( W~ ) + ( W ) ir(x, u, t) . (2.26)
Bt 2

i
QU BxBv

'(y')
, rad. fIeld is=+)

I'—= d (v)
dt 2

(W +iissui( —)L/2)s adxduv dse ' cr x u t
0 aU

(2.27)

If cr(x, u, t) on the right-hand side (rhs) of Eq (2.27) is rep.laced by o~, defined by

~ ~ ~ ~ ~ ~As to ( W~), this will be proven to not contribute to the equation of energy diffusion. As to ( W~ ), this in turn can be
given a more effective expression. We see, indeed, from Eq. (2.23) that the kinetic energy absorbed from the radiation
field per unit of time is

T
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(-e~/2k T) ( —V(x)/k& T)~e e (2.28)

from Eq. (2.27}we get

~4 l + ~ (W +iycuz —2,/2)s
(2.29)

On the other hand, from Eq. (2.26) we obtain

Col (y )cq + ~I'= x u 8' a~x, u (2.30)

This is a pleasant consequence of applying the correct
elimination procedure of Sec. II A.

p-+i B
(2.31)

which is precisely the result provided by the linear-

response theory. '

This means that if the mean-field approximation is related
to the equilibrium distribution of Eq. (2.28), then for
A, ~O

III. THE ROTATING-%'AVE APPROXIMATION

This section will be devoted to determining via different
techniques the amount of energy absorbed by the system
from the radiation field in the unit of time, that is, Dx.

Let us divide the operator W of Eq. (2.16}into an un-

perturbed and perturbed part as follows (we assume A, =O
and fx(t) =0):

&=&0+Wi,

B. The energy-diffusion equation

We are now in a position to properly apply the Strato-
novich method outlined at the very beginning of this sec-
tion. In Sec. DI it will appear clear that in the weakly
anharmonic case we are allowed to neglect the anharinon-
ic contribution to the total energy. Let us define, there-
fore,

B 2 B B 2 B
&0= —v +toy» —w +cila y

B» Bu By Bw

2 2 B B 2 Bui =(ruo —~ox )» —P» ~ly
Bu BU BU

B B2
+7 v+kii T

U BU

(3.2)

(3 3)

By applying the Stratonovich method we obtain

B = B B B2—o(E,t) = y E yet T +y—ktt T E

B ~I(y )
BE 2

(2.32) Note that the unperturbed part consists of two exactly de-

generate harmonic oscillators. To get this exact degenera-

cy we have been constrained to include a detuning term
[first contribution to Wi on Eq. (3.3)]. The other contri-
butions to Wi will be referred to as anharmonic, pump-
ing, and fluctuation-dissipation terms, respectively.

The only basic assumption behind the theory developed
in this section is that the absorption linewidth EI fulfills
the condition

+ (8' ) E o(E,t) .
B'

BE' (2.33) EI &&toe . (3.4}

1(y )~(-
2

(2.34)

The remarkable features of this result are the following.
(a) The weakly anharmonic case, which allows Eq.

(2.32) to be used, produces a diffusion equation for E
which is completely unaffected by the anharmonicity [the
term P» B/'Bu appearing in Eq. (2.16) is proven to not
contribute at all if the definition of Eq. (2.32) is used] if
the radiation field is not present. When the radiation field
is turned on, how&ever, the ar]Lharmonic term wi11 be prov-
en to exert a significant role through ( W~ ).

(b) In the presence of a radiation field, the Fokker-
Planck structure of Eq. (2.11) would be completely
recovered [if the definition of Eq. (2.5) were used] when
giving the contribution Dz of Eq. (2.7) the following

a+ =U+icO~X, (3.5)

P+ =w+l copy, (3.6)

it is shown that in the interaction picture W&(t} consists
of both a time-independent part and a tine-dependent
part, to which are associated the oscillation frequencies
+2icox The assumpt. ion of Eq. (3.4) allows us to neglect
these terms.

Vfe then obtain

This justifies indeed the division of W into &0 and Wi
as illustrated by Eqs. (3.2) and (3.3). We shall again apply
the interaction picture of Eq. (2.21) with Wi(t), Eq.
(2.22), related to the definition of Wo and W& given by
Eqs. (3.2) and (3.3).

By making use of the new variables
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2 2
6)0—Ng B a

Bag Baa+ — a 3i p t) 2 8(a+a ) — (a a+)
8&0z a a+

+ a+ a +4kzT8 8 8 3
a+ + aa Ba+ Ba

(3.7)

We shall come back to this equation later on [see Eq. (3.45)J. When expressed again in terms of the original variables x
and v, Wi of Eq. (3.5) reads

I

lktv 8 i t) 3P t) 2 g 4 i 8
V —toz X —

4 (tVzXV +tozX ) — (V +tVzX V)
toz Bx Bv tvz Bv BX

t) 8 3 kzT 8 t 8 2 8+ v+ x+kzT 2 +
& &

+
&

w tiPz —y, Eco=toz —tvp .
2 V X Bv toz Bx 2rdz x v

(3.8)

The main advantage of this representation is that the dif-
ferential operators concerning the radiation field disap-
peared. The influence of the radiation field depends on
the parameters w and y which express the initial condi-
tions of the oscillator y = tv, iv = —cozy.

A. The deterministic limit

This limit is reached when T~O; that is, when the sto-
chastic force is completely absent while maintaining the
damping. The linear underdamped theory will predict un-
bounded oscillations when the radiation field is exactly
resonant with the system (b,to=0) irrespectively of how
small the excitation is. In the actual system these large
oscillations are limited by the damping and the nonlineari-

ty; furthermore, we will be able to demonstrate at the end
of this section that in the absence of damping, where the

U =coga sing,
(3.9)

where tt is the amplitude of the response of the system to
excitation and y is the phase. After a straightforward cal-
culation we obtain

deterministic theory' predicts an unbounded and infinite-
ly sharp bended peak, the presence of a stochastic force
will produce finite amplitude and width as an effect of the
interplay between nonlinearity and fluctuations.

When T~O the system tends to become deterministic
and it is therefore more convenient to describe its tem-
poral evolution in terms of amplitude and phase. Starting
from Eq. (3.6) we will introduce the new variables

t) ~ 8 ykjtT 32 ykzT tl 1
p(a, y, t) = ——ht0 + g +

2toz &it 2' z

rkzTa'1 3p a, ~ a. ~ a+ i 2 z
—— a — sing —— cosy p(a, p—, t), a —= tot~y . (3.10)

When T =0 we recover the completely deterministic case.
The resulting equations of motion for a and p can be
written as

Ka = — a+ sing,
2 267'

3 P i aay=hcoa+ — a + cosy .
8 Q)g 2COg

(3.11)

These same equations can be obtained using a completely
different theory, namely the theory of multiple time
scales. ' Steady-state motions occur when a =y=O and
correspond to the solution of

1 Ka =— sing,
2 2 cog

(3.12)

addio+ — a = —— co~ .
3 P p 1

I

Squaring and adding these equations we obtain

3 p, z
4. 8 COg

2= K
a

4e)g
(3.13)

This equation is an implicit equation. for the amplitude of
the response a as a function of the detuning htv and the
amplitude of the excitation a: it is called the "frequency-
response" equation. Figure 1 shows this result for dif-
ferent values of the damping y.

The results illustrated in Fig. 1 show that the limit
y —+0 should be approached with some caution. We see
indeed that for y~O the spectral separation of the reso-
nance at t00 from the null frequency is completely broken.
In the presence of a stochastic force, however, the
linewidth of the absorption spectrum will be shown to be
limited by a residual width which determines an upper
bound to the maximum absorption intensity. This will
make the theory valid for a wider interval of the friction
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v /4k&T coax /4k&T——v /4k&T —ce&x /4k&T

(3.15)

(2) Also, we use the adimensional variables
XYLO@

(2k, T)'" '

U

(2k' T)'~

(3.16}

(3.17)

FIG. I. Effect of damping on the frequency-response curve,
Eq. (3.13). (@=1.0, cop ——1.0, k =1.0).

The variable g is associated with the creation (destruc-
tion) operators a+ defined by

(3.18)

parameter y that is 0&y &EI'«aip. In other words, it
will be shown that the absorption linewidth EI is finite
even in the limit case y =0.

1
b+ ——

v'2 Bri
(3.19)

which certainly satisfy the properties of Eq. (3.14). The
same properties are satisfied by the operators

T

B. The general case

To deal with the general case we must face the problem
of deciding which is the most suitable basis set to expand
the operator 3 i of Eq. (3.8). We shall use a basis set of
Hermite polynomials and the formalism of creation and
destruction operators. We a&ant to introduce creation and
destruction operators satisfying the useful properties

associated with the variable i).
The expansion basis set is then given by the direct prod-

uct

~nm)=~n) ~m)= N„e ~—~K„(g) N e "~K (ri),

(3.20)

where K„(g) and K (g) denote Hermite polynomials.
Note that

a+ ——a
(3.14)

a+ ——g ~
n+1)(n+1) (n ~, a =a+ (3.21)

a =a+ .

To this aim we shall proceed as follows.
(1) First of all we make the transformation

b+ ——g ~
m+ 1)(m+1)' (m ~, b =b+ . (3.22)

The final result is (I ~

—=
W i)

T

I i hei(a b+ ———a+b }+a a+b b+b +b a+a a+ ab+b b+ —b+a a+a—
+ —a+b b++a+b —a b+ —b+a a+2

2' 132 Pi——a b+b +a b+ a+b —b —a+a — (a+a +b+b )+ b+ — a+,
2 v'2 v'2

(3.23)

where

3a= ——
3 AT,4 QPg

(3.24)

We shall call "manifold of vth order" the set of states
~

mn ) satisfying the relationship

n+m=v.
2 2

(3.25)
pal ~z3'

2~a (2k&T)'" 2 a (2k, T)'"
An aspect of significant relevance of this result is the
anharmonic parameter a which expresses the significant
interplay between anharmonicity and fluctuation.

We see then that the detuning term, the fluctuation-
dissipation term, and also the first contribution to the
anharmonic term [first contribution between small brack-
ets on the rhs of Eq. (3.23)] cannot produce transitions
from one manifold to another, whereas the remaining part
of the anharmonic interaction connects a manifold of the
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vth order to one of the (v+2)th order (and vice versa).
The radiation term can only provoke transitions from the
vth to the (v+1)th order manifold (the reverse transitions
are forbidden).

I.et us ca11

I', =me)(a b+ a—+b )

+&x(a+b b+b +b a+a a+

a—b+b b+ —b+a

proach based on the division of 1, into a perturbed part

I,=I ) —I d, (3.33)

and an unperturbed part I q of Eq. (3.27). Of course this
perturbation approach implies a fairly large value of the
parameter y.

From the perturbation theory we get

1 1 1
in~)= 1 — I', + I, I',

d d d

2
(a+a +b+b ) . (3.27) I, I, I,+ i

00) . (3.34)
1 1 1

This is the contribution to I i which does not provoke
transition from one manifold to another. This in turn is
divided into antisymmetric I I and symmetric I ~ parts
defined as follows:

This substituted into Eq. (3.30) produces

( E(ha&) )

I I 5co(a——b+ a+ b —)
+a(a+b b+b +b a+a a+

ab—+b b+ b+a a—+a ),
(3.28) where

(3.35)

I'z ——— (a+a +b+b ) .
2

Let us consider the ideal case where y=0. In such a
case all the matrix elements on the same manifold vanish

when

b,ai =a(v+ 1) . (3.29)

(3.30}

This suggests that a strong coupling between the 0th-order
manifold (ground state) and the vth-order manifold is al-

lowed, thereby leading us to the transition scheme of Fig.
2. The expansion series of Eq. (3.35) would provide a
more convincing justification. However, this will be prov-
en to be convergent only in the region y & 2a.

We note that to evaluate the amount of energy stored in
the system as a function of b,co, we must determine

(E(&ai))—= —,'(tr i(a +a )'+(b +b )'iver ),

is)—= (i20)+ i02)).
2

(3.36)

y»(p„p2) «&a, (3.38)

while being kept far apart from the saturation region. We
can thus neglect the contribution of anharmonicity to I,.
This means that (pt ——0}

As mentioned before, the condition of Eq. (3.29) produces
divergences in the expansion terms of Eq. (3.35), thereby
leading to the scheme of Fig. 2.

Note, however, that the expansion series of Eq. (3.35)
can only be used when y is fairly large compared to a.
Let us consider the case

(3.37)

In such a case we can explore physical conditions where

where
i tr~) and (P~ i

are defined by

I iin~)=0,
(ir~ i

I'i ——0.
(3.31)

(3.32)

It is immediately evident that (%~ i
=(00 i. As to

i ir~), we can determine this state via a perturbation ap-

2

(hem —2a) +
4

Note that Eq. (3.35}can also read

(3.39)

I, I, I+ -. 001 1 1

1 1

Se 4a 3o, 2a COp

FIG. 2. Schematic representation of the transitions taking
place at y~o in the hypothetical case where the vahdity of the
expansion series of Eq. (3.35) extends to this limit.

1 1 1I, I, —-- s'
d d d

(3.40)
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is )=r, l, ioo).'Ig (3.41)

On the other hand, Eq. (3.40) is equivalent to the Laplace
transform at the origin of

&E(hi0))= f (s ie
'+ ' is')dt . (3.42)

Equation (3.42) is suitable for applying the continued
fraction procedure (CFP} of Refs. 12 and 17. Further-
more, the calculation can be made even simpler by consid-
ering the case

P]A«a. (3.43)

After getting the second manifold through the transitions
generated by the radiation field, the condition of Eq.
(3.43) allows us to assume that the further transitions can
be considered as generated by the anharmonicity alone.
Thus Eq. (3.42) will be used in the applications of the
present paper assuming that only the anharmonicity con-
tributes to I, appearing in the corresponding time evolu-
tion, whereas

i
s') is generated only by the radiation field.

C. More on the energy-diffusion equation

The major aim of this section is to explore the extreme-
ly underdamped region y&a. We must get rid of the

I

p~(x, u}~ exp
U +COAX

2kt] T (3.44)

This supports the choice of Sec. II B, Eq. (2.32}.
Let us therefore rewrite Eq. (3.8} in terms of the vari-

ables a+ and E, defined via Eq. (2.32). We get

wrong suggestion from Fig. 2, that in this region many
absorption sharp peaks may appear. This is now a settled
issue, which is also the subject of an allied paper (concern-
ing the case of the Duff]ng oscillator where a is positive},
the main conclusions of which are supported by analog
simulation. ' We show in this section that the main
feature of the extremely underdamped region is the ap-
pearance of an asymmetric spectrum peaked at hto=a
with a linewidth the order of magnitude of which is pre-
cisely a when y-0. In this extreme region Eq. (3.42)
cannot be more applied and we must have recourse to the
linear-response theory. Although the application of this
well-known theory to the extremely low-damping limit
can be questioned, ' the assessment of the existence of the
residual linewidth a means that the strength of the sto-
chasticity may be large enough to render the linear-
response theory at least a good approximation to the actu-
al absorption spectrum (in the presence of a vanishingly
small excitation field).

From Eq. (3.8) we see that in the absence of radiation
field the equilibrium distribution attained by the system in
the rotating frame of reference is

r

Bt
p(a+, E—,t}=Wp(a+, E,t)

i —
&

— a+E+y E+kt]T E + a++2k]]T a+ p(a+, E, t) .
. 3P a

coo a+ E E E 2 a+ aalu
+ aE

J

(3.45}

To apply the linear-response theory we assumed
P]=P2=0.

From this equation we derive that in the extremely
low-friction limit C]„(t)= (a (0)E"a+(t) )~, (3.49)

To determine (a (0)a+(t)) we proceed as follows. Let
us define

(3.46)

the variable a+ is much faster than the variable E. a+
oscillates indeed in time with the mean frequency

4,(t)= (a (0)a+(t) )~ .

From Eq. (3.45) we then get

(3.50)

, (E)=a .3
4 ~o

(3.47) eg(t)=iac]g+](t) y(n+ —,
' )eg—+yn(n+1)eg ],

(3.51)

This ineans that if the linear-response theory is fulfilled,
this regime is characterized by an absorption spectrum
peaked precisely at dice=a.

By applying the linear-response theory we have

from which

@0(s)=+0(s)[(e)+F](s)~0[(s')++i(s)&][(s')+
(3.52)

(E(he])) =ton f (a (0)a+(t))~e ' 'dt . (3.48)
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Fo(z)=
2 1a &a2

2
Z —A2—

Fi(z) =—
0 )Q2

~l
Z —A2—

(3.53)

a„" '
= yn (n +1), o„"+'=ia, A,„=—y(n + —,

' ),

minor effort detailed in Appendix B, we shall adapt the
theory to the study of the ro:ent experimental results by
Devoret et al. %e shall show that the agreement is quite
satisfactory (especially as far as the position of the max-
imum escape rate is concerned) and the possible physical
reasons behind the discrepancies will be discussed in the
concluding remarks (see Sec. V).

An underdainped Josephson junction with critical
current Io biased at a constant current I can be modeled
as a particle moving in the one-dimensional potential

a+(t) = +i &—Ea+(t) +a+—(t),. 3 P
4 cog

from which

(3.54)

and so on.
In Sec. IV we shall use both Eqs. (3.42) and (3.48) sup-

plemented by Eq. (3.52).
When the condition of Eq. (3.46) applies, we can also

derive an analytical expression for ko(z). From Eq. (3.45)
we indeed get

V(8) = Vo(s8 —cos8),

the corresponding equation of motion being

8'+y8=— +F(t),V

where F(t) is a Gaussian white noise defined by

(4.1)

(4.2)

a+(t)=exp i i E—t exp — t. 3 P
4 a)g 2

(3.55)
(F(0)F(t))=2yktt T5(t) . (4.3}

By performing the average over the equilibrium distribu-
tion of the variable E we get

(a (0)a (t))=2 J dEexp i E—t exp —+t. 3 P
+ 3 2

=2k+ Texp t
—y (1+iat)i

(1+a't'}' (3.56)

Equation (3.56) shows clearly that the spectrum for y~0
is a broad band with linewidth

~
a

~
peaked at hto=a in

full agreement with the Risken theory. zo This is more
clearly detailed in Ref. 18, which is devoted to studying
the Duffing oscillator (and, therefore no attention is de-
voted to the process of escape from a potential well). We
would like to remark that a major result of the present pa-
per is that the theory of Sec. IV supplemented by the re-
sults of this section allows us to predict a phenomenon
seemingly not detected by Devoret et al. ;s that is, the shift
of the maximum rate of escape from hco=2a to hto=a
for y dropping from y=7

~

a
~

(experimental conditions)
«y « I

a I.

In the presence of a radiation field an additianal force will

appear and the dynamics of the junction can be correctly
represented by the system of Eqs. (2.13). The activation
out of the zero-valtage state which corresponds to the par-
ticle localized in the potential well (see Fig. 3) by mi-
crowaves at a frequency close to the natural (plasma) fre-
quency of the junction, enters in the general case of the es-
cape fram a well by a Brownian particle. ' So in the un-

derdamped regime where energy diffusion is assumed to
be the slowest process, we can utilize the theory developed
in Secs. D and III suitably adapted to study the effect of a
radiation field on the escape time out of the zero-voltage
state.

To apply the theory developed in this paper we have to
expand the potential V(8) around the minimum in order
to obtain a potential function which consists of a harmon-
ic contribution and anharmonic corrections. We have
that

IV. THEORY VERSUS EXPERIMENT:
THE CASE OF RESONANT ACTIVATION

FROM THE ZERO-VOLTAGE STATE
OF A CURRENT-BIASED JOSEPHSON JUNCTION

In Secs. 11 and III we studied the case of the potential
of Eq. (2.2) for the major purpose of making our argu-
ments more transparent This also ser. ves the purpose of
studying a case closer to that of Ref. 18 (where theory was
checked via analog simulation). In this section, with the

FIG 3. V(8) as. given by Eq. (4.1) for a bias current below
Io.
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V(8)—V(8;,)= (1—s )'i (8—8,)'IIn

+—Vps(8 —8;„)1 3

P(pro)
B +

y
yhV

V
exp

P(b,rp)

y

(4.9)

V,(1—s2)'"(8—8,„)'+ ~ ~ ~
1

$2
P~= (1—')' +

9 4 (1 2)i/2 (4.6)

Using this effective value for the anharmonicity we can
calculate the anharmonic parameter a and then, using Eq.
(3.42) or Eq. (3.52), we can also calculate the amount of
energy absorbed by the system in the unit of time and for
a particular value of the detuning b,rp. Once this quantity
is evaluated, we shall be in a position to use the equation
of energy diffusion Eq. (2.33),

'P

t) t) 8 82—p(E, t)= y E—yks T +yka T
2
E

(4.4)

Here Vp (I——p4 p/2n ), s =I/I p, and 4p ——h /2e. The
natural (plasma) frequency rpp corresponds to the harmon-
ic frequency and is given by

rop=Vp(1 —s )' (4.5)

[In order to obtain frequency in the usual units s ', we

have to multiply Eq. (4.5) by 4rr /C@p where C is the
shunt capacitance. ]

The form of the potential given by Eq. (4.4) is some-
what different from that of Eq. (2.2); however, when we
are interested in calculating the energy absorbed in the
unit of time, using the rotating-wave approximation, we
can show (see Appendix 8) that we can still use a poten-
tial such as that of Eq. (2.2) provided that we define the
effective anharmonic frequency P,ir, which in our case is
given by (see Appendix 8)

As we want to compare theoretical with experimental re-
sults rather than looking for vz, we will evaluate the
natural logarithm of the ratio between the escape time in
the presence of the radiation field rp and the escape time
in its absence rp, which is the usual Kramers result for ex-
tremely low damping

fp
ln

+0

P(hrp)

ykg T
b V P(hrp)

AT ykgT+P(harp)

(4.10)

When P (b,ro) is small compared to the thermal energy ab-
sorbed by the system in the unit of time yks T, Eq. (4.10)
can be approximated to

ln(~~ /rp) —=— hV
1

P(pro)
kg T ykii T

(4.11)

0,0

Figure 4 shows the theoretical predictions based on Eq.
(4.11) [or equivalently Eq. (4.10)] compared with the ex-

perimental result obtained by Devoret et al.s Note that
the agreement between the two kinds of results is very

good, especially for the position of the maximum escape
time; we remark that this position was predicted analyti-
cally and the agreement with the experimental result is

within the experimental errors. Only the friction y was
used as a fitting parameter. However, the value of y actu-
ally used is proven to be well within the uncertainty limits
resulting from the experimental errors. '

—P(bco) +P(hrp)
2
E p(E, t),aE2

which in turn will be applied to calculate the escape time
out of the zero-voltage state.

The escape time ri is identified with the time necessary
for the system to acquire an amount of energy equal to
the height of the potential barrier, and can be determined
using the well-known mean first-passage time method'p -1.0

40
I

(m/2~)QHr) 7.0
hV pst (E) E

~k r [yk T+P(brp)]E
(4.7)

where 6V is the height of the potential barrier which, for
the potential under investigation, reads

5 V=2Vp[(1 —s )' —s cos 's] . (4.8)

In the experimental conditions of Ref. 5, hV—= 10kiiT
so that to evaluate ~p we can make the usmd approxima-
tions '

FIG. 4. Theoretical versus experimental results:
theoretical result using Eq. (4.11) supplemented by Eq. (3.42) for
the calculation of P(hco); in this scale the theoretical result pro-
vided by Eq. {4.11}when P(bra) is calculated via Eq. {3.52) is in-

distinguishable from that obtained when using Eq. (3.42); S, ex-

perimental points of Ref. 5. The arrow denotes a)0. The
theoretical predictions for mo and a are mo ——6.28 GHx and
a=0.091 GHz. Experimental values for T, I, Io, and C were

taken: T=4.2 K, I=3.07 A, Io ——4.64 A, and C=6.8 pF.
The value of y uexi to get the theoretical results was y=0.64
GHz.
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V. CONCLUDING REMARKS

The problem of activation in extremely underchunped
Josephson junction circuits is by itself a problem of re-
markable interest. z Buttiker, Harris, and Landauer, ~ for
example, developed an approach to cover a range of the
damping constant wider than the extreme under~efnping.
The approach used in Sec. IV is based on a theory @which

in the absence of radiation field coincides with the ex-
treme underda(mped regime of Kramers. ' In principle it
would be possible to apply the argument of Buttiker,
Harris, and Landauer to the energy-diffusion equation
[Eq. (2.33)]. However, it aeons to us that the disagree-
ment between the theoretical result and the experimental
one could also be ascribed to different causes: (1) The
rotating-wave approximation and (2) the experimental er-
rors themselves. Nevertheless, the theoretical predictions
on the position of the spectrum peak agree surprisingly
well with the experimental results. We are also in a posi-
tion to predict that the experiment of Ref. 5 would lead to
a peak centered at (oo+a if a friction y &a were used.
An interesting result of this paper is that a transition
from a peak centered at cvo+2a to a new condition where
the peak is centered at too+a takes place when changing
the friction from y & a to y & a. This result has betm the
subject of a preliminary short report'q and, as the free re-
laxation spectrum is concerned, has been completely cor-
roborated by the results of analog simulation. 's This
makes the present paper original and timely. Indeed, in
addition to Refs. 2 and 3 already commented on in Sec. I,
to the best of our knowledge the only previous examples
of extension of the Kramers theory to the case of radiative
activation are the papers by Ben-Jacob et al.z These au-
thors, however, confined their attention to the case of a
truncated harm. onic oscillator, thereby preventing them-
selves from taking the effects of anharmonicity into ac-
count.

As to the more basic issue mentioned in Sec. I and con-
cerning the elimination of irrelevant variables, the analysis
of Sec. IIA shows in what physical condition the radia-
tion field can be dealt with in the same way as a standard
stochastic force characterized by its correlation function
[see Eq. (2.7)]. This implies that the time scale of the ra-
diation field is much shorter than the time scale charac-
terizing the system of interest, thereby making it possible
to define the operator driving the radiation field as the
unperturbed part of the total effective Liouvillian. This
division of the total effective Liouvillian leads to the same
fiaw as that pointed out in Refs. 6 and 7. Hanggi et al.
shoveled indeed that the long-time behavior predicted by a

I
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APPENDIX A

The central task of this appendix is to show how to deal
with the term

I () (i)m&+sW )(s ee) ()—R a 'r .
0 Bv Bv

(Al)

In the harmonic case it is straightforward to show that

8 8 (3 8
() 8 () 8

(A2)

where

E+=— + l COpN,
2

' 2 1/2
r

26)p

(A3)

(A4)

We obtain, therefore,

standard Markovian assumption 5 is incorrect. We would
like to stress that the source of this fiaw must be ascribed
precisely to this definition of the unperturbed part. The
correct approach indicated in Sec. II A, on the contrary, is
not fraught with this flaw. When a large time-scale
separation between relevant and irrelevant variables is
available this approach provides the same results as the
standard one, whereas completely different results are ob-

tained when the regime characterized by resonant effects
is explored. In the overdamped regime (F00«y and

toit « A,) it can be shown that the correct approach of Sec.
IIA leads to precisely the same Fokker-Planck equation
as that recently propped by Hanggi et (tl.,7 which in turn
correctly describes the long-time behavior.

In the regime explored in this paper, an exact agree-
ment between the results based on the application of the
linear-response theory, Eq. (3.52) and Eq. (3.42), has been
found. Reference 19 raised the question of whether or not
the linear-response theory may be applied in a region of
damping weaker than that explored by the experiment of
Devoret et (tl.s (y &a). This is now a well-settled problem
which will be the subject of forthcoming papers. 26'z7

—(y/2 —i apow }s—e
~4/ 4i 2x

+ ~I &3 seq () Mes () i(ses&s ~I &J leq () () (rl2+issow)s—
(e

2 Bv ()v 2 ()v ()x

—(y/2+i&sow }s Q —(y/2 —

i&vow�

}s+a+ e e
Bv BU

l ICED@S
e

lPOPg S
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Via integration on s betvreen 0 and 00, this precisely

reduces to the form of Eq. (2.25) (without the last term

between brackets). In the presence of anharmonic interac-

tion via developinent of exp(W, t) into a Taylor series it is

possible to show that derivatives of higher order appear.

APPENDIX 8

The main idea is to make a contact with the problem of
time-independent perturbation theories28 by regarding
I' (i),

(Bl)

as being a quantum-mechanical operator written in the in-

teraction picture; that is,

(m
~
I, ~m')(m'~I, ~m)

/m (85}
(s —s )

and so on.
By using this approach we find that for the potential

function given by Eq. (4.4), A i coincides with Eq. (3.7)
while contributions coming from the cubic term of the po-
tential function only appear when a second-order contri-
bution P 2 is considered. Then these are given the form

lo I'os a, a
2 2

'

(86)

In consequence, the successive perturbation contributions
are given by

(84}

I i(~) =- g ~m&(m ~l'i ~m'&(m'~e
m, m'

(82)

and have precisely the same structure as the first-order
contribution of P i coming from the quartic term of the
potential function. This allows us to replace P on Eq.
(3.7) with an effective anharmonic parameter P,ff.

where the energies s and s ~ of the states
~

m) and

~
m ') are related to the frequency co@ via

I'o , „, lo I'o s'
9 4 ( l s2)l/2

(87)

=cog(m —m') . (83) which is the result displayed on Eq. (4.6).
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