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A unitary {Fock-Tani) transformation of the second-quantized Hamiltonian breaks the interaction

into its component parts, e.g., elastic scattering, inelastic scattering, rearrangement interaction, etc.
The interaction for a particular process is "weaker" than the overall interaction; this is reflected in

certain orthogonality corrections which appear in a perturbation expansion of the T-matrix element.

As a result, the internuclear potential makes a negligible contribution of order m, /m~ to the first-

order amplitude for charge transfer. We find very good agreement with experimental and the best

available theoretical results for the total cross section for the reaction p+H(ls)~H{1s)+p for en-

ergies greater than 10 keV and for the differential cross section at 25, 60, and 125 keV in an angular

range of —1 mrad about the forward direction.

I. INTRODUCTION

Atomic physics provides the ideal setting for testing
new approaches to the quantum-mechanical scattering
problem mainly because the interaction potential is known
but also because of the variety and richness of phenomena
open to investigation. This paper is part of a broader pro-
gram to investigate the suitability of one such approach
based on unitary (Fock-Tani) transformation of the
second-quantized Hamiltonian. The motivation for this
transformation is discussed and its basic features illustrat-
ed for the simple case of potential scattering in Sec. II; the
mathematical details relevant to present application are
given in Sec. III and the complete result is enumerated in
Appendix A. Here we merely note the final result that
the interaction is broken into its component parts, e.g.,
elastic scattering, inelastic scattering, rearrangement in™
teraction, etc. This gives one considerably more latitude
in introducing physically motivated approximations, for
example, in a Born series expansion of the scattering am-
plitude. The effective interaction for a particular process
is, in a sense, "weaker" than the overall interaction which
is the sum of all interactions. It is found that to each or-
der in the perturbation, certain orthogonality corrections
to the usual (Fock) scattering amplitude appear. In this
paper we restrict ourselves to a first-order (Born-type) ap-
proximation, in which case the orthogonality correction
becomes negligible at high energies. We therefore expect
the Fock-Tani formalism to extend the range of validity
of the first-order approximation to lower energies.

This formalism has been applied previously to the cal-
culation of the scattering amplitude for positronium for-
mation' and for positron-hydrogen elastic scattering in
collisions of positrons with hydrogen atoms. The numeri-
cal results of the second of these papers clearly demon-
strate the superiority of the Fock-Tani representation over
close-coupling representations in some cases where chan-
nel coupling plays an important role. In this paper we
consider the closely related problem of resonant charge
transfer,

p +H( ls) ~H( ls)+p,
with the understanding that at collision energies under
consideration (relative velocities of order 1 a.u. ) proton-
proton exchange plays no role. This problem, in spite of a
long history of quantum-mechanical analysis going back
to the early days of quantum mechanics, i is still under

vigorous investigation as indicated by a recent review arti-
cles and numerous other publications. An early difficulty
was caused by the Coulomb repulsion of the nuclei. This
was neglected by Oppenheimer and Brinkman and Kra-
mers on physical grounds but the resulting cross sections
were too large by a factor of 3 or 4. Its inclusion in a
mathematically consistent first-order theory ' brought
the total cross section in line with experiment but clashed
with the physical argument that the internuclear potential
cannot significantly affect the cross section for charge
transfer. In Sec. IV we show that in the Fock-Tani for-
malism, as a consequence of the orthogonality correction,
the Coulomb interaction of the nuclei contributes a negli-

gible term of order m, /mz to the first-order reaction am-

plitude, a result pleasingly consistent with an observation
about the exact scattering amplitude originally made by
Wick (see footnote in Ref. 6).

The first-oi;der orthogonality correction is reduced to a
numerically tractable form in Sec. V, and computed dif-
ferential and total cross sections are compared with exper-
iment and the best available theoretical results (two-state
atomic expansion introduced by Bates ) in Sec. VI. In
Sec. VII we summarize our results and outline possible fu-
ture extension of this work.

II. POCK-TANI TRANSFORMATION
FOR POTENTIAL SCATTERING

The basic idea behind Fock-Tani transformation and its
consequence for scattering are best explained for scatter-
ing of a single particle from a fixed potential V(r) which
is sufficiently strong to support a number of bound states

I ~ p), @=1,2, 3, . . . I with energies Ie&, p=1,2, 3, . . . I.
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[a(r),a(r'))=[a t(r), a t(r')]=0 (2.2a)

[a(r),a (r')]=5(r—r') . (2.2b)

If the wave functions {g&(r), p, =1,2, . . . } of the bound
states are known, one may introduce "bound-state"
creation and annihilation operators

g„= f dr/„(r)a t(r) (2.3a)

This formulation was first considered by Tani but the
following summary is closer in its mathematical detail to
the generalization due to Girardeau. '

We begin with the second-quantized form of the Ham-
iltonian (Fock Hamiltonian)

HF f——dra (r)[T(r)+ V(r)]a(r), (2.1)

where T(r) is the kinetic-energy operator and a (r) and
a (r) are "elementary*' creation and annihilation operators
defined in the Fock space P. These satisfy canonical
commutation relations

gb„b„~X)=0 iff ~X)EA F (2.7)

is quite obviously isomorphic to the Fock space W. Any
calculations in W may as well be done in A z. %e wi11,
however, make a unitary transformation which will give
the physical meaning of the real states g„~0) to the ideal

states b„~0). This transformation will carry the sub-
space A FCA to the Fock-Tani subspace A FICE in
which all calculation with the transformed Hamiltonian
should be done. This transformation, schematically indi-
cated in Fig. 1, is defined via the unitary operator

U=exp —g (Qqb~ bqPq—)
2 8

(2.8)

A ) A A
The transform U 0 U of any operator is evaluated us-
ing the Campbell-Hausdorff formula. It is easily verified
that the transformed Hamiltonian (Fock-Tani Hamiltoni-
an) is given by

A FT —=U 'A FU

= pe„b„b„+f dra t(r)[T((r)+ V(r)]a(r)

fi„= f dry„'Ir)afric. (2.3b)
r r'atr „r „*r'a r' (2.9)

Note that the commutation relations of these operators
with a(r) and a (r) are not always simple. In particular,

[a(r),P„]=Pq(r) (2.4a)

and

and that

U 'bqU=

and

(2.10a)

[a t(r), f„]= f„'(r)— (2.4b)
U 'fqU=b„. (2.10b)

are noncanomcal. This complicates the mathematical
analysis whenever one has to make explicit the existence
of bound states of the system.

It is therefore desirable to introduce operators which
can be associated with the bound states and which satisfy
canonical commutation relations instead of (2.4). With
this in mind, we introduce an "ideal-state" space 8t in

which creation and annihilation operators [b &, b„,
@=1,2, . . . I are defined. These are further assumed to
satisfy the following commutation relations:

From (2.10) it is clear that the role of b„and P& is inter-
changed. In fact, a weaker condition [which holds in the
general case of scattering from targets with internal struc-
ture even when (2.10) does not]

$~ ~0) +b~ (0), —

i.e., a real state f„~0) is transformed into an ideal state

[bq, b„]=[b„,b „]=0 (2.5a)

[b„,b „]=5„„. (2.5b)

%e next construct the direct-product space
P =P 3t. In this space all annihilation and creation
operators previously introduced are defined. However,
the "ideal-state'* operators b&, b &, etc., unlike the "real-
state" operators g„, g„, etc., commute with the elementa-
ry operators a(r) and a (r):

[a(r),b„]= [a(r),b q]

=[a (r),b„]=[a (r),b„]=0.
The subspace MF CA defined by the condition

(2.6) FIG. 1. Schematic connection between various Hilbert spaces
defined in the text. Fock-Tani transformation is effected by the

operator 0 ' which carries A ~ into A FT.
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b„~ 0), is sufficient proof that the transformation gives

physical meaning to the ideal states.
The subsidiary condition (2.7) transforms to

gf „Q„~X)=0 iff ~X)EA ~. (2.11)

Equation (2.9) may be viewed as a formal expression of
the following operator identity:

H= g @~PE+(1 P)H—(1 P),— (2.12)

where the projection operator P„=
~ p ) (p,

~

and

In Eq. (2.12) [as well as (2.9)] the Hamiltonian is divid-
ed into a bound-state part (first term) and a scattering
part (remaining terms) with the understanding that in

considering (1—P)H(1 P) on—e ignores the states
~
p)

which formally are its eigenfunctions of zero energy. The
subsidiary condition (2.11) appears because the Fock space
W was initially expanded to accommodate ideal-state

A A foperators b„, b „,etc.„and merely serves to restrict us to
the appropriate subspace of the enlarged space A . There
is no analogous condition when considering (2.12).

In the case of realistic scattering or reaction problems
where the bound states are composites (atoms, molecules,
etc.), the one-particle Fock-Tani representation outlined
above can be straightforwardly generalized" and leads
naturally to a separation of the Hamiltonian into portions
representing physically distinct processes (elastic scatter-
ing, inelastic scattering, various rearrangement processes).
Such a second-quantization representation also has other
advantages over separation based on projection operators,
in that powerful field-theoretic techniques previously
found useful in electron scattering from atoms'2 now be-
come applicable to reactive scattering. A review of the
field-theoretic formulation of three-particle reactive scat-
tering in terms of the Fock-Tani representation has been
given recently by Ficocelli Varracchio. '

Normally, imposition of the subsidiary condition (2.11)
would make the solution of any practical problem difficu-
lt and we would have merely traded the difficulty inherent
in the noncanonical commutation relations of the real-

%(f

state operators p„, 1i &, etc. [see Eq. (2.4)], for something
equally difficult. However, an enormous simplification
which makes the rigmarole of the Fock-Tani transforma-
tion worthwhile occurs if we consider scattering from a
time-dependent point of view. At t~ —oo we construct a
wave packet infinitely far away from the scattering center.
It is orthogonal to all bound states by virtue of their finite
spatial range, and the subsidiary condition (2.11) is satis-
fied in the limit r~ —oo. Now, since g„f&P& com-
mutes with the Hamiltonian A ~ (this is easily seen for
the corresponding operators g„b „b„and H~ before the
transformation), Eq. (2.11) is satisfied at all times and
may be ignored altogether. This essential simplification is
then justified for the time-independent view of scattering
in the usual manner.

The Hamiltonian in (2.9) can be divided as usual into
an unperturbed part Ho [one possibility is

Ho g„e&b&bz + Jdra——(r)T(r)a(r)] and a perturba-

tion V and the full scattering function ~g'+-') may be ex-

panded in powers of V. Since a truncated expansion

~

g',-') is defmed in terms of the creation operator & (r)
only, it is orthogonal to all bound states I b „~0),
p = 1,2, . . . I. This is quite unlike the perturbation expan-
sion in the Fock space where an approximate scattering
function is not orthogonal to the bound states and this
lack of orthogonality introduces an error in the scattering
amplitude which is tolerably small at sufficiently high en-

ergies only, Forcing appropriate orthogonality on the ap-
proximate scattering states

~
X,'z~') leads to orthogonality

corrections to the Fock-space scattering amplitude—
mathematically these arise from the last term in (2.9)—
which serve to extend the range of validity of the pertur-
bation approximation to lower energies. In fact, our ap-
proach can be regarded as a generalization of Weinberg's
"quasiparticle method"' to which it is closely related
both in concept and in the form of orthogonalization
corrections. Weinberg showed, within the context of one-
particle scattering from a potential supporting bound
states, that such orthogonalization greatly improves the
convergence of the Born expansion. We expect a similar
benefit in the case of the composite-particle generalization
employed here.

An important proviso must be added to the remarks of
previous paragraphs. We are justified in ignoring the sub-

sidiary condition (2.11) only as long as we calculate the
exact scattering state ~X'+-'). The approximate state
~X,'~~) does not Ue entirely in the Fock-Tani subspace

A ~ but contains an admixture of states outside A ~.
Thus, truncation of the perturbation expansion for

~

X'+-')

in the Pock-Tani space introduces an error in the scatter-
ing amplitude analogous to the error in the truncated
Fock-space amplitude. It is not possible to make any de-
finite general statement about the relative magnitudes of
these errors. However, such numerical evidence as is al-
ready available indicates that this representation can
yield rather accurate results for rearrangement processes
even in first order. We take this as adequate justification
for use of this approach herein. Additional a posteriori
evidence is supplied by the accuracy of our calculated
cross sections.

III. FOCK- TANI TRANSFORMATION
FOR REARRANGEMENT COLLISIONS:

I + (23)~c'l2) + 3

A similar transformation was previously considered by
Girardeau' for scattering of positrons from hydrogen
atoms. In that case the transformation was somewhat
simplified because the nuclear coordinate was frozen by
virtue of the (supposedly) infinite mass of the nucleus. In
the more general case of charge transfer, one inay still el-
iminate a coordinate from consideration; the center-of-
mass coordinate is the most convenient choice. %e there-
fore introduce elementary annihilation and creation opera-
tors Ia;(r;), a;(r;), i = 1,2, 3] for the particles 1, 2, and 3.
These are assumed to be distinguishable so that we may
require a;(r;), a J(rj), etc. to satisfy boson commutation
relations.

Assuming pairwise interaction, the Pock Hamiltonian
is
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HF ——g f dr;a;(r;)T~(r;)(2;(r;)

3

+ g f dr;dr;+, a;(r;}a;+1(r;+1)

X V;;+1(r;,r;+1)a;+1(r;+1)a;(r;), (3.1)

ty is violated.
The transformed Hamiltonian is rather lengthy to write

and we have relegated the complete expression to Appen-
dix A. Parts of the Hamiltonian relevant to this paper are
the zeroth-order Hamiltonian

3

Ho= g e„(b„)b„+g f dr;a;(r;)T, (r;)a;(r;)
a,p,

where the subscript 4 is to be regarded as 1.
The interactions V12 and V23 are assumed sufficiently

strong to support a number of bound states. In analogy
with Eq. (2.3) we introduce the following bound-state
creation operators:

(i((„)t=(2') ~ f dr;drj((t„(r~)

xexp(ik, R )a;(r;)aj(rj),

U =exp —g[{fq ) bq (b„) f—q ] (3.3)

The Fock-Tani transformation is now made by successive

application of the transformations generated by U" ' and
U' ', but unlike (2.9) there are now two possibilities. Al-
ternative transformations,

a= (ij —) =(12) or (23) . (3.2)

In our notation, the superscript a=(ij ) labels the pair of
particles, r and R are the relative and center-of-mass
coordinates of the pair, and p~ is a collective label for the
internal state )(T~ and the center-of-mass momentum k~.
Annihilation operators are defined by Hermitian conjuga-
tion of (3.2}. The commutation relations of these opera-
tors are obtained from the commutation relations for the
elementary operators a;{r;),a&(r&), etc.

We next introduce "ideal-state" operators b „and (b „)
for a=(12) and (23) and define the following unitary
operators in analogy with Eq. (2.8):

(3.5a)

and the rearrangement interaction

f «3«i(b „",", )'a 3«3) &)(2)2r31 V
I l223r( &

&(a 1 (r 1 }b&'„'+H.c. , (3.5b)

where the interaction (p, )2r3 l
V

l p23r)) is given in (A5)
and H.c. denotes Hermitian conjugation. The first-order
approximation to the T matrix is then given by the matrix

element of V„,„between appropriate eigenstates of Ho.

IV. FIRST-ORDER T-MATRIX ELEMENT
FOR REARRANGEMENT

Xa 1(ri)(b„",", ) l0} (4.la)

We will use three alternative sets of coordinates, shown
in Fig. 2: (i) ri, r2, and r3, which are coordinates of the
particles 1, 2, and 3, respectively, in a fixed coordinate
system; (ii) R (center-of-mass coordinate}, r3~ [vector

from particle 3 to the center of mass of {1,2)], and r12 [rel-
ative coordinate of (1,2)]; and (iii} R,r~, [vector from the

center of mass of (2,3} to particle 1] and r23 [relative coor-
dinate of (2,3}].

The initial and final-state wave functions

l f;)=(2n) ~ f dr')exp(ik, r', )

and

( U (23))—1( U (12))—1H U (12)U (23)
FT1 F

( U (12)
)
—1( U (23))—IH U (23)U (12)

FT2 F

(3.4a) and

(3.4b)

Ipf &
= (2n ) f dri exp(i k3'r3 )

xa,'(r', )(b „",", )'l 0) (4.1b)

are not identical because [U" ', U' )]+0. In this paper
we work with (3.4a) because for the reaction under con-
sideration, 1+ (23)~(12)+3, the corresponding first-
order amplitude is easily interpreted; it is a sum of the
first-order Fock amplitude and an orthogonality correc-
tion, much as in the case of potential scattering. The
zeroth-order wave functions for all possible initial and fi-
nal states are now orthogonal, thus satisfying the same
orthogonality relation as the exact scattering states. The
first- and higher-order wave functions are, however, not
exactly orthogonal due to the possibility of rearrangement,
but exact orthogonality is restored at infinite order. We
leave the investigation of the implication of this for future
work when we shall extend our analysis to higher pertur-
bative corrections. We note here only that the orthogonal-
ity obtaining in first order in our approach is a distinct
improvement over approaches in which such orthogonali-

FIG. 2. Alternative coordinates for the three-particle system.
The vector from the origin (not shown in the figure) to a speci-
fied point is indicated in parentheses beside the point in ques-
tion. Thus, rl is the vector from the origin to particle 1, etc.
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are eigenfunctions of Ho and represent plane waves of a
impinging on bound states of a. We recall that the label

p includes the internal state IT of the pair aI and itsct
1

center-of-mass momentum k„.
The first-order T-matrix element is given quite simply

TIII~23 = & 4f I ~rearr I Wi &

=(2m) f dr d3r, e

g„','(r2, r3) =(2m. ) exp(ik„R23)g„' '(r23) . (4.4b)

In this equation k& and k„are the center-of-mass momen-
ta of the pairs a2 ——(23) and ai ——(12), respectively. As a
first step in factoring the overall center-of-mass momen-
tum, we replace the momenta ki and k„by k; [relative
momentum of particle 1 and pair (23)] and the overall
center-of-mass momentum K;,

+ (v12r31 v I 11223rl )e (4.2) K; =ki+k„ (4.5a)

In substituting (A5) into (4.2) we note that

g'„'„'(r„r2)=(2m) exp(ik„R, 2)1I('„' '(r12) (4.4a)

and splits into a sum of two terms arising from the
[5(ri —r'1)5(r2 —r2) —b, ' (ri, r2, ri, r2)] factor in the defini-
tion of (iM12r3

~

V
~
p23r, ) [see Eq. (A5)]. It will emerge

later that the first term gives the Jackson-Schiff-Bates
Dalgarno (JSBD) approximation to the T matrix and the
so:ond term represents orthogonality corrections charac-
teristic of the present formalism. Thus

(4.3)

and

k; = [(m 2+ m3 )ki —m 1k&]/(m 1 + m 2+ m 3 ), (4.5b)

where m; denotes the mass of the ith particle. Similarly,
the pair (ki, k„) is replaced by (k&, Ky) with obvious physi-
cal significance.

The first term T„„,which is written as an integral

over ri, r2, and r3, can be simplified by switching to
(R,ri, r12) coordinates. Integration over the center-of-

C)

mass coordinate R gives a factor 5{K;—K~) which
expresses conservation of center-of-mass momentum.

The final result

T'„~ =(2m) '5(K; —Kf) f dr3, dr12exp( ik/ r—3, ,
)

(12) m2 m)
X[g (r12)]' + V23 r3a + &iz

m&+m2 m]+m2

(23) m ) m, m, (m 1+m 2+m 3)+ itp r3ai + r)P CXP 1tk ' r3a &&2mi+m2 ' m2+m3 (mi+m2)(m2+m3)

(4.6)

is just the matrix element considered by Jackson and Schiff and Bates and Dalgarno. In Eq. (4.6) we have written coor-
dinates r13, r23, and r~ 1 explicitly in terms of integration variables r3(g and r12 by referring to Fig. 2.

From Eq. (4.2), the second term T'„", '„, is given as an integral over the coordinates r„r2, r3, ri, and r2. The first

step in its simplification is to replace (r, , r2) by the relative and center-of-mass coordinates (r,2,R,2) for the pair (12) and
(r', , r2) by (r', 2, R', 2). The bound-state kernel,

{ri r2 ri r2) 5(R12 R12) y P2{r12)[6 {r12)].

is then seen to contain a 5 function and integration over R,2 is iminediate. We then revert to (r'„r2) before introducing
new coordinates (R', r3, r'12) instead of (r'i, r2, r3) in analogy with (R,r3, r12) in Fig. 2. Integration over R' then yields a

5 function in initial and final center-of-mass momenta K; and K&. The final form of the orthogonality correction is

T'„" '„=—(2n) 5(K,. —KI) g f dr, 2dr3 di12exp( —iqi r3 )[t(r" '(r12)]«

m2 m)
r']z +V23 &3,+ r&2

m i+m2 m(+m2

X ~2."'(r12)[A'"'(r12)] 'exp( -1- ki '12)~p~~" r3-, + '
ri2

m)+m2
{4.7)
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with

7?l 3
q) ——kf- k;

P22+P7l 3

(4.8a)

represents internuclear interaction and it is very nearly
canceled by the first term in (4.7). To see this, note that
to a very good approximation we can replace

and
PPl p

riz
ill ) +Ply

(4.9)

mz(mi+mz+m3)
(mi+mz)(mz+mi)

(4.8b)

m~
~~3 r3, + r12 [ V23( 23}]

m~+m2

alone constitutes the Oppenheimer-Brinkman-Kramers
(OBK) approximation. ' The first term

In this expression A, ranges over all bound states of the
pair (12) and all coordinates have been written in terms of
integration variables with reference to Fig. 2.

The orthogonality correction can be interpreted in two
alternative ways. It arises from a potential, say V„,„„,
which must be subtracted from the overall potential to
give the rearrangement part of the interaction, V„„,.
V„,„„consists of a sum of terms, each associated with a

bound state of (12). The A. =v term, i.e., when the inter-
mediate state is the same as the final bound state of the
composite (12), is just the static interaction in the final
channel. Remaining terms, arising from other intermedi-
ate states, ~ive nonlocal contributions to V„,„„.Alterna-
tively, T„' ~ can be regarded as correcting for the lack

of orthogonality between the initial state and all possible
final states, the A, =v term corresponding to the particular
final state in question.

In the special case of charge transfer, particles 1 and 3
are nuclei and particle 2 is an electron. Then mz &&m i,
m3 and m~ -m3. %e note that it is a good approxima-
tion to neglect all terms of order m, /mz unless they are
multiplied by a nuclear momentum k which may be large.

T„„~„alsoconsists of two terms. The second term

in Eq. (4.7) and also make a corresponding approximation
in (4.6). Integration over r'iz in the first term of (4.7) then
gives 5»„and only the A, =v term makes a nonzero contri-
bution in the sum over A, . Substituting (4.8a) and (4.8b)
for qi and I, respectively, in the resulting expression, a
simple rearrangement of terms and comparison with the
first term in (4.6) shows that the two cancel. In making
the approximation (4.9}, we incur a small error of order
mz/(mi+mz)-m, /m~ so that the cancellation is not ex-
act but nearly so. In light of the observation made by
Wick (quoted in a footnote in Ref. 6) that the internuclear
potential makes a negligible contribution of order m, /mz
to the exact reaction amplitude, our result for the corre-
sponding first-order amplitude is very satisfying. In sub-
sequent analysis, we therefore completely disregard nu-
clear repulsion.

The role of internuclear potential in charge transfer has
received much attention and it has been long known that
one must correct for the lack of orthogonality between the
initial and final states. In a particularly relevant paper,
Bassel and Gerguoy' achieved this limited objective by
subtracting the static interaction in the final channel from
the total interaction in the post form of the transition ma-
trix element. In light of our comments following Eq.
(4.8), this is a special case of our result which we have ob-
tained starting from a much more general objective of
considering scattering in the presence of bound states.

V. EVALUATION OF THE T MATRIX

It follows from the discussion of Sec. IV that to a very
good approximation the T-matrix element is given by

Nl2
Vi3 r3 r12 V13(rl3}

Nl ) +@f2 where

TOBK Tortho
[2~23 +Ig +2,3 [2~$3 (5.1)

T„~ —(2m) I drie drizexp( iqi r3(g —)[i}j-„' (riz)]

Pl ) m&
~23 r3., + riz 1(„r3 ~+ r, z exp( i I k; r—iz)

pyg &+pyg2 ' fPl ~+Nl2
(5.2a)

and

77k )T'„""',= —(2m') g J dr, zdri dr'izexp( —iqi r3 )[g' '(r'iz)] V23 r3 + r'iz

Pl )
X Q» (riz)[p» '(riz)] exp( i I k; riz)|t'p—

~~ ' r3, + riz
m)+m2

(5.2b}

Equations (5.2a} and (5.2b) for T„„~ and T'„",~„are obtained from Eqs. (4.6) and (4.7) for T„,~ and T'„"„~„,
respectively, by dropping the internuclear potential. We have also suppressed the 5 function denoting conservation of
overall center-of-mass momentum.
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T„~ is easily evaluated by reverting to independent"&2~23
variables riz and ri2. We quote the final result from Ap-
pendix I of Jackson and Schiff after transcribing it into
our notation. It is first necessary to define another
momentum-transfer vector

fA)

m+m "f
I 2

m~
qz=k;—

m)
(5.3)

analogous to qi defined by Eq. (4.8a). Then

TQBK
"iZ &23

m)+m2
qz+e-„4„-(—qi)4~(qz),

2m )m2

(5.4)
FIG. 3. Spatial arrangement of vectors k;, kf, and q2 for the

evaluation of the integral in Eq. (5.6).

where e-„ is the binding energy of the pair (12}in the inter-

nal state v and 4 ( —qi) and 4„(qz) are momentum-space

wave functions.
In order to evaluate the orthogonality correction, we

first rewrite the coordinate-space wave functions

[Pi'(riz)] and tP&'(r&, +(mi/mi+mz)riz) as Fourier
I

transforms of corresponding momentum-space wave func-
tions 4i (p) and 4&(pi) and also rewrite the Coulomb in-

teraction as a Fourier transform,

m)
r3a, + r&z

m~+m2
1 dp»exp —

ipse rs, + r&2
2 p2 lii i +m2

(5.5)

This introduces three new integration variables p, p], and p2, but integration over r3 and r~2 immediately gives a del-

ta function each, 5(q, +pi —pi) and 5(p (rn &Irn—i+rnz)pi+ ~ k;). This allows us to integrate over pi and pz. After
some simple algebraic rearrangement to show that ~ k; —(m &/m i +m2)qi ——qz, the orthogonality correction is rewrit-
ten as

Z2Z3 m]+m2 1
dp dr'„ , exp[ —i(p+qi) riz]"12-823 2~2 m1

I p+q2 I'

X [4"'(riz}]'A'"'(r'»)@'i,(p}@& (p+
m)

(5.6)

In the following discussion we assume without loss of generality that the vector qz lies along the z axis and k; and kf
lie in the x-z plane (Fig. 3}. For specific final state v and intermediate state k, the integral

I-„&(p+q2)= f «i/exp[ —i(p+q2) riz][it„'(riz)]'iA(i. '(ri2) (5.7)

which appears in (5.6) can be evaluated analytically. (Particular results for the ls final state and ls, 2s, and 2p inter-
mediate states are given in Appendix B.) Moreover, for a spherically symmetric final state (i.e., l„=0), it factors into a
spherical harmonic and a part depending on

~
p+ qz ~

only:

1,«p+qz4 =o=r-.« I p+qz I )I,=OI'i„~,«,+q2) (5.8)

We can then sum over rnid„on the right-hand side of (5.6)—the sum over A, is really a triple sum over ni„, li, and mi-
and use the addition theorem for spherical harmonics to obtain

24+1 p (p+q2)g I'i;m, «p) I'i, m «i+q ) = (5 9)

Note that with the assumption that qz lies along the z axis, the argument of the Legendre polynomial depends on p and

8& but does not depend on the azimuthal angle Pz.
The only Pz dependence of the integrand in (5.6) comes from the initial-state wave function 4-((m&+mz/m, )

X(p+ m k;)). For a spherically symmetric state (I&——0) it is contained in the p k; term in the argument; moreover, for
the 1s initial state, integration over Pz can be done analytically (see Appendix B}.

These manipulations reduce the orthogonality correction to its final form which is used for numerical calculation:
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FIG. 4. Center-of-mass differential cross section for resonant charge transfer, p + H(1s)~H(1s)+p, at (a) 25, (b) 60, and (c) 125
keV. The experimental points are from Martin et al. (Ref. 17), the dotted curve is from the t~o-state atomic expansion calculation
quoted by Martin et al. , and the solid curve is the Fock-Tani result with orthogonality corrections due to 1s, 2s, and 2p intermediate
states. Note that the experimental cross section is for capture into all bound states and it is expected to be 20% greater than the cross
section for capture into the ground state. The secondary peak in (a) and (b) has been scaled up by the indicated factor.
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'3
To~ho

"ii g (21i+1) dp de sinai p~ i (p)l-,i( I p+qz I )i =0Pl ) +Nl2 ' Ip+qil' ""

p (p+q2)
or 1„=0.

p ~p+qz~ (P2 —g ) ~
(5.10)

VI. DIFFERENTIAL AND TOTAL
CROSS SECTIONS

The integral appearing in Eq. (5.10) is evaluated easily
and rapidly by two-dimensional numerical integration.
4'hen the electron mass is neglected in relation to the nu-

clear mass, this integral can be evaluated analytically for
each value of ni and I&, the intermediate-state quantum

numbers. We have done this for all states up to ni 3as-—
a check on the result of numerical integration.

» the numerical results that we quote, only the ls, 2s,
and 2p intermediate states have been retained in the sum
in Eq. (5.10). This a very good approximation at all ener-

gies for which we present differential cross section (25, 60,
ad 125 keV) in Fig. 4 but is somewhat suspect at the lower
end of the energy scale (E & 10 keV) of Fig. 5 where we

IO-l'--

l

E~ IO

b

o-is-3

IO
'-

present the total cross section. However, the error is es-
timated to be no more than 20%%uo, and at these low ener-

gies, a first-order approximation is inadequate anyway.
We compare our calculated differential cross section

with the experimental results (Martin et al. '
) in Fig. 4

and also with the two-state atomic expansion (TSAE} re-
sults quoted by Martin et al. The TSAE approximation
was picked out of a number of theoretical results because
it seems to give the best fit to differential and total cross
sections over a large range of angles and energies. It is
satisfying to see that our calculation agrees very well with
the TSAE and experimental results over angular range of
1 mrad about the forward direction and over a compar-
able range at 60 and 125 keV also. The discrepancy at
larger angles is no doubt due to the neglect of higher-
order corrections and we expect much of it to disappear
upon the inclusion of second-order correction. In fact,
even the minima in the first-order differential cross sec-
tion at the energies we have considered are spurious. '

We also compare the Fock-Tani total cross section with
the experimental results of McClure' and the TSAE cal-
culation of McCarroll in Fig. 5. Once again we find
that our calculation agrees very well with both these re™
suits for E ~ 10 keV; in fact, for E ~60 keV, our results
are identical with those of McCarroll. The discrepancy at
low energies is to be expected of a first-order approxima-
tion. In the same figure, we also show the Fock-Tani to-
tal cross section for d+H( ls)~D(ls}+p.

We close our discussion of the numerical results by re-
marking that the two-state atomic expansion was intro-
duced by Bates with the express purpose of correcting for
the lack of orthogonality of the initial- and final-state
wave functions. This, along with other orthogonality
corrections, is contained in the Fock-Tani approximation,
too. Close agreement between the results of these approx-
imations is, then, just as it should be.

VII. SUMMARY AND CONCLUSION

IOO IOOO

COLLISION ENERGY (keV)

I

IO4

FIG. 5. Total cross section for resonant charge transfer,
p+H(1s)~H(1s)+p, as a function of laboratory collision ener-

gy. The experimental points are from Mcclure {Ref. 19), the
dotted curve is from the two-state atomic expansion calculation
of McCarroll (Ref. 20), and the solid curve is the Fock-Tani re-

sult with orthogonality corrections due to 1s, 2s, and 2p inter-
mediate states. The experimental cross section in this case is

also for capture into all bound states. The dashed curve gives
the Fock-Tani cross section for d+H(1s)~D(1s)+p.

In this paper we have developed a unitary transforma-
tion of the second-quantized Hamiltonian of a three-
particle system which breaks the overall interaction into
its component parts corresponding to permissible physical
processes and have applied it to the problem of resonant
charge transfer, p+H( ls)~H(ls)+p. In this scheme,
zeroth-order wave functions for initial and final states are
mutually orthogonal, thus satisfying the same orthogonal-
ity relation as the exact scattering states. As a conse-
quence of this, an orthogonality correction to the usual
first-order reaction amplitude appears and the internu-
clear potential makes a negligible contribution of order
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m, /mr to the T-matrix element. This result is consistent
with the physical result that the internuclear potential
cannot significantly affect the passage of a light, charged
particle from one nucleus to another. We have computed
differential and total cross sections over a range of angles
and energies and compared our results with experiment
and with the best available theoretical results based on a
two-state atomic expansion. Except at angles larger than
1 mrad and energies less than 10 keV, we find very good
agreement. The discrepancy is attributed to the omission
of second- and higher-order perturbative effects. The
agreement with TSAE results is a reflection of the fact
that this method also corrects for the lack of orthogonali-
ty of the zeroth-order initial and final states in Fock rep-
resentation. The agreement with experiment underlines
the importance of proper orthogonality of approximate
scattering states, a fact recognized long back by Bates.

An obvious extension of the present work is to include

I

second-order corrections and thus attempt to remove the
remaining discrepancy between our results and the experi-
ment. Such an extension is currently being investigated.
We are also contemplating application of Fock-Tani for-
malism to other problems of atomic scattering, particular-
ly ionization of the hydrogen atom by electron impact.
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APPENDIX A: FOCK-TANI TRANSFORMATION
FOR THE THREE-PARTICLE SYSTEM

We have evaluated the Fock-Tani Hamiltonian (3.4a) by
a diagrammatic technique. ' The interaction is now bro-
ken up into various parts corresponding to the possible
physical processes for this system:

H ]=rrg a„(ba )(b„+ Z f dr a;(r;)T'(r;)a;(r;)
a kCa

f dr;dr&dr, 'drja;(r;)a J(rf)(r;rj I
V

I r,'r& )a&(rj. )a;(r,')
lp J

(1&i)

f dradra(b„)~rra(ra)()r, ra( V(r ra)aa(ra)i
a~va

g f der, 'dr&dra(b„) a a(ra)(p, ra I
V

I r,'r&ra)ait(ra)ai(rj )ai(r,')+H. c.
a,y,a

f dridri(b„"„') a s(rs)()ui2rs
I VI p2iri)ai(ri)b&„'+H c. .

&12 &23

+ ' ~i ~1rl 2~2Q3l3 l1I2f3 V f1f2 3 3 3 2 2 1 1

I
(A 1)

In our notation a:(ij ) labe—ls the pair (i,j) and a labels the remaining particle. The sum over a ranges from a& ——(12)
to a2 ——(23) and correspondingly ai ——3 and a2 ——1. Indices i and j, when summed, range from 1 to 3 but are otherwise
defined by associated a. All interactions are written formally as brackets, ( I I ), and the symbol H.c. denotes Hermitian
conjugation.

~ ~

The first two terms in (Al) constitute the unperturbed Hamiltonian Ho for our calculation. The eigenstates of Ho in-

clude plane waves arising from the second term, impinging on bound states, arising from the first term. Explicit expres-
sions for the interactions appearing in (Al) and their physical significance are as follows.

(a) Tue-particle scattering The inter. action for two-particle scattering is given by

(r;rJ I
V

I
r,'rJ ) = VJ(r;, rj)5(r; —r,')5(rj —rj ) —(1 5jj i3) g—e„h& (r;,rj;r,', rj ) .

&a

(A2)

The second term in (A2) expresses the subtraction of the bound-state part of the interaction from the total interaction to
give the remaining "scattering" interaction. (In this equation b& (r;,rj;r';, r&}=/„(r;,r&)[f„(r,', r&)] .}Note that it is

zero for the pair (13) which is assumed not to form a bound state.
(b) Nonreactiue scattering of a from the bound states of a. Due to the (aimaz) asymmetry of the transformation in

(3.4a}, this interaction is not symmetric for the two arrangement channels:

&v»r3 I
V

I vi2rl & = f «i«2[4,",", (ri, r2) l'f V»(ri rs)+ V2s(rz ri) N.„(ri r2)5(ri —ri) (A3a)

and
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&} 23rl I
V

I
v23r'1 &= f «2«3[4,"23(rzr3})'[Vlz(rl rz}+ V13(rl r3))W.",I'(rzr3I(rl —I'1 }

g f d zdr3dr2[4 (r2 r3}] [V13( I r3}+V13(rl r3}+V23(r2 r3}+V23(r2 r3)+~2,",,')
12

X ~a„(rl rz rl rz)4 „(rz r3}

+ f dIzdI3dIzdI 1 dI2
[QADI

(Iz I3)]*5" '(rl, rz, ri', rz')

X [ V13(ri', r3)+ V23(rz', r3)]b," '(r,",rz', rl, rz)g„'„'(rz, r3) . (A3b)

(c) Formation and breakup of bound states. In this case also the interaction is different for pairs (12) and (23):

&plzr3 I
V

I rlrzr3 & f drldrz[fp (rl r2}1 [V13(rl r3}+V23(r2 r3}]

X[5(rl —rl)5(rz —rz) —b," '(rl, rz', r'l, rz)]5(r3 r3)

+ f drzdI'1 dr&'[lt„" '(rl', rz')] [V13(I1 I3)+ V23(12 r3)]

X [b,'"'(ri', rz', r'l, rz) —5(r'1 —I'1')5(rz —rz')]6 (I'2, I'3 rz 13) (A4a)

&l 23rl I VIr2r3rl &= f «2«3[ay", ,'(rz, r3))'[Viz(rl. rz)+ V13(rl r3})

X [5(rz —rz)5(r3 r3 }—b' '(rz, r3 Iz r3)]5(rl —r'1 )

—g f «2[4,",I'(r»r'3)]'[V 13(rl r3)+ V23(rz, r3}+ V» (ri, r'3}+ V23(rz, r3)+e.",I']~ I", (r»rz, r'1 rz)
12

r2 r~' r2' „'„' r2, r3 5" '
r&, r2, r~', r2' V/3 j. ) r3 +V23 f2 f3 5" ' r&', r2', r&, rz

(A4b)

(d) Rearrangement interaction The inte. raction for breakup of (23) and formation of (12) is given by

&P lzr31 V ll 23rl & = f «2«1«2[op'", ,'(rl r2})'[V13(ri, r3}+V23(r2, r3})

X [5(rl —rl )5(rz —rz) —6" '(r'l, rz, rl, rz)]g„'„'(rz, r3) .

The interaction for the reverse process is obtained by complex conjugation.
(e} Three-particle scattering. The interaction for three-particle scattering is given by

(A5)

& Ilrzrz
~

V~ rlrzr3&= —gdP(r;, r.;r,', r')[V,. (r;,r )+ V (r,r )+ V; (r,', r')+ V. (rl, r')]5(r —r')
a

+ g f dr;"drj"b (r;,rj;rl", rj")[V~a(r;",ra)+ Vja(rj", ra)]~'(r;", rj";r,', rj )5(r —r' )
a

+ y. f «2«3[V13(rl r3}+V23(r2 r3}+V13(rl r3~)+ V23(r2 r3)+ey'2)
& l2

X[5(r3—r3')b&'„'(rl, rz, rl, rz')b, '(rz', r3', rz, r3)+5(r3 —r3')b, '(rz, r3, rz', r3'}bz' '(rl, rz', rl, rz)]

—f dr&'dr, "'dr&"b '(rl, rz, rl"rz")[ V13(rl",r3)+ V23(12 13)]b, '(ri", rz"., r'l, rz')b, '(rz', r3, rz, r3)

—f drzdri"dr&'b, '(rz, r3, rz'„r3)b, '(rl, rz','rl", rz")[V13(I1 13}+V23(12 r3)]h '(r,"',rz", r'„rz)

—g J drz'dr3'dr&"b '(rz, r3 lz 13)
»2

X [ V13(rl, r3')+ V23(rz, r3')+ V13(rl, r3')+ V23(rz', r3')+@@' ']
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Xb„", (ri, r2, r'i, r2 )4 (rz",r3', r2, rj)

+ J «z'dr3'dr&'dr&"dr2'"& '(r2, r3 rz r3')& '(ri, rz', r;",rz")

x [Vi3(rI~ r3 )+ &23(I2 13~)]4 (I2 r3 12 r3) (A6)

APPENDIX 8: ASSORTED ANALYTICAL
INTEGRALS IN THE EVALUATiON OF THE

ORTHOGONALITY CORRECTION

I=-
~ p

" 'P+-
m,

~ 4
m)

For specific final and intermediate states, the integral in

(5.7) is evaluated by a spherical harmonic expansion of the
plane wave. The result for the ls final state and the ls,
2s, and 2p intermediate states is as follows:

x J, dy,
m~+m2

2

+p +2 mp it, +m'-k,

(82)
32v nI„„(p+q,) = «+ I p+q21 )

z 2 Fco(Qp+q ),

512' 2n
~ p+q2(

Ii;2 (p+q2) = Foo(Qp+q, )
(v+4 I p+q2 I

')'

(8 la)

(81b)

and

m)

m)+m2 +p +2 m pk;cosH~cosHk + m-ki2

(83a)

The only P~ dependence of the integrand comes from the
p it& term which is expanded in terms of trigonometric
functions of angles P~, H&, and Hk, with reference to Fig.
3. Noting that the integrand is of the form
(A +8ccNaI)z), where

'2

256' &r
( p+qz )I is, ?pm(p+q2) =

(9+4
I p+qz I

)
Fi (Qs+q, ) .

8 =2 m pk;sinH&sinHk. ,

the integral is evaluated analytically22 to give
4

(83b)

(81c)

In Eq. (5.6) the integral of the initial-state wave func-
tion over the coordinate Pz, for the 1s initial state (JM = ls),
is explicitly written as

I=4v 2
m)+m2

A

(g 2 g2)3/2 (84)

The angle Hi,, in Eq. (83) is related to the scattering angle

H&~ once again with reference to Fig. 3.
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