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%'e propose the use of a laser model in which the single-mode approximation is introduced for the

electric field but not for the atomic variables. %e show that our improved single-mode model is in

good agreement with the exact steady-state solution for a reasonable range of experimentally

relevant parameters well beyond the limits of validity of the mean-field approximation.

I. INTRODUCTION

The single-inode approximation is one of the oldest and
most widely used theoretical approaches in the study of
laser physics. ' Its strongest appeal derives from its ana-
lytic simplicity, in addition to some undeniable successes
with the interpretation of numerous basic features of laser
operation. Yet, upon close inspire;tion, we find evidence of
nontrivial conceptual and practical problems that we wish
to open up for discussion, and possibly solve, in the con-
text of this paper.

The conceptual framework of this approximation is
rooted in the notion of "cavity mode, " a well-defined
dynamical entity for a high-Q resonator whose tiine evo-
lution describes the behavior of the internal field when the
laser operates with a single-frequency output. Many laser
cavities of practical interest, however, are lossy resonators
and their "modes" are no longer sharply recognizable
features because of the broadened nature of their reso-
nances. Thus, for example, plane traveling waves cannot
be expected to fit the usual ring-cavity boundary condi-
tions in the presence of a finite mirror transmitivity and
of the additional losses introduced by transverse mode
selectors and other intracavity devices. Yet many lasers
operate as single-frequency generators, even under rela-
tively low-Q conditions; this type of situation is incompa-
tible with the notion of spatial field uniformity along the
active mediuin, and the single-mode approximation, at
least in the traditional sense, is no longer an accurate
description. Attempts to improve the single-mode ap-
proximation with the introduction of additional longitudi-
nal modes usually lead to extremely complicated sets of
equations.

In this paper we focus on the description of a special
type of laser, the unidirectional ring laser in the plane-
wave approximation. %'e take the viewpoint that the con-
ventional Maxwell-Bloch equations with appropriate
boundary conditions are an adequate starting point for a
rather idealized, but still flexible model: The model is
idealized because a plane wave is only a rough approxima-
tion for real-life transverse profiles, and because the two-
level picture of the active medium may fall short of in-
cluding all the dynamical effects that can be observed in a

laboratory system.
Even with these shortcomings, the Maxwell-Bloch ap-

proach imposes no essential restriction on the allowed

range of unsaturated gain values, mirror reflectivity, inter-

mode spacing, and detuning parameters. The most obvi-
ous obstacle that prevents the representation of the cavity
field as a linear superpasition of orthogonal modal func-
tions is the form of the boundary conditions which, in the
case of a unidirix:tional ring cavity, involve both a time
delay and a scaling of the field amplitude. We overcame
this formal difficulty with a suitable transformation of
both the space-time coordinates and the dynamical vari-
ables, which allows an exact representation of the new
variables as linear superpositions of orthogonal cavity
functions in the transformed frame 'We. interpret the
time-dependent coefficients of these expansions as the
ring-laser modes.

The traditional single-mode equations for a ring laser
can be derived after imposing a number of restrictive con-
ditions which include the so-called mean-field limit: This
term, a bit of a misnomer in view of the possible con-
fusion that can emerge with its homonym from statistical
mechanics, is indicative of a situation where the unsa-
turated laser gain aL and the transmittivity coefficient T
of the external mirrors are both vanishingly small, while
their ratio aL/T= 2C is an arb—itrary finite constant.
Most lasers cannot operate under such limiting condi-
tions, while, on the other hand, single-frequency operation
is not an uncommon setting, even with relatively low-Q
cavities. One is then led to the natural question: Is it pos-
sible to incorporate low-Q single-frequency operation in
the context of a single-mode theory? We propose that the
answer is affirmative if we abandon the common practice
of handling both the field and the atomic variables on the
same footing.

Our proposal stems from the observation that while the
longitudinal profile of the transformed cavity field
remains relatively uniform even for parameter values that
do not conform with the mean-field requirements, the
atomic variables, instead, tend to display a much stronger
dependence on the longitudinal coordinate. This implies
that the single-mode approximation for the field main-
tains a high degree of accuracy even when a parallel as-
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sumption for the atomic variables can no longer be held.
Thus, the atomic equations should be allowed to develop
an arbitrary spatial dependence for the polarization and
population difference if we want to produce a realistic
description of single-frequency operation. Our improved
model is designed to provide this extra degree of freedom
which is not available in the conventional single-mode
model. The resulting equations are necessarily more com-
plicated than those of the traditional single-mode approxi-
mation, but they are still considerably simpler, and there-
fore manageable, than the original Maxwell-Bloch equa-
tions.

%e have adapted our analysis to cover both homogene-
ously and inhomogeneously broadened lasers. In the latter
case, exact numerical calculations based on the Maxwell-
Bloch equations are extremely cumbersome to carry out,
so that the improved single-mode model offers significant
computational advantages, without excessive loss of accu-
racy.

This paper is organized as follows. In Sec. II we review
the standard Maxwell-Bloch description of a ring laser
and introduce a suitable modal decomposition of the
equations of motion. The traditional single-mode equa-
tions emerge from this infinite set under appropriate con-
ditions. In Sec. III we propose an improved description of
a single-frequency operation under less than ideal gain
and reflectivity conditions. In Sec. IV we carry out a
number of analytical and numerical tests using the
steady-state solutions of the exact and approximate equa-
tions as elements of comparison. Finally, in Sec. V we
conclude with some remarks and with a generalization of
our treatment for the case of optical bistability and the
laser with an injected signal.

E(z, t)= —,
' [e(z, t)e " " +c.c.] . (2.1)

In Eq. (2.1), e(z, t) is the slowly varying complex ampli-
tude of the field, co„ is an arbitrary reference frequency
that we can select in the most convenient way, and
k~ ——co+/c. In the following we select ~x as one of the
empty cavity resonances co„=2mnc/W, w-here W is the
length of the ring cavity, and we denote co„- by co, .

The equations of motion for a system whose atomic
profile is inhomogeneously broadened have the well-
known form

(z, t)+ — (z, t) = —a J d5g(5)H(5, tz),
BZ C Bt (2.2a)

(5 z t) 1 J [P&—[1 +i (5~c+5)]H I, (2.2b)

Bt
(5,z, r) = —

y~~[ —,'(W'H+WH')+&+1], (2.2c)

where W is the scaled Rabi frequency, pe/(fiQy ~~yi), p is

II. MODAL REPRESENTATION OF THE RING-LASER
EQUATIONS OF MOTION

The starting point of our analysis is the usual set of
Maxwell-Bloch equations for a collection of two-level
atoms interacting with a traveling wave whose (scalar)
electric field has the form

Z Z

t'=t+
(2.4)

and the new field and atomic variables

i ti) ~(z~ tl)e(z'/L)lnR

S'(S,z', t') =W(5,z', r)e"'""~
(2.5a)

(2.5b)

D(5,z', t') =&(5,z', t') . (2.5c)

The transformation (2A) makes the boundary conditions
(2.3) isochronous in the new reference frame; Eq. (2.5a),

the modulus of the dipole moment, H(5, z, t) is the com-
plex polarization per atom, and &(5,z, t) is the difference
between the ground- and excited-states population proba-
bilities; both H and & are related to a particular atomic
packet that is detuned away from line center by an
amount 5. The symbols yz and y~~ denote the decay rates
of the polarization and of the atomic inversion, resp~tive-
ly;

a=Np co, /2Aeoyic

is the unsaturated gain coefficient per unit length, X is
the number density of active atoms, and eo is the vacuuin
permittivity. The scaled detuning parameter 5„c
=(co& —coc)/yi measures the separation between the
center of the atomic line c~o and the selected reference
frequency cue. Finally, g(5) is the atomic line profile,
which reduces to a 5 function in the homogeneously
broadened limit. Most rates are conveniently scaled to yz,'

the scaled frequencies will be identified with a tilde (i.e.,
5=5/yi ).

The ring-cavity model is supplemented by the boundary
conditions

W(0, r) =RA (L, t (W —L)/c)—,

where L is the length of the active sample and R =1—T
is the reflectivity coefficient of the mirrors. Equation
(2.3} differs from the standard periodicity conditions on
two accounts: (i) the presence of the scale factor R, which
is a consequence of the imperfe:t nature of the external
refiectors, and (ii) the delay ht: (W —L)/c, w—hich is re-
lated to the finite size of the cavity.

In steady state ( t~ oc } the boundary conditions become
isochronous, in effect, but the reflectivity coefficient still
prevents them from acquiring the standard periodicity
form, except in the extreme case R ~1. In general, as we
have shown in an earlier publication, the longitudinal
profile in the modulus of W shows large deviations from
uniformity, which makes it unreasonable to apply the
single-mode approximation in a rigorous way. In fact,
even the notion of a modal expansion for the cavity field
W(z, t) seems to be poorly posed, except in the limit
R ~1.

A convenient alternative description was proposed by
Benza and t.ugiato in their study of unstable behavior in
optically bistable systems. Here we adopt their suggestion
and make it our basis for a rigorous model expansion.
First, we define a new set of space-tiine coordinates
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F(0, t')=F(L, r') .

The transformed equations of motion

(2.6)

instead, removes the multiplicative factor R, so that the
new boundary conditions take the standard form

even in the presence of inhomogeneous broadening, and to
play a central role in the development of an improved
single-mode model.

We now introduce the following Fourier decomposition
for the transformed variables: '

z

, +,= —x F+2C f 15g(5)P(5,z', r')

(2.7a)

F(z', i')

P(5,z', t')
—~ 50 t' 'kn~ '~n~

fw(t )
=e e "e

n = —00 P'np (5 t'}

(2.8a)

, (5,z', t') =yi [FD [1+—i (5~c+5)]PI, (2.7b)
D(5,z', t')= g e " e " d„(5,t'), (2.8b)

, (5,z', t')=
y)~~[ ,'—(F'P—+FP') ' " +D+1]

(2.7c)

differ from the original set (2.2) in two important
respects.

(i) The phase velocity of the new field amplitude is
cL/W, instead of c; thus the transformation introduces
an effective background index of refraction.

(ii) The equations contain an explicit spatial dependence
through the exponential factor exp[ —(2z'/L)lnR].

The symbols C and a denote aL /2
~

lnR
~

and
c

~

lnR
~
/W, respectively.

The main virtue of this approach is that the field am-
plitude obeys standard periodicity conditions which make
it possible to introduce a decomposition of the Fourier
type and to identify the natural modal amplitudes of the
problem. An additional advantage is that the modulus of
the new field amplitude F(z', t') maintains a good degree
of uniformity in steady state, even under conditions that
are significantly removed from the mean-field limit. This
fact, which was exhibited explicitly in Ref. 5 for the case
of a homogeneously broadened laser, turns out to be true,

where 5Q is an unknown offset that ineasures the separa-
tion between the carrier frequency of the laser field and
the selected cavity resonance. This parameter will be cal-
culated from the steady-state equation. The wave number

k„ is selected such that

k„= n, n =0,+1,+2, . . .27TC
8 (2.9)

ik„s'
u„(z') = eI

with
L

(z„,z )= f dz'z„'(z')z (z')=5

(2.10a)

(2.10b)

The infinite set of time-dependent variables f„,P„, and d„
obey the following equations of motion:

in order to satisfy automatically the boundary conditions
(2.6); a„=(2mc/W)n is the frecpency of the nth empty
cavity resonance. Note that d„(5,t'}=2'„(5,t') because
of the real-valued nature of the population difference.

We identify the expansion amplitudes f„(t'), p„(5,t'),
and d„(5,t') as the natural modes of the laser. The associ-
ated orthonormal modal functions are

, =i 5Qf„—a f„+2Cf d5g(5)p„(5, t') (2.11a)

i 5Q f„'—a—f„'+2C f d5 g(5)p„'(5, t') (2.11b)

, p„(5,t')=yi g f„d„„(5,t') —[1+i(5qc 5Q+5 a—„)]p„— (2.11c)

, p„'(5,t') =yi g f„'d„„(5,t') [1 i (5gc —5—Q—+5—a„)]p„"t' " (2.11d)

, d„(5, ')=ia„d„—y~, —, y (f„',p„-e""'-""-"'r„-„„+f„p„'-e""'-"""'r„'. „. „)+d„+5„,
n'n"

(2.11e)

where the mode-mode coupling coefficients I are given
by

e' P~ 2(z'/I )
~

1nR
~

o

1 —R 1

Rz 2~ lnR
~

ic Lg2 2 lnR +ik&L

The complexity of the exact modal equations should be
enough to discourage attempts at numerical work for the
purpose of studying the time-dependent behavior of a ring
lasers. In fact, in our own studies of homogeneously
broadened lasers, we have chosen to directly integrate the
Maxwell-Bloch equations (2.7). On the other hand, Eqs.
(2.11) are the most convenient starting points for a deriva-
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tion and analysis of single-mode equations.
One obvious requirement for this derivation is what

might be called the minimum coupling condition

(2.13)

which is satisfied only if the reflectivity is very close to
unity. In this limit the parameter C remains bounded
only if, at the same time, we require that aL~O with
aL/~ lnR

~
~ co. An important property of Eqs. (2.11),

in the approximation (2.13), is that the amplitudes labeled
by an index n&0 remain equal to zero for all time if they
happen to vanish at the start of the evolution. Hence, the
modes with n&0 can be neglected as long as they are not
unstable against small initial fluctuations. This condition
is certainly satisfied when the intermode spacing c/W is
sufficiently larger than the power-broadened gain curve.
In this case, Eqs. (2.11) reduce to the well-known single-
mode mean-field equations

r

, =i5Qfo —~ fo+2C I d5g(5)po(5t')

0.0
0

)F„J

I

0.5

0.53

0.50
1g)

dt'~ =Fr Ifodo [&+i(4—c—5Q+5)]po 1

ddo

,, = —r(([ z (fopo+fopo )+do+1]

(2.14a)

(2.14b)

(2.14c)

In resonance (5&c——0, 5Q=O) and in the homogeneous
broadening limit [g(5)~5(5)], Eqs. (2.14} become the
Lorenz equations.

An important point of this derivation is that the mean-
field condition is a necessary requirement for the validity
of Eqs. (2.14); this is a detail that has been a source of
some confusion in the past. It is clear that the single-
mode model [Eqs. (2.14)] puts very strong restrictions on
the range of variation of the physical parameters. An ex-
tension of the traditional single-mode model to experi-
mentally relevant ranges is proposed in Sec. III.

FIG. 1. (a) A comparison between the longitudinal variations
of ~W„~ [the solution of Eqs. (4.4)] and ~F„~ [Eq. (2.5a)] for
an inhomogeneously broadened laser with aD ——3, 8 =0.5,
5„c=0, and aL=3. Note that ~W„~ and ~F„~ are plotted
with different vertical scales. (b) The longitudinal variation of
the population difference corresponding to the parameters of (a).

be more precise, we let

III. AN IMPROUED SINGLE-MODE
APPROXIMATION

P(5,z', t')=e '~'p(5, z', t'),
D(5,z', t') =d(5,z', t')

(3.1a)

(3.1b)

The steady-state longitudinal profile of the field ampli-
tude F(z', t') tends to remain quite uniform, even for pa-
rameter values that are rather widely removed from the
ideal mean-field limit. This is not the case for the
modulus of the atomic polarization P(5,z', t') and for the
population difference D(5,z', t'), as shown for a typical
selection of parameters in Figs. 1(a) and 1(b). Further-
more, we note that in the case of the field variables, the
modal decomposition is dictated by the presence of boun-
dary conditions [Eq. (2.6}], that is, by physical reasons,
while in the case of the atomic variables, the modal
decomposition has only a formal significance. For these
reasons a sensible strategy would appear to require a
separate handling of the field amplitude and of the atomic
variables in the following sense: We maintain the single-
mode approximation for the field by setting f„=O for
n&0 in Eq. (2.8a), but do not carry out a Fourier expan-
sion of the atomic variables P(5,z', t') and D(5,z', t'). To

l I +ac—z fo+2C Jdz' I d5 g (5)p—(5,z', t')

(3.2a)

, (5,z', t') =y, [dfo —[&+i (5~c 5Q+5)]—p I, (3.2b)

, d(5,z', t')
Ch'

r(([i(fopo+fopo)e"'""—' '+d+1]
The main differences between Eqs. (3.2) and the original
Maxwell-Bloch equations (2.7) are evident by inspection.

and obtain from the Maxwell-Bloch equations (2.7) the
following coupled equations of motion:

dfo
Ct , =i 5Qfo
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The longitudinal dependence field has been neglected so
that, as a result, the field obeys an ordinary, rather than a
partial, difference equation. The spatial dependence of
the atomic variables is maintained in the simplified prob-
lem, but the z' variable enters only parametrically in the
equations of motion. In some way, the role of the spatial
dependence is analogous to that of the frequency index
that marks the different atomic packets. Each frequency
component under the inhomogeneous line evolves in-

dependently of the other according to the atomic equa-
tions (3.2b) and (3.2c); the same comment applies to the
atomic variables that characterize a subsaniple of the ac-
tive medium located amund the position z'. Of course,
these different components interact with one another
through the common field fo as indicated by Eq. (3.2).
From a practical point of view, the numerical solution of
Eq. (3.2) is a much less complicated problem than in the
case of the full Maxwell-Bloch equations. Of course, it is
important ta gain same confidence in the reliability of the
improved single-mode approximation. In Sec. IV we ex-
plore this issue by comparing the steady-state configura-
tion of the exact and approximate equations for both
homogeneously and inhomogeneously broadened active
media.

IV. COMPARISON BETWEEN EXACT
AND APPROXIMATE STEADY STATES

We consider first the exact Maxwell-Bloch equations
(2.2). After setting

P (z, t) =P „(z)e

9'(5,z, t) =9'„(5,z)e

(4.1a)

(4.1b)

&(5,z, t) =&„(5,z), (4.lc)
the stationary profiles of the atomic variables can be cal-
culated at once with the result

1 &(5~c -5Q+»-
9'„(5,z}= —P „(z}

1+(5~c—5Q+5) + I P;,(z)
~

'

8(L)—8(0)=—5Q +2m j, j=0,+1, . . . . (4.5b)
—L

The index j labels all the possible coexisting steady states
that are simultaneously above threshold. Because we are
presently concerned with laser configurations for which
the single-mode approximation is an adequate one, we can
safely assume that only the j=0 state will be above
threshold.

At this point, it is convenient to discuss separately the
steady-state behaviors of hamogeneously and inhamogene-
ously broadened lasers. We begin with the analysis of the
homogeneous limit.

9'„(z)= —P „(z)
1 ib, —

1+52+ ~P„(z)
~

1+6&„(z)=-
1+6,'+ ~P(z) ~'

while the field equations take the form

(4.6a)

(4.6b)

dp
dz

ap
1+6 +p

(4.7a)

d8 5Q ab,
(4.7b)

dz c 1++z+p2

The field equations can be combined to yield the first in-
tegral

p(z)
p(0)

8(z) —8(0)—1
Z

C
(4.8a)

while Eq. (4.7a) gives immediately

A. Homogeneously broadened laser

We set g(5)=5(5) in Eqs. (4.4) and set 5=0 in the
atomic equations. Furthermore, for convenience we intro-
duce the symbol b, =5„c—5Q. The atomic steady-state
profile is given by

1+(5gc —5Q+ 5}'
&„(5,z) =—

1+(5„c 5Q+ 5—)'+
I
W„(z)

Next, we set

(4.2a}

(4.2b)

(1+3, )ln + —,
'

[p (z) —p (0)]=az .
p(0)

(4.8b)

After combining Eqs. (4.8) and (4.5) one readily arrives at
the result

(4.3)

and derive the equations that govern the spatial depen-
dence of the field modulus and phase:

p (L)= [aL —(1+6 )
~

lnR
~ ],

1 —R

~=5~c~(I+v) 5Q= 5~c
1+a

(4.9a)

(4.9b)

P =a d5g(5), p,1+(5gc 5Q+5 )2+p-

yg gg + — — &~c—50+—a d5g(5)
QZ C 1+(5„c 5Q+5)'+p—'

(4.4a)

p(0) =Rp(L), (4.5a)

(4.4b)
These are to be solved under the constraints imposed by
the boundary conditions (2.3) which, in terms of p, and 8,
take the form

In addition, if needed, one can calculate the longitudinal
profile of the field modulus by solving the transcendental
equation (4.8b).

Note that in the homogeneous broadening limit
[g(5)=5(5)],Eq. (2.14) gives

( fo ~

=2C —(1+6, ) (4.10)

which coincides with the mean-field limit of Eq. (4.9a);
Eq. (4.9b}, instead, remains unchanged.

We now consider the homogeneous limit of the single-
mode approximation developed in Sec. III. The steady-



I.UGIATO, NAIU)UCCI, BANDY, AND TREDICCE 33

state values of the atomic variables are given by

1 —iA
1+hz+ (I (

ez(s'/r. &(in')
(4.11a)

The spatial integral on the right-hand side of Eq. (4.12)
can be carried out at once and the required output field
intensity takes the form

1+5
~

zez(s'/I, ) [in' [

(4.11b)

1 L 1
1 =2C— dz'

0 1++2+
~ f (4.12)

The field equation (3.2a) in steady state, with the help of
Eq. (4.11a), yields the output intensity

~ fo ~

as the solu-
tion of

Ifo I
'=(I+~')

1nR I

1 —R exp ~ ' (1+hz)
C

exp
[1nR [

C
(1+6 ) —1

(4.13)

The frequency offset 50 is still given by the mode-pulling
formula [Eq. (4.9b)]. In comparing the results of the ex-
act and the approximate single-mode equations, note that
p=(1/R)

i fo ~, as we see from Eqs. (2.5a) and (4.3}. The
laser threshold 2C=1+Z is the same in the exact equa-
tions and in the improved single-mode model.

Figure 2(a) shows a comparison between the modulus of
the output field calculated according to the exact equa-
tions (4.9a), the improved single-mode approach (4.13),
and the mean-field (single-mode) limit (4.10}. This calcu-
lation corresponds to a resonant situation. A typical ex-
ample of a detuned configuration is shown in Fig. 2(b).

2- B. Inhomogeneously broadened laser

(a)

The solution of the spatial equations (4.4) for an inho-
mogeneously broadened active medium is not as simple as
in the homogeneous limit. In order to save some numeri-
cal labor, we have chosen to analyze only the resonant
case which is governed by the steady-state profile p(z)
solution of the equation

=a f 15g(5), p.1+5'+pi
In this calculation we have chosen

$2/20. 2

e
2'IT'CT D

(4.14)

(4.15)

FIG. 2. (a) A comparison between the gain dependence of the
output fie)d modulus

~
W„~ for (1) the mean-field model, (2) the

improved single-mode approximation, and (3) the exact solution
of the Maxwell-Bloch equations. The parameters used in these
calculations are 8 =0.5 and 5&~ ——0. The value of C for the
mean-field calculation is calculated according to the definition
C=aL/2

~

IuR ~. (b) A comparison between the gain depen-
dence of the output field modulus

~
W„ i

for (1) the mean-field
model, (2) the improved single-mode approximation, and (3) the
exact solution of the Maxwell-Bloch equations. The parameters
used in these calculations are E. =0.5, 5~~ ——5.0, and aq ——20.
The intermode spacing a~ is necessary to calculate x according
to the formula al =2n a /

~

1nR
~
.

1=2C I d5g(5) 1+5'+p'
(4.16)

where crD cd�/y——i is the scaled width of the inhomogene-
ous line. Equation (4.14) must be solved under the condi-
tion p(0) =Rp(L). For this purpose, we have adopted the
following strategy. For given values of the gain, refiec-
tivity and linewidth, we have selected a sufficiently small
value of p(0) as "initial condition" for Eq. (4.14). We
have solved this integro-differential equation with a prop-
er adaptation of the standard fourth-order Runge-Kutta
method and arrived at the appropriate value of p(L}. Of
course, at this point p(0) is not equal to Rp(L). We have
constructed the difference p(0) —Rp(L), incremented the
initial choice of p(0), and repeated this process until the
difference p(0) —Rp(L) changed sign. By a combination
of linear interpolation techniques and repetitions of the
above scheme with finer and finer increments of the ini-
tial guess p(0), we have produced very accurate solutions
p(z) in excellent agreement with the constraint p(0)
=Rp(L). The mean-field limit and the iinproved single-
mode approximation are easier to handle numerically.
The former is given by the solution of the equation
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f@,ILi/

(5,z, t) =y, t W& [—1+i (b, +5)]H I,

Bt
(5, ,t)= —y(([ i (P 9'+P H )+&+1],

where

(5.1a)

(5.1b)

(5.1c)

~=(~~ ~tt )~yi (5.2)

FIG. 3. The same comparison as shown in Fig. 2{a) for an in-
homogeneously broadened system with o~ ——3.

which we had already studied extensively in Ref. 7. The
improved single-mode approximation in resonance is
described by the state equation

f 'f+ g -z z z('a, )&~o —~ 1+5&+ ~f ~

& &(~'/L, )(&nit
~

Y =pEtlR+yiy~)T (5.4)

and Et is the amplitude of the incident field. The cavity
detuning parameter 50 is given by

and in Eq. (S.la) we must take the positive sign for optical
bistability and the negative sign for the laser with an in-
jected signal. In the case of optical bistability, a
represents the unsaturated absorption coefficient per unit
length. The boundary conditions are

W(0, t}=TY+ Re 'P (L,t (W L)—lc), — (S.3)

where

(4.17) COC —COg

c/W (5.5)

The spatial integration can be carried out by elementary
analytic techniques with the result where roc is the cavity resonance that lies nearest to the

frequency of the input field. The transformations (2.5a)
and (2.5b) must be generalized as follows,

1+5' (1+5')R'+
~ f, ~'

(4.18)

We have solved both Eqs. (4.16) and (4.18) by a standard
Newton-Raphson method and the frequency integrals
with a 20-point Gauss quadrature formula. A compar-
ison of the exact and approximate results is shown in Fig.
3.

I t

F(z', t') =P (z', t')exp —(lnR i50) —+ TY

I

P (5,z', t') = H (5,z', t')exp —(lnR i50)—
L

(5.6a)

(5.6b)

V. CONCLUDING REMARKS

Figures 2 and 3 show a rather good agreement between
the stationary solutions of the improved single-mode ap-
proximation and of the exact Maxwell-Bloch equations,
even for values of aL of the order of a few units. This is
quite unlike the behavior of the mean-field approximation
which loses accuracy rather quickly as aL becomes larger
than its threshold value. This result indicates clearly the
advantage of the improved single-mode model (3.2) over
its mean-field counterpart (2.14). The former, in fact, re-
moves the restriction that 8 be very close to unity. On
the other hand, it does not eliminate entirely the restric-
tions on aL; in fact, the model (3.2) also fails when the
gain parameter becomes too large. It is still important to
keep in mind that, as shown by Figs. 2 and 3, aL does not
have to be small.

Our improved single-mode model can be readily gen-
eralized to the case of externally driven systems as optical
bistability and the laser with an injected signal. In these
systems the reference frequency to+ should be selected to
coincide with the input field frequency, and Eqs. (2.2)
take the form

while Eq. (2.5c) remains unchanged.
Equations (2.4} and (5.6a), applied to the boundary con-

ditions (5.3), yield again Eq. (2.6). Hence, the modal vari-
ables can be introduced as done in Sec. II, and the same
steps developed in Secs. II and III lead to the mean-field
model and to the improved single-mode model for the
case Y&0.

The success of the improved single-mode model in
describing the steady-state behavior suggests that we
should now exploit the results of this paper for the
analysis of instabilities, following the usual procedure
based on the linear stability analysis around the stationary
solutions and the subsequent numerical solution of the
time-dependent equations in the unstable ranges of param-
eters. We expect this investigation to be especially in-
teresting in the case of inhomogeneously broadened lasers
for which a large amount of experimental data is avail-
able. ' This will be the subject of a future analysis.

%e reserve a final comment on a matter of terminology
that we would like to adopt in future work. We propose
that the set of equations (3.2) be referred to as simply the
"single-mode model, " and that, in order to avoid con-
fusion, the term "mean-field model" be used for Eqs.
(2.14}.
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