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Numerical study of the effect of laser-frequency fluctuations on optical bistability
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A numerical study of the effect of laser-frequency fluctuations on dispersive optical bistability
shows a strong dependence on the strength and correlation time of the noise. Both the stationary-
state characteristics and switching times are studied, and a qualitative explanation is provided for
some of the numerical results.

I. INTRODUCTION

Absorptive optical bistability (AOB) was theoretically
predicted by Szoke et al. in 1969. Five years later,
McCallz predicted the transistor effect and treated AOB
in a Fabry-Perot cavity by a numerical analysis of the
Maxwell-Bloch equations. This work was followed by the
experiments of Gibbs, McCall, and Venkatesan in Na and
ruby, in which both transistor operation and bistability
were observed. ' The analysis of their data showed that
the observed bistability was mainly of dispersive type.
This dispersive optical bistability (DOB} can be modeled
by the equations

x =y c~—x —2cx/(a +x2),

P= —y(sing)/x+2ch/(a +x ) .

(l.la)

(1.1b)

6, the atomic detuning parameter, measures the disper-
sion; b, =0 corresponds to the purely absorptive case. y is
the input amplitude from the laser„x is the response am-
plitude, P is the phase difference, c is the bifurcation pa-
rameter, and a~= 1+62. The usual dimensionless vari-
ables have been employed.

Although Eqs. (1.1} have their origin in a semiclassical
theory, we will call them the deterministic equations since
our objective is to consider the effect of fluctuations.
Many theoretical studies have been made on the effect of
noise on the optically bistable system. Fluctuations in c
have btxn studied on several occasions. These consist
of fluctuations in the optical pumping rate, the atomic
density, and spontaneous ernissions. All three are quite
small unless one purposely increases the first two. The
case of a weak, isotropic, additive noise has also been
treated. ' Noise produced by the driving laser has only re-
cently begun to be considered. Here one must consider
both the possibility of laser-amplitude and of laser-
frequency (or phase) fluctuations. A theoretical study of
the effect of laser-amplitude fluctuations for the absorp-
tive case was made by Kus et al.;" they found that the
amplitude fluctuations have no practical importance.

Thus, our interest here is to study the effect of laser-
frequency fluctuations on the behavior of the optically
bistable system described by Eqs. (1.1). Our study is nu-
merical because very little can be said analytically about
the highly nonlinear problem posed by (1.1) in the pres-
ence of frequency fluctuations.

Previous numerical work along these lines was done by
Cresser and Meystre. ' They actually studied the effect of

phase noise, which is related to frequency noise.
Willis' ' has theoretically studied both frequency and
phase fluctuations. Our numerical results together with
their qualitative explanation are intended to complement
those just mentioned. In their simulations Cresser and
Meystre only studied the case of white noise for AOB and
did not examine the steady states under fiuctuations.
Willis's calculations use the linear approximation.

Ignoring all other fluctuations and following Willis, 'i
we arrive at the following system of stochastic differential
equations (SDE's) describing the effect of laser-frequency
fluctuations on the optically bistable system:

x=yc~ —x —2cx/(a +x ),
P= —y(sin|(t)/x+2cb, /(a +x )+ea .

(1.2a)

(1.2b)

Here, 0=ca is the noise term with strength measured by
In our study, a will either be normalized white noise

(zero mean and correlation equal to a delta function} or
Ornstein-Uhlenbeck noise [zero mean and correlation
equal to exp( —

~

t —t'
~
/~)/2v], the latter modeling the

effect of a positive correlation time ~ aas wh. ite noise
was the case considered by Cresser and Meystre'2 (their
linewidth parameter corresponds to our e /2) and corre-
sponds to the common assumption' that the phase of the
laser is driven by white noise. Willis, ' however, considers
correlation times as large as 10 in the dimensionless time
units used here.

The organization of this paper is as follows. In Sec. II,
we will make some coinments on the deterministic system
(1.1), mostly to see what the orders of magnitude of the
relaxation times are. In Sec. III the main results of the
numerical study are given, and a qualitative explanation
of them is presented in Sec. IV. Appendix A describes the
simulation algorithm. In Appendix B two of the basic
equations of Sec. IV are derived.

II. COMMENTS ON THE DETERMINISTIC
EQUATIONS

Graham and Schenzle' made a general stability
analysis of the deterministic equations (1.1). Changing to
rectangular coordinates (X and Y denote the components
of the response field, and the input field Eo is taken in the
X direction), they showed that one has global stability
outside the circle of radius Eo/2 and center (Eo/2, 0).
Therefore, since the equations are first order and auto-
nomous, the only attractors within this circle can be fixed
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points and limit cycles.
A simple theorem' shows that no periodic orbits can

exist: Given an autonomous system X=ri (X, Y),
Y=6 (X, Y), let Ii and G have continuous first-order par-
tial derivatives in a simply connected domain D. If
Fx+Gr has the same sign throughout D, then there is no
periodic solution lying entirely in D.

For the case at hand, I'x+Gz is negative everywhere.
Thus, for all practical purposes, the only attractors for the
system (1.1) are the deterministic stationary states defined
by x =0, 4 =0 (we now return to using polar coordinates).
For these one has the state equation'

y =xI[1+2c/(a2+x )]+[2cb,/(a +x )] )'~, (2.1)

giving y as a function of x, or x as a multivalued function
of y, and

which will be used in the following discussion.
For sinall x, each A, has an imaginary part, hence the

relaxation to the opaque state is oscillatory. Moreover,
this state is characterized by fairly large —Rek, (-5), i.e.,
the relaxation is fast. On the other hand, for very large x,
A, ——1, so one has nonoscillatory relaxation to the trans-
parent state. Hence, the relaxation is relatively slow.

III. NUMERICAL STUDY

A variation of the algorithm used by Sancho et al. '

was employed in order to study the system (1.2) numeri-
cally. This algorithm and some features of the computer
program are described in Appendix A.

For Figs. 2—5 and Table I, a noise strength of e= 1 was

20
tang=2cb, /(a +x +2c) (2.2)

determining P implicitly as a multivalued function of y
(i.e., both x and P exhibit bistability). We call the state
corresponding to small x the opaque state and the state
corresponding to large x the transparent state. These
have dy/dx ~0 and are stable. The stationary states
where dy/dx & 0 are unstable. 5

It is useful to have some estimates on the times for re-
laxation to the stationary states. For small deviations 5x
and Q from these states, one has the linear relation

5x A 8 5x
C D 5$ (2.3)

determined by the matrix elements

l5

O lo
CL

2 = —1 —2c/(a +x )+4cx /(a +x )

8=—2cdu/(a +x ),
C=2ch/x(a +x )—4cdur/(a +x2)2,

D = —1 —2c/(a +x ) .

(2.4a)

(2.4b)

(2.4c)

(2.4d)

goal
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The real parts of the characteristic values I, of the matrix
in (2.3) must be negative in order to have linear stability.
Figure 1 is a graph of —Rek, versus y for the stable sta-
tionary states, for c =20 and b, =3, the values of c and b,

20

l5

lo—
4P

C3

O

CL 10

bIstoble

reg I prI

smail x,
domped
PscI I lotI

domped,
rIOrI- pSCII IOtIrq

l

-Re ).z

20 25
l5

l rtput Amp li tude y

FIG. 1. The negative of the real part of the characteristic
value, —Rek, , vs input amplitude y for C =20, 6=3.
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FIG. 2. (a) Most probable x vs input amplitude y for @=1,
~=0. (b) Most probable x vs input amplitude y for a= 1, v =5.
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TABLE II. Switching times as a function of e for v=0
and y =19.

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55

Forward

66.9
68.3
72.5
76.4
91.3

101.9
115.3
146.5
165.1
255.0

Backward

13.1
13.2
13.7
15.3
15.3
17.7
20.1

24.1

25.1

36.3

IV. QUALITATIVE EXPLANATION
OF THE NUMERICAL RESULTS

same small x the presence of noise produces a larger y
(extension of the lower part of the curve). This is certain-
ly less pronounced for Ornstein-Uhlenbeck noise, where
the small-x portion of the curve disappears for some y be-
tween 22 and 23. This behavior in r is qualitatively dif-
ferent than what happens for fluctuations in the bifurca-
tion parameter.

Figure 3 exhibits the most probable x as a function of r
for y =18. Note that a maximum occurs around r=5,
which is why r=5 was chosen for the positive r runs cor-
responding to Fig. 2(b).

Figures 4(a) and 4(b) show the average x and the rela-
tive dispersion of x versus y for r=0 and 5. Note the
peaking of the relative dispersion in the center of the bist-
able region, a feature already noted in absorptive OB for
fluctuations in the bifurcation parameter. s The peak
value for white noise corresponds to a y somewhere be-
tween 18 and 19, tending towards 18, which is why we
chose y = 18 to examine the explicit dependence on r.

Figures 5(a) and 5(b) show the average relative phase P
and the dispersion of P versus y for r=0 and S. Note the
different scales for the dispersion. In both cases the peak-
ing of the dispersion in P occurs at a different y value
than the one for the peaking of the relative dispersion in
X.

Table I shows the switching times, both forward and
backward, and still @=i. By forward switching time we
mean how long it takes to switch from a region around
the most probable x and P corresponding to the opaque
state to a region around the most probable x and (() corre-
sponding to the transparent state. The backward switch-
ing time corresponds to a transition in the opposite sense.
The entries &500 in the table only indicate that no
switching took place before stopping the integration rou-
tine on the computer, which ran in all cases to t =500.

It is also useful to study the dependence of the switch-
ing time on e. Table II shows this for white noise and e
decreasing from e=—1, all for y = 19.

x and P fluctuate close to one deterministic stationary
state for some time and then move rapidly to a region
close to the other deterministic state where there are again
small amplitude fluctuations until the next switching
event. This suggests a general approximation for deter-
mining the two most probable values corresponding to
these deterministic states, namely to ignore the presence
of the other state. All of the qualitative analysis that fol-
lows depends on this idea.

One consequence of our general approximation philoso-
phy is that in the following we will be cavalier about the
distinction between average values within the well and
most probable values. This is permitted as long as we
consider only those fluctuations which are close to the
deterministic values of x, excluding all considerations of
the other ones. Such a procedure makes sense as long as
the switching times are much longer than the determinis-
tic relaxation times, which is the case here.

From an examination of Figs. 2 and 3, one sees that
there are essentially four regimes. First of all, there is the
white-noise limit r +0 T—his u. nfortunately does not fit on
Fig. 3, but Fig. 2(b) shows that it corresponds to a slight
negative displacement from the deterministic point at

y =18. Then there is a regime corresponding to a small,
positive value of r (say, 0 & r &0.01), where there is a de-
finite displacement above the deterministic curve. There
is a third regime for moderate values of r (0.01 & r & 300),
and finally a fourth regime for very large values of r
(r p 300). We give a qualitative explanation of regimes 1,
2, and 4.

For the first regime, let us obtain an estimate of the size
of the fluctuations using the linear approximation. We
have from Eq. (2.3) with noise the following expressions
for the correlations (see Appendix 8):

(5x ) =f dcoB G(co), (4.1a)

(5$ ) =f dco(A +co )G(co),

(5x5$) = —f dco ABG(co), (4.1c)

(4.1b)

with

G(co)=S(co)/[t(co AD+BC) —+(A +D) co ] . (4.2)

The coefficients A, B,C,D are given in Eqs. (2.4); $(co) is
the spectral density of the noise. At y =18 and for the
transparent state (large x) we find that white noise gives
(5x ) /x-0. 7e, (5$ )' —1.2e. For the opaque state
(small x) we find that (5x )'~ /x-0. 6e, (5$ )'~ —1.2e.

Let us now examine a perturbation series in e. All the
correlations (4.1) are of order e because of the presence of
this term in S(co), while (5x ) and (5$) are zero only to
order e. Thus one can expand to quadratic terms in
5x, 5$, and use (4.1) to obtain (5x ) and (5P ) to order e2.

We are interested in (5x ), and the result is (see Appendix
B)

(5x ) =(AD —BC)

X f dco G(co)f(Ba2 Da&)B (BPi DP—i)AB— —
In this section, we will give a qualitative explanation of

some of the numerical results. The general picture
developed from examining the computer runs is one where where

+(By2—Dpi)(A +co )], (4.3)
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ai ——6cx/(a +x ) —8cx /(a +x )

a2 ———y(sing)/x —2cb, /(a +x )

+8cM /(a +x )

(4.4a)

(4.4b)

(4.4c)

Pz=p (cosp)/x

y, = —y (cosP)/2,

7'2 =Jl ( sing ) /2X

(4.4d)

(4.4e)

(4.4f)

Although Fig. 3 is for fixed y, it is actually easier to con-
sider (4.5) for fixed x because of the bistable behavior of x
as a function of y. In this case,

y (Q,x)=y (O,x)+ Q+ — Q2,Bg 1 Bp

Q 0 ~x QO
(4.6)

so

(4.7)

Since
'3

=x ———— [4ch/(a +x )]
x 1 x 2 2 2 (4.8)

(5y ) is positive for x —12.7. A positive displacement in
y for the same x is equivalent to a negative displacement
in x for the same y. Note that (4.7) shows that this
correction becomes vanishingly small as ~ increases.
Hence we have an explanation of the behavior of Fig. 3

Let us denote the expression in square brackets in (4.3) by
g+hco . This polynomial together with AD —BC deter-
mine the sign of (5x ).

We find that g &0 and h &0 for x & 3.6. In this same
range of x, AD BC &—0. For increasing co, g is soon
dominated by hco, so we have that (5x) &0. Thus the
behavior for Fig. 2 for y-21, x-2 is now qualitatively
understood: (5x ) & 0 means a downward displacement of
the curve. This downward displacernent is less for small
but positive r, because of the presence of r in S(co).

For large x and white noise, a similar reasoning ex-
plains the behavior of the most probable x curve. We find
that both coefficients g and h are negative for x &3.8.
Moreover, AD BC is —positive for x & 10.2. Thus
(5x) &0 in the range x &10.2. Thus the white-noise
behavior at y-21, x-1S.5 is qualitatively understood:
(5x) &0 means a downward displacement of the curve,
but this displacement is less in magnitude for larger r.

In both cases we see the tendency to move up for in-
creasing r. However, for large x this quadratic approxi-
mation is obviously not the whole story because (5x ) be-
comes positive for large enough r.

For the other extreme case where ~ is very large, Eqs.
(1.2) can be treated as if Q= ra were a constant. One ob-
tains the state equation

y =x t[1+2c/(a +x )) +[Q+2cb/(a +x )] ] .

(4.5)

for very large r, which for x=300 is not inconsistent with
a small negative displacement (5x ). Unfortunately the
behavior in the intermediate region, where ~ is close to the
deterministic relaxation times, is more difficult to explain.
This is because the laser-frequency fluctuation is
mathematically equivalent to a fiuctuating cavity detun-
ing [compare Eq. (4.5) to Agrawal and Carmichael's Eq.
(3.12), Ref. 5], and the bistability is notoriously sensitive
to cavity detuning (see Fig. 2 of Agrawal and Car-
michael).

Nevertheless, the following argument offers a qualita-
tive explanation of Fig. 3's positive displacement in x
with respect to the deterministic curve for small r, and
has the advantage of taking more of the nonlinearities
into account (nonlinearities must be an important factor
here because the most probable x for 0.01&v(0.1 are
well separated from the deterministic values). Let us ex-
pand (1.2a} around the most probable P, call it P. Then
we have

x =y cosP —y(sing }5/—x 2cx /(a—2+x 2) (4.9)

to first order in 5$, the deviation of P from P. For the
transparent state, P is small (from the simulations,
$-0.1), so for all practical purposes x only sees second-
order corrections to P. That means that an approximation
to the state equation is

y =[x +2cx/(1+x )]/cosP, (4.10)

which is obtained by ignoring the 5$ term in (4.9) and set-
ting x =0.

P is determined by treating x as a parameter in (1.2b)
and solving the corresponding one-dimensional approxi-
mate Fokker-Planck equation. Note that this assumes
that both e and ~ are small. Treating x as a parameter
has some justification in the fact that Eqs. (4.1) show that
(5x ) gets smaller with increasing r, whereas (5$ ) stays
about the same. We find

/=tan '[2cb, /(a +x +2c)(1+re /2)] . (4.1 1)

Comparing with (2.1) and (2.2), we see that for the same
x, P is smaller than the deterministic P, thus giving a
smaller y. This is equivalent to saying that for the same
y, x is larger.

This qualitatively explains the behavior seen in Fig. 3
where (5x) becomes positive for r=0. 1. Note that this
analysis cannot be made for the opaque state because in
(4.9) $-1.1, so sin(t -0.9. Also note that the
phenomenon we are trying to explain (positive (5x ) for
the transparent state) has nothing to do with bistability;
Fig. 2(b) shows that it occurs outside the bistable zone as
well. The larger x is, the better the approximation we
have used becomes, since P gets smaller for larger x. Al-
though Eq. (4.11) shows that the correction to first order
in r is x independent, Fig. 2(b) actually shows the correc-
tion increasing with decreasing x. This can be attributed
to a second-order effect in ~ which is a function of x.

This last approximation procedure has been successful
in giving a qualitative explanation for the location of the
most probable x for small ~, but one should be wary of
using it to predict a more global property like the switch-
ing times. Moreover, we note that there is some indica-
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T,'=T
oe xp(e 0/e ) . (4.12)

The constant To, of course, depends on whether forward
or backward switching times are considered (To-35 for
forward, 8 for backward). The Arrhenius factor eo is the
same for both an'd is approximately 0.25. This type of
behavior is what one would expect if the problem were of
one dimension. In that case the probability density varies
as exp( —U/e ) where U is some potential function. The
switching times would then have the behavior of (4.12) ac-
cording to the usual activation analysis. In fact, a two-
dimensional analysis using the same generic isotropic dif-
fusion of Graham and Schenzle' was made by Talkner
and Hanggi; ' they found for the special case of cavity de-
tuning equal to atomic detuning relaxation times of the
same general form as (4.12), in spite of the fact that our
diffusion term is not isotropic.

It should be observed that we have both phase up-
switching and down-switching in this system as opposed
to what Cresser and Meystre have observed for the ab-
sorptive case. ' Thus it is difficult to compare the
behavior indicated by (4.12) and its associated parameters
with their results, especially since the b, =3 deterministic
curve is very different than the 5=0 determiiustic curve
(although our value of y =19 plays a similar role as their
value of y = 15—both are in the middle of the determinis-
tic bistable region).

Nevertheless, the switching times of Table II are quali-
tatively similar to those of Cresser and Meystre for the
absorptive case. They are surprisingly small for a
moderate bandwidth, although they rapidly decrease with
bandwidth if (4.12) holds true. Only a bandwidth as small
as that corresponding to @=0.1 would result in very large
switching times.

V. CONCLUSIONS AND FINAL REMARKS

A general conclusion to be obtained from our numerical
study is that the effects of laser-frequency fiuctuations
(i.e., the finite linewidth of the laser) are far from being

tion that the approximate Fokker-Planck equation used
here (and in Ref. 17) may have problems with global
descriptions even without making the additional approxi-
mation we made. ' Since this two-dimensional problem
of estimating switching times depends on a good estimate
of the stationary probability density, we will make no at-
tempts in this direction.

However, the general trend for the switching times is
clear and offers no surprises. At the turning points, the
switching times are the same order of magnitude of the
delays reported experimentally' and predicted theoretical-
ly for AOB without considering fluctuations. The fluc-
tuations keep the delay from becoming arbitrarily large.
In Table I we see that switching times for r= 5 are greater
than those for r=0 On.e intuitive reason for this, of
course, is that larger frequencies are absent, i.e., the noise
does not fiuctuate as fast. However, there is another
reason: the distance between the transparent and opaque
states is larger for r=5 than for r=0. For Table II we
note that the forward or backward switching time T,
seems to be well described by the functional relation

negligible. In fact it is very important to consider them
when one wishes to use the optically bistable device as a
switching element. We now outline some of these practi-
cal considerations.

The analysis of the location of the opaque and transpar-
ent states has sho~n that, with a slow decrease in input
amplitude with white noise in the fluctuating frequency,
the switch from upper to lower bistable branch would
tend to occur on the average at input field strengths
higher than those for the perfectly coherent situation. On
the other hand, the existence of a positive correlation time
dramatically changes this behavior; for a correlation time
on the order of the deterministic relaxation times, one ex-
pects that the switch from upper to lower bistable branch
would tend to occur at input field strengths lower than
those for the perfectly coherent situation.

The switching-time behavior is also interesting. For the
case where the laser linewidth is of the same order as the
cavity bandwidth, the smallness of the switching times
implies that the optically bistable device has little use as a
switching device. In fact, it is clear from our analysis that
a small correlation time and large linewidth do away with
bistability in the sense that the spontaneous switching will
occur on a microscopic time scale. However, we have also
shown that these switching times strongly depend on the
correlation time and the linewidth in a way that increas-
ing the first and de:reasing the second are practical
methods for increasing the switching times.
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APPENDIX A

The simulation algorithm employed in the numerical
study of Eqs. (1.2) is a slight variation of the one of San-
cho et al. '

In the case that a is Orstein-Uhlenbeck noise we write
(1.2) in the form

x=f&(x,P),
j=f,(x,y)+ra,
a= —a/r+a /r,

(Ala)

(A lb)

a( t +6)=a(t) ha(t)/r+X, (t)/r . — (A2c)

where a~ is normalized white noise (having a delta-
function correlation). This means that a is a normalized
Ornstein-Uhlenbeck noise [having correlation equal to
exp( —

i
t t'

~

/r)/2r]—
The algorithm corresponding to Eqs. (Al) is (6 is the

step size here, not the atomic detuning parameter)

, Bf,(x (t),P(t))x(t +6)=x(t)+M(RK&)+ —5
2 BP

a(t),

(A2a)

, Bf,(x(t),P(t) )
P(t 5+) =P(t )M+(RK, ) —+6' a(t)

2 BP

+a[ha(t) b, 'a(t)/2r+X, (t)],— (A2b)
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Here

X,(r) =b, '~'y, (r},

X2(t)= b, pi(t)+ y2(t)
1 3]2 1 1

2 2 6

and y~ and y2 are independent Gaussian random numbers
with zero mean and variance 1. M(RKi) and W(RKi)
are simple Runge-Kutta approximations in the deter-
ministic sense (these are used to guarantee good deter-
ministic trajectories when the noise is small).

When v~0, ha-Xi, so one obtains the following algo-
rithm, valid to order b, :

x (t+6)=x (t)+W(RKi),

p(t+5)=p(t)+M(RK2)+@Xi(t) .

(A3a)

(A3b)

This was used to simulate the effect of white noise.
We tested the noise simulation in various ways. For ap-

proximately 4000 iterations, for example, the simulated
variances for r= 1 and 10 were never more than 2% dif-
ferent than the desired variances, and the magnitude of
the averages were less than 10 . A fast Fourier
transform of the time series generated in this test showed
that the required 1/coi behavior of the spectrum was ob-
tained for r0- I/r. This latter test was insensitive to low
frequencies, but since it showed an essentially fiat spec-
trum for white noise, we can be fairly certain that the
spectral characteristics of the noise are correct.

In the numerical study described in Sec. IV a step size
of 5=0.05 was used, except for v=0.01 and 0.05 where
5=0.001 was used. Time averaging and ensemble
averaging were employed together in developing the state
statistics (Figs. 2—5); this consisted of recording the tra-
jectory values at every 20 integration steps, starting at
t =10 and going to t =500, and then averaging over the
50 Monte Carlo runs. The most probable x and other
values were determined from a histogram having
Lkx =0.25, 5/=2m/80 The width. s in the bars in Figs. 2
and 3 correspond to multiples of )bc. Widths of multiple
values of M are due to cases where the peaks were very
flat. These are effective error bars, then, due to the histo-
gram grid size and the inherent limitations of a finite sta-
tistical sample.

There is a some error involved in using a dynamical
simulation to determine the stationary probability distri-
bution (i.e., one assumes the ergodic limit is already
achieved). This was tested in a few cases by letting the
program run somewhat longer than t =500 (limitations in
computer time prohibited an order-of-magnitude in-
crease). No differences were noted in the most probable x
values within the histogram grid size described above.
Sensitivity to initial conditions was also tested (see below}.

Obviously the switching times correspond only to en-
semble averaging. These were determined by examining a
region around the deterministic states (the same M and
hp were used), starting the trajectory in one of them, and
recording when the trajectory entered each grid square
around the other. After finishing the 50 runs, one has an
average entry time to each grid square. After determining
the most probable x and P, one examines the region

around them and selects the earliest time. Here the half-
maximum rule was used to determine the region studied
around the most probable values.

Note that because both forward and backward switch-
ing times are determined, one actually has a test as to
whether the steady-state statistics depend on initial condi-
tions (which is really a test of whether one has reached the
ergodic limit, since presumably in that limit the steady
state is independent of initial conditions). Within the ac-
curacy of the unorthodox error bars defined above, no
difference was detected between starting the system in the
opaque or transparent states. Also, the values of x, P, and
the dispersions of these variables (which are independent
of the histogram grid size chosen}, were seen to be in-
dependent of this choice of initial state.

There is considerable noise in the switching times due
to the finite sample size used (50 Monte Carlo runs) as
well as the finite M and bP. For these reasons, the data
are presented in tabular form just as they came out of the
program and no attempt of establishing traditional error
bars was made. The data are interesting in spite of these
limitations because they agree with general intuitive ex-
pectations (see Sec. IV) even in this complicated two-
dimensional, nonlinear and nonisotropic noise problem. It
is believed that more statistical precision (extending to 500
Monte Carlo runs, for example) will not change the gen-
eral trends.

It should be pointed out that, due to the nature of the
simulation program, "switching" as used here refers to an
essentially different rocess than that studied recently be
Erneux and Mandel. They consider the behavior when y
is varied in time. Their study is also deterministic in that
no fluctuations are included. In the analysis made in this
paper, the system has a fixed y value and the switching is
driven solely by the laser-frequency fluctuations. It is
worthwhile to observe that a generalization of the
Erneux-Mandel analysis to include fluctuations is a diffl-
cult problem, although it certainly could be studied using
the numerical methods discussed here.

APPENDIX B

where

2cxfi(x,P) =y cosP —x—
Q +X

fi(x,P)= — sing+ i 2
.2cb,

X 0 +X

(B2a)

(B2b)

Then the linearized equations are obtained by writing
x =X+5x, /=/+A, where x and P are the determinis-
tic values (deterministic opaque or transparent state), and
expanding f&

and f2 to first order. Let

A 8
M= (B3)

In this appendix we derive Eqs. (4.1)—(4.4). Let us
write the stochastic differential equations in the form

(8 la)

(Blb)
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(recall that Q =ra, where a is normalized white noise or
Ornstein-Uhlenbeck noise). The lineirized equations then
read

z=Mz+G(z)+E, (88)

For the quadratic analysis one expands fi and fz to
second order in 5x and 5$. In the same shorthand nota-
tion as above, one can write the resulting system of sto-
chastic differential equations as

i =Mz+N, (85)
where G is a vector function of the vector z with com-
ponents

z(co)=( —M+ico) 'N(co) . (86)

where z is the column vector (g). Taking Fourier
transforms, one finds

G. =ai5x'+Pi5x@+}'iV'

G& ——az5x z+ Pz5x ++yzQ

(89a)

(89b)

Rewriting this in terms of the components and taking the
inverse of the matrix, one has

5x (co) =BQ(co)I[ BC +—( D+i c—o)( —A +leo}], (87a)

Q(co) =( A+i c—o)Q(co)I[ BC +—( D+i c—o)( —A +ico)].
(z) = —M '(G(z)) .

In other words,

(810)

ai, Pi, etc. , are related to the partial derivatives off i and

f2 and are given in the main text (appropriate factors of 2
have been included). From (88), one sees that

Since (Q(co)Q'(co') }=S(co)5(co—co'), S(co) being the
spectral density of the noise, one finally obtains Eqs. (4.1}.

&5x & = —
&,DG. —BG, &Z(AD —BC),

which just gives Eq. (4.3).

(811)
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