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We extend our theoretical formalism describing how one strong classical wave and one or two
weak quantum-mechanical waves interact in a nonlinear medium to the “two-photon two-level”
model. In this model, field transitions between two levels not connected by an electric dipole occur
by means of a two-photon transition using off-resonant intermediate levels. This model has many
similarities with, as well as significant differences from, the corresponding one-photon two-level
model that has been treated in the previous papers in this series. The theory yields the first detailed
calculation of the two-photon resonance fluorescence spectrum, as well as the complete set of four
coefficients that describe the quantum theory of two-, three-, and four-wave mixing.

I. INTRODUCTION

Because of either selection rules or the unavailability of
an appropriate laser frequency, many energy levels cannot
be excited by means of a one-photon transition. Such ex-
citations can only be performed by means of a multipho-
ton transition, and such transitions are now quite common
in laser spectroscopy. Multiphoton transitions are also of
interest because of their potential applications to isotope
separation, laser chemistry, information transmission, and
high-power lasers.

In previous papers in this series! ~> we have derived and
applied a theory describing quantum multiwave interac-
tions in a nonlinear two-level medium, in which the levels
are connected by an electric dipole. This theory unifies
numerous areas of quantum optics—resonance fluores-
cence, saturation spectroscopy, modulation spectroscopy
and phase conjugation. In this paper we extend our
theory to the two-photon two-level model developed by a
number of authors.’~? In this model, two levels not con-
nected by an electric dipole interact with a field at ap-
proximately half the transition frequency by means of a
two-photon transition. As we demonstrate, the form of
the reduced field density operator equation of motion is
the same as in the one-photon case, and so all of the re-
sults of the previous papers can now be obtained for this
type of medium. In particular, we provide the first de-
tailed calculation of the spectrum of two-photon reso-
nance fluorescence'® and find the set of four coefficients
that describe the quantum theory of two, three, and four
waves interacting in two-photon two-level media.

The two-photon two-level model is shown in Fig. 1.
The dipole matrix element between levels a and b is zero,
and the strong pump field frequency v, is approximately
one-half the frequency difference w=w,—w;. Dipole
transitions from states @ and b to the intermediate levels j
are possible, but we assume that these levels are sufficient-
ly far from resonance that they can always be treated to
first order and hence they acquire no appreciable popula-
tion.

Two major differences occur between the one- and
two-photon models. First, dynamic Stark shifts of the
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level frequencies can play an important role in the two-
photon case. The physical origin of the Stark shift comes
from the frequency shifts of levels @ and b induced by
virtual transitions to the off-resonant j levels. In the one-
photon model this shift can be neglected since such non-
resonant interactions are small compared to resonant ones,
but for the two-photon model, the shift is of the same
magnitude as the other parameters and must be included.
Second, the coherence R,;, induced between the two levels
in the two-photon model does not contribute directly to
the polarization of the medium; an additional atom-field
interaction is required. These differences cause the alge-
braic expressions to be significantly more complicated
than for the one-photon problem, and the resulting phys-
ics has considerably more variety.

The semiclassical multiwave mixing theory for the
two-photon two-level model has recently been published
by Sargent, Ovadia, and Lu.!! In that paper the effects of
the nonlinear coupling between the two-photon medium
and a strong two-photon resonant field on one or two
weak probe fields is considered. They thus obtain the
two-photon theory of saturation spectroscopy and phase
conjugation. The quantum theory presented here allows
us to also consider the fluorescence from this system, in-
stead of just the absorption. In addition, it is also possible
to study the effects of quantum noise on such processes as
phase conjugation and laser instabilities.!>~!* As in the
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FIG. 1. Two-photon two-level model.
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FIG. 2. Three-mode spectrum used for multiwave mixing
such as in laser and/or optical bistabilities, phase conjugation,
and modulation spectroscopy.

one-photon case, the semiclassical two-photon answers
can be computed from our quantum theory, and we show
that we obtain the same results.

Following the derivation presented in Refs. 1 and 2, be-
fore deriving the quantum-mechanical equations of
motion for this model we need to first solve the semiclas-
sical single-mode problem. This is done in Sec. II where
we follow the procedure of Ref. 11. In Sec. III the
quantum-mechanical model is presented. We follow the
procedure of Ref. 2 in which the relevant quantities are
expressed in terms of the operators of the quantized fields.
Section IV derives the quantum-mechanical equations of
motion for the quantized fields. The resulting expressions
are considerably more complicated than either those of
the semiclassical or the one-photon theory due to the
many more interactions. Because of this complexity, in
Sec. V we project these equations of motion for the quan-
tum operators onto the atom-field basis states employed in
Ref. 1. The equations for the components allow an im-
mediate physical interpretation along the lines of their
one-photon counterparts. For simplicity, the equations
are then solved for the case of a single sidemode (one
quantized field). Section VI discusses the consequences of
this solution, one of which is the two-photon resonance
fluorescence spectrum. The expression for the fluores-
cence is rather complicated, and we illustrate our results
graphically. In Sec. VII we include a second sidemode
placed symmetrically in frequency on the other side of the
strong mode, as shown in Fig. 2. This case is applicable
to three- and four-wave mixing and to laser instabilities.
As we show, many more interactions arise in the double
sidemode case, again resulting in effects absent in the
one-photon case.

The emphasis in this paper is on the basic theoretical
formalism. In Sec. VI we do present illustrations of two-
wave mixing phenomena such as the resonance fluores-
cence spectrum and the associated Rayleigh scattering
from this type of media, but we defer most of the discus-
sion and applications of the three- and four-wave mixing
interactions to subsequent papers in this series.

II. SEMICLASSICAL SINGLE-MODE SOLUTION

We consider the classical pump field to be of the form

Exr,)=3&1,0e " tc.c. , (1)
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where v, is the field frequency (in radians/sec) and where
the complex amplitude &,(r,?) varies little in a time 1/v,,
but may have rapid spatial variations like exp(iK,-r).
This pump field induces the polarization

p(r,t)=%9(r,t)e_ivz'+c.c. , ()

where the complex polarization amplitude Z(r,t) also
varies little in the time 1/v,. The polarization for the
two-photon two-level medium of Fig. 1 may be from the
atomic density operator R. This yields

p(r,t)=N Tr(erR)
=N E (ﬂajRja +ﬂbjij)+C.C. y (3)
J
where p,; is the electric-dipole matrix element between

the @ and j levels, and Rj, is the density-matrix element
between j and a. Combining Egs. (2) and (3) we find

P(1,1)=2N 3, (14;Rjs +ppjRjp +c.c. e’ , 4)
j

where only terms varying little in an optical frequency
period 1/v, are retained. The equations of motion for the
matrix elements of the atomic density operator R are ob-
tained from the usual equation of motion

iR=[#,,R]+T(R), (5)

where the semiclassical Hamiltonian in this case is given
by

ﬁfsc=ﬂ+7/aj¢7:+ijUZ+VjaUa+VbjUb ’ (6)

where (}, a;', and a,*, are the matrices

wg 0 O 001
Q={0 w, O ,UI=000;
0 0 o 000
(7
00O
ol=10 0 0],
010
and where the interaction energies 7°,; and 7", are
¥ =LY (g™ 2™ ®)
2%
Hjb —ivyt « vyt
ij_—‘—ﬁ'(gze +$2e ), 9

with u representing the appropriate dipole matrix ele-
ment. Note that we have not made the rotating-wave ap-
proximation since the intermediate j levels are far from
resonance. I'(R) is a matrix for relaxation processes. In
this work we assume that the upper level a decays at the
rate I'(=1/T);) to the lower level b. In real systems, this
decay generally occurs by dipole-allowed, one-photon
transitions. We let y(=1/T,) denote the decay rate of
the coherence between levels a and b, and v, and v, the
coherence decay rates between levels a and j and j and b,
respectively. Accordingly, the matrix I'(R) becomes
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l-\Raa YRab rajRaj
YajRja YJijb 0

Projecting Eq. (5) onto the atomic basis states we obtain
Rja = —(‘}/ja +l&)]a )R]a

—ivyt

+ oy (B2 M+ 83 Vo Ras +ipR) (1D

I

L4 t ) .
R; =§ f_mdt'(gze Y &3 expl — (7)o +iwj )t =)o Rog 1o Rpge

Rjp= —(yp+iop)Ry
+ o5 (B2 + 83 Ny Rey +1joR) . (12)

where #iv;; =#ilw; —w;) is the energy difference between
levels i and j, and y; is the corresponding decay constant.

We integrate Egs. (11) and (12) to first order in 7~
without making a rotating-wave approximation, since v,
differs substantially from all *w; and *wj. Setting
Ry, =§,,,e2w2', where R,, varies little in an optical fre-
quency period, we have

2ivyt’

)

1 gze —ivyt g;eivzt R 1 gzeivzt gz,,efu'vzl ﬁ 13
T2 | 0=V, | @+ HjaRaat op Wig+vs  wj+3v, Hipba -
I
Since we assume w,j, =w~2v,, we have L= k3| VT T,=|8,/8,|?, (20
Wjg +Vi~=0p —V2 , (14)  the two-photon coherent decay time 7T,=1/y, and the

which allows us to replace wj+3v, in Eq. (13) by
5 +v,. Similarly integrating Eq. (12), we find

ivat
&le 2

@jp+ V2

R 1 gze —ivyt
B 24 Wjp—Vy

o Rep

—3ivyt —ivyt
e 2 &re ?

Djp —V2

1
2% w,-,,—-vz

+ BiaRae . (15)

Using Eqgs. (13) and (15), we now derive the “two-
level” equations of motion for R,,, Ry, and R, using
the two-photon rotating-wave approximation, i.., we
neglect terms like 1/[y+i(w+2v;)] compared to
1/[y +i(0—2w;)]. According to Eq. (5), we have

Rep=—(y+io)Rapy—i 3, (¥ iRy —Rey ¥ 1) (16)
j
Rog=—TRy— 3 (i¥ 4Ry +c.c.) . amn
J
For simplicity we take R,,,, = —Ru, since we assume

R;;=0. We find the population difference equation of
motion

D=—2TRy—23 (i¥4jRjp+c.c.)
J
=—-(D+1)/T1—ZE(iVajRja'f'C.C.), (18)
j

where we write the population difference decay time 1/I"
as T;. Substituting the dipole Egs. (13) and (15) into (16),
we have

—2ivyt

Rogy=—(y+io+iody)Rey —iky &3/2¢ "D,  (19)

where the two-photon dimensionless intensity

Stark shift parameter
g =(kpp —Kag)/ | Kap | V'T T, . (21)

The two-photon coefficients kg, k,5, and ky, are given
by

kapy =(1728) 3, prajtp /@5 —v2) (22)
j

kaa=(17208) 3, | pjo | ’0je M@l —3) (23)
j

koo =(17202) 3, | wjp | *wjp /(0fp —3) . 24)
J

Similarly substituting Egs. (13) and (15) into Egs. (3) and
(18), we find, respectively,

P =4ﬁN[ gz(kuR“ +kbbRbb)
+ &3k Rape ], (25)
D=—(D+1)/T,+(ikyy &l "Ry +c.c.). (26)

As noted by a number of people,®—° Egs. (19) and (26) are
the same as those for a one-photon two-level system with
the substitutions

D—>0 +(D,IZ; ﬂzlgl/ﬁ_’kab g%, Vz-—>2‘V2 . 27)

For single-frequency operation, we can solve these
equations in the rate-equation approximation as done in
Ref. 12. Specifically, we assume &, and D vary little in
the two-photon coherence decay time T, allowing Eq.
(19) to be formally integrated with the value

—2ivyt

Ry = —ilkoy &%/2)D (0 +w,I —2v;)De , (28)

where the complex denominator &, is

1
T ytileo4od,—vy)

Z, (29)
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Substituting this into Eq. (26), we have
D=—(D+1)/T,—2#D , (30)

where the rate constant

R= k&% 2L N0+ w1, —2v,) /4y

=11} LN w+w,d,—2vy) /T, , (31)
and the Lorentzian
L8 =1/[1+(Ay/7)] . (32)
Solving for D in steady state (D =0), we have

D=—-1/(1+1*%,) . (33)

Substituting this into Eq. (28), we have

2 2ivgt

ab =i ka,,g:gz 1115.22’2 , (34)

where we have left off the frequency dependence on &,
and .7, for typographical simplicity. Finally, using Eq.
(33) and trace relationship R,, + Ry, =1, we have

By
Ru=t—271 _ f; , (35)
21415, 1+17%,
1++13.%
Ruy= 24242 fo (36)

1+13%, 14132,

The assumptions and method used to obtain Egs.
(34)—(36) are again employed in the next sections when
the quantum-mechanical model is introduced, and we fre-
quently refer to these results.

III. QUANTUM-MECHANICAL FORMALISM

The derivation of the quantum theory of multiwave
mixing in Refs. 1 and 2 resulted in an equation of motion
for the reduced field density operator P in terms of the
creation and annihilation operators of the quantized fields
and four complex coefficients, which we labeled 4,, B,
Cy, and D;. In those references we showed the physical
meaning of those four coefficients. For example, 4+ A7
is the resonance fluorescence spectrum, 4, —B,; is the
complex gain/absorption coefficient of a weak probe in
the presence of a strong pump field, and C,—D; is the
semiclassical mode coupling coefficient, frequently denot-
ed as —ik{. In this section we develop the quantum-
mechanical model to derive the coefficients 4,, B;, C,,
and D, for this medium. We solve for these coefficients
in later sections.

Specifically, for the problem of resonance fluorescence,
we calculate the spontaneous emission spectrum for fre-
quencies v; around the pump frequency v, (see Fig. 2).
Referring to Fig. 1, the spontaneous emission arises from
the upper level a to the intermediate level j and from the
intermediate level j to the lower level . For each two-
photon transition there is at most one spontaneous emis-
sion, either from level a to level j or from level j to level
b, but not both. We thus neglect the two-photon spon-
taneous emission, which is negligible for our assumptions.

Two-photon transitions also occur solely due to the strong
pump field.

We formulate the problem by adopting the approach
presented in Ref. 2 basing the calculation in terms of field
operators. However, to gain additional insight into the
physical problem and to express our results in familiar
and meaningful notation, we project our operator equa-
tions onto an appropriate set of atom-field states as was
done in Ref. 1. This also serves to demonstrate the con-
nection between the approaches of the two references.

We separate our Hamiltonian into three parts, the semi-
classical, the field, and the interaction. The semiclassical
Hamiltonian is given by Eq. (6). The field Hamiltonian is

Z’f:Z vka;rak ’ (37)
k

and the interaction Hamiltonian is

I_L .
K= — 2_;](03;‘*'0'4)-{'

Hiv

2% (a},-&-ob)

X3 (&rar+&ral) (38)
k

where v is the frequency of mode k and & is the field
amplitude of mode k, V/#v; /eoV Ui (r), where Ui(r) is
the complex spatial component of the wave and V is the
quantization volume. The o matrices are given by Eq. (7)
and a,I and a; are the creation and annihilation operators
for field mode k. The total Hamiltonian # is

H=I ot Hf+H i - (39)

We once again do not make the rotating-wave approxima-
tion since the intermediate j levels are far from resonance.
We define p to be the atom-field density operator and this
obeys the usual equation of motion

p=—i[#,p]+T(p), (40)

where I'(p) is given by Eq. (10) with p replacing R. The
aforementioned reduced field operator P for the quantized
modes is defined by tracing p over the atomic states,
P =Tr(p)aom- From Eq. (40) this has the equation of
motion

Ha 1j
24

P=—i[#},Pl-i Tt 3 ZL[&1di(0} +0,)
k

+&1dtk(0) +0,)]

Hoj

Y [&xdi(o)+04)+F btk (o) +0,)]+Hee. ,

+
(41)

where ¢, =a,p and ¢} =ajp. Note that ¢, and ¢} are
operators of both the field and the atoms and are not Her-
mitian adjoints of one another.

Our method combines the techniques of Ref. 2 and the
semiclassical theory of the previous section. From Eq.
(40) we find the equations of motion for ¢, and ¢} and
then solve for their slowly varying components using the
two-photon rotating-wave approximation, just as we did
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in the semiclassical problem of Sec. II for the atomic
density-matrix elements R,;, Ry, and R,,. Since we as-
sume these elements vary little in atomic lifetimes, we
may set their time derivatives to zero in steady state and
obtain four coupled algebraic equations that are solved
simultaneously.

IV. QUANTUM EQUATIONS OF MOTION

We begin by considering a single quantized sidemode.
This corresponds in Fig. 2 to the modes at frequencies v,
and v,. We may then drop the k subscript from the ¢
and ¢ operators, and we initially deal with the ¢* opera-
tor. The solution for the ¢ operator is similar. From the
equation of motion (40) and the definition of ¢+ we find
Kja & 1 ( 1

I»‘jbffl
7 g, +aa)+——2ﬁ

+[x, ot 1+iT (@) . (42)

This operator equation can be projected onto the atomic
basis states to obtain the equations of motion for ¢ J,, etc.
These elements contain rapidly varying components and
so we do not set ¢ ¥ =0. From Eq. (41) we find we need
the following components of ¢*:

i¢*t=—via'p+ (o) +03)

Tr(o,¢1)=07; (43a)
Trlosdt) =64 (43b)
Tr(op¢t)=0% (43c)
Tr(o)dt)=d7; - (43d)

For example, from Eq. (42) we find the equation of
motion for ¢7; to be

I

i = —(iVja+0ja+Vv)5— ¥ ojbla— 7 502

Kja & Lia &1 t
+_];h_anaaa+ J;ﬁ atpaaa

"3 » &1

+ 'u";_ﬁla Tpaba + 'uj;ﬁ 1 anaba

To integrate Eq. (44), we must first determine the time

dependences of each term, just as was done in the semi-

classical theory for Rj, Eq. (13). Since we are making

the two-photon rotating-wave approximation with respect

to levels a and b, the matrix elements ¢7,, ¢35, 63, and

#%, may be written in an interaction picture rotating at

the strong field frequency v,. We find from Eq. (42) that
this can be done with the transformations

+

(44)

—ivyt

o =0he (45a)
b= he™ (45b)
Str=F e (45¢)
d=0e, (45d)

where the tilde represents the slowly varying quantity in
our interaction picture. Note that Eq. (44) contains terms
like anua*. As shown in Ref. 2, terms such as this give
rise to the C; and D; coefficients and hence it is
worthwhile to retain these. We note that these coupled
mode terms at[)‘,aaT really arise from expressions such as
& §e‘(v’+v3) , and thus the time dependence of these is
proportional to ezwzt. The matrix elements py,, pasp, €tc.,
can be expressed in terms of the semiclassical results and
the field operator P. For example, pg, =PR,
=P§,,,,e—2w2'. This gives the time dependences of these
terms. Including all of these in Eq. (44), it is then possible
to integrate it just as for R;, and Rj, in Egs. (13) and (15)
to yield

Uja 8204 +Ujp &2 +uj&1a Tpaaa +Mjp g;‘a*Pan{ab

+_
9 2(wjq +v2)

Hja &30 % +Uja &la Tpaaat 2t Kb &6 % +up&a fpaﬁab et
2ﬁ(wj,, +3V2) ’

Zﬁ(a)ja —"Vz)

(46)

where the 7, terms have been dropped since they are small compared to wj; —v2 and where we approximate v|=~v, for
the same reason. Similarly, we may integrate the equations of motion for the other components of ¢ in the P equation,

¢}, 8%, and 6. We find

$a=

Ujq 8”557; +1jp gz‘;;-a +Hja &la fa Tpaa +ujpp&a tapﬁba eZivzr

2i(wjs +v2)
Hija gZ‘;:a +Uja &a 1-apaa

Lp 8388 +upEia'a PRy, v

Zﬁ(wja —-Vz)

Zﬁ( (’)ja + 3’\/2)

) 47)

¢bj Zﬁ( wjb —‘Vz)

Kb 55)2:531, +up&a prba

Hija g;‘;; +Hja g:a 'Pa Tﬁba e4iv21

+_ M B30 +1jp 820 o + 1008 10 PaRy, +1p E1a pppa’ e

Zﬁ(wﬂ, +V2)

Zh( a)ja ol 3V2)

) (48)
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. - R
v BB +1ia 830 1 1a'appy +1ja8a'a PR,

Olb 2H{wje —vy)

1is 30t +upra’a'py Gt M €20 % +1ja & 1a'aPRy 2

Zﬁ(a)ja +‘V2)

(49)

27w jq —3v,)

We wish to derive the equations of motion for the slowly varying components of ¢ as defined by Egs. (45). We
proceed by again using Eq. (42) to obtain the equations of motion for ¢}, ¢%,, ¢%,, and ¢f,. For example, the equation

of motion for @7, is

i$ds=—(+iD)bla + ¥ o ($fs — %) — 1/ (2110 8 10 apja —pja 10 poja +111a 8 1(a"a e +a'pgya e

We then substitute the expressions for 7~ aj,¢j§,,¢j},pja
= PR;, from Eqgs. (8), (49), (47), and (13) into Eq. (50) and

retain only those terms varying like e, We then use

Eq. (45a) to determine the equation of motion for ¢ J,.
We find, after some algebra,

6= —(IT—D)§ +(kay /2N B3 F 5 — L)
+koa®1E3Ryq(a’Pa —a'aP)
—kap 818 Rpga’aP + ko, 81 &3a'Pa'R,,
ko &1 & Rysa'Pa’—ata'pP), (51)
where A=v,—v, as in the previous papers. This pro-
cedure is then repeated for the other three components
6%, 0%, and ¢ §,. This yields
it = (Bg+Ato,l—iy)Fl +kay /20X —F )
+ ko, &185(a 7PaRM —a TaPRb,, )
— & ,83R 4 (kgga'aP —kyya 'Pa)
—&T& Ry (kgga'a'P —kyya'Pa’) (52)

J

¢ja -

2iv,t

1. (50)

r

bt = —(Ag— At o, +iVFE+key /2)EHE 1 - E)
— & &3 Ry kppa'aP —kyqaPa’)
+gf?fzﬁba(kaaaTPaf—kbba*a*P)
+kp 183" Pa'Ry —a'a'PR,,) , (53)

it =iT¢ L +AG fy—(kay /2N E3E 5 — F36 1)
+kpp &1 3 Rpy(a'Pa —a'aP)
ko818 Rpea " Pa —ky &1 &3a"a’ PR,
+hpp &1 E Ryp(a’PaT—a'a’P) . (54)

Because ¢ * decays at the rate I' in our interaction pic-
ture and hence rapidly reaches a steady state compared
with the reduced field operator P, we solve Egs. (51)—(54)
in steady state. We then have four equations for the four
unknowns ¢}, ¢ 5, b 1s, and ¢ .

We now repeat this procedure for the operator ¢. In
this case the integrated equations of motion for the com-

ponents ¢j,, bsj, $j», and ¢, are

a8 3Paa 108 Bba +11ja E'13a o +11jp & 10aPR b

20w jg +v,)

Hija ?fzJaa +Hja & 1aap,, e =2vyt  Hjb 5f$$ba +Hjp &laa TPEM e2ivzt
2#H(wjq +3v,)

2%((1)]“ —'VZ)

) (55)

¢aj 27%( Wjg +v, )

/uja g;{{aa +/"ja grapaaa f

Ko & 21bab +11jp & 1aPaR ot

1jo 8 260a 146 3 bab +14ja 8 18Pt +1jp E1aPa Ry _ivyy
= e 2

Zﬁ((o_,a —"Vz)

Zﬁ((Dla + 3‘V2)

) (56)

Hjb & 200 +Hjq &3 +Hja &laa *Piiab +1jp & 1aapy, o2

¢jb = 2ﬁ(a)]a — ‘Vz)

tja & Bap +14ja & 1aaPR ot b &30 +11s % 1aa'pyy
Zﬁ(a)j,, +'V2)

Zﬁ(wj, —3‘V2)

, (57
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by = 1o E 3B +1ja & 20pa +1p B Yappsa ' +11,,8 10 Pa'R,,
b= W0 —v,)

(58)

1o & 2B + 1415 8 10Pppa vt M &3 Ppa +1ja & aPa'Ry, R
2ﬁ(€0ja +V2) 2ﬁ(wja-3V2)

where again the 7, and v, terms have been dropped since they are small compared to w;, and where we approximate
vi~v,. Equations (55)—(58) are analogous to Eqgs. (46)—(49). We again choose the appropriate time dependences from
these equations and obtain the slowly varying components of ¢ in our interaction picture. The equations of motion for
these components are

iGia= — (T +A)Pag + kg /20 E 3 B os — E2bpa )+ koo &1 & 1Rug(aPa’ —aa'P) + ko &1 &3 R ypaPa’

—kgy & 1% ,aaPRpg + Koy & 13 Ryg(aPa —aaP) , (59)
iBpg=(A—Dy— 0, — iV )Bps — Kap /2)E 3 HPag — Bop )+ kap & &3 (aPa 'Ry, —aa'PR,,)

—&Y& R o kppaa'P —kyaaPa’) + & &3 R, (kogaPa —kypaaP) , (60)
iGap= (Ay— At oIy — iy )bas + (Ko /2)E X Bog — ot )+ &'+ & 2R oy (kypaPa’ —kpgaa 'P)

— & &3 R (kogaaP —ky,aPa) — kg & 1% (aaPRy, —aPaRP,,) , (61)
i$5 = iTEr—AF11— (Kap /208 3 Bo— 8 3850+ 5 &1 8 1Rys(aPa —aa'P)

—kab ffggﬁabaaTP +kab fngaPaﬁba +kbb$1$§Rbb(aPa —aaP) . (62)

Equations (59)—(62) may be solved in steady state just as Eqs. (51)—(54). Before attempting this, we first rewrite Eq.
(41) in terms of the interaction picture components of.¢+ and ¢. Substituting these components into the slowly varying
terms of Egs. (47)—(50) and Egs. (55)—(58) yields the P equation

iP= l [—kusfr%@;:—&a)—kabffrff;@:z——$L>~kbb$’rffz<$zb—&TL,)

2
2 ,u'jagl GIGIP—01P0T1+UIPGI—PU]G¥.
I o Wjg —V> Wjg +v2
2
> Kjp & R aIa,P—alPaf aIPal—PalaI
¢ 2 b @jp —V2 @jp +V2
—(kay &1 &3 /2)R p(a(Pal +alPal —alPal —Palal) +(l<—->3)\——H.c. (63)
V. SINGLE SIDEMODE SOLUTION |[4>=]an,+1 n,—1> |5>=|an,n,>

OF THE EQUATIONS OF MOTION

In this section we project the operator equations Egs.
(51)—(54) and Egs. (59)—(62) onto the basis states | nn3 ).
This gives us equations of motion for the components of p
in terms of the atom-field states of Ref. 1. Due to the - ——_—— 1>
complexity of our equations, in this section we limit our
analysis to the single sidemode solution. The coupled
mode terms such as aJ'pa'r are considered in Sec. VIL
Consider the four atom-field states depicted in Fig. 3.
The states are labeled for numerical simplicity. For ex-

ample, the state | 5) = | an,n,) means that the medium is f>=lbn +1 n +1> [2>=lbn n_+2>

in the upper level a, the quantized field 1 has n; photons,

and the classical field 2 has n, photons. Because n, is FIG. 3. Two-photon four-level atom-field energy level dia-
treated classically, n, is large so that ny~n,+ 1. The lev- gram valid for single-sidemode interactions. Extra levels enter

els are connected by means of two-photon transitions  with two sidemodes as shown in Fig. 10.
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through the intermediate atomic level j. In particular, the
strong pump field 2 connects levels |1) with |4), and
|2) with |5).

Spontaneous emission can occur in two ways: from lev-
el |5) to the intermediate level j and from the intermedi-
ate level j to the level | 1). These transitions are shown in
Fig. 3 by the lines slanting down to the left. Figure 3 is
similar to the one-photon diagram (see Fig. 3 in Ref. 1).
For the one-photon problem, the transition between the
upper and lower levels is accomplished in one step,
whereas in the two-photon problem two steps are re-
quired. This leads to the appearance of new interaction
potentials as compared to the one-photon problem. From
Fig. 3, spontaneous emission occurs when n, becomes
n;+1. In the one-photon case, this always ,occurs by
means of a transition from level |5) to level | 1) since
only one photon number could change in the transition,
and there is only the one quantized field interaction po-
tential, 775;. In the two-photon problem, however, the
photon number for the fields must change twice for each
transition between any pair of the four levels. The quan-
tum number n; can go to n;+1 in any of three ways:
From |5) tojto |1), from |5) to j to |4), and from
|2) to j to |1). Figure 3 readily shows each of these
“two-step” processes. Hence we expect three quantized
field interaction potentials for the two-photon problem,
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751, 7 54, and 77y

These additional interaction potentials account for the
increased complexity of our equations. The potentials
¥ 54 and 77, represent processes that have no single pho-
ton analog. A 775, transition implies an atom in the
upper level spontaneously emits but still remains in the
upper level, and a 77, transition represents spontaneous
emission originating from the ground state. This is possi-
ble for a two-photon transition, of course, because in each
case a photon is also absorbed from the classical pump
field, preserving energy conservation. These transitions
thus represent an exchange of photons between the quan-
tized and pump fields.

To justify these assertions, we now show that the pro-
jections of the operator ¢ * are related to the components
of the atom-field density operator p. For example, by tak-
ing the field component of ¢ %, we have

(nyn, |$:b [nyny)=Cann, Ianlbnl'lz)
=vni{an;—1ny|p|bnny)
=v'np5 , (64a)

where the prime means let n,—n; —1 and where we ap-

proximate n,~n,+1. Similarly, for the other com-
ponents

(mny | L |nmny)=(ann,|a’planiny)=vn{an,—1n,|planiny)=1vnps (64b)
(n1n2|$gb|n1n2)=(bn1n2 |an|bn1n2)=1/n_1(b ny—1n, ]P|b"1n2>=\/"_1P121
(nlnzl(;;a [nyny)=(bnn, |0TP|‘1"1’12)=\/'TI<1)"1—1"2 |P|a”1"2)=\/”_lp'24-

We may also project the adjoint of ¢,¢T, onto these states and
(niny | (Bap)' | miny) =(bniny |pa’|aniny)=vn +1(bniny|plan +1n,)

=mpz4
(niny |$Ia [niny)=(ann, Ipa*lan1n2>=\/m—l<a niny|plany+1ny)
=mps4
(nyny | § o |miny)=(bnyny |pat|bniny)=v/n +1(bniny |p|bni+1ny)
=m—il’21
(niny | (@) | miny)=(anyny |pa’ |bniny)=v/mi+1Caniny |p|bny+1ny)
=1/;I—+—1P51~

Projecting Eq. (63) onto the basis states and substituting Eqgs. (64) and (65), we find the equation of motion for the proba-
bility of the photon number (n, ) to be

(64d)

(65a)
(65b)
(65¢)

(65d)

P, =[P 15051+ 4spsa+i? 1opa—i | &1 2(ny+ D (kgapas+kazpss+koppri+kaapan) —(my—ni—D]+c.c. (66)

where 7.51='—kab$132v n, +l, V54=—kmglg; V n1+1, y21= __kbbglg; VvV n, +1, and the ka-:, k;i,, ka;, and
kps terms are the k,, and ky, sums in Eqs. (23) and (24) with only the w,;+v2, @jp +V2, @aj— V2, OF @) —v, terms,
respectively.

We have thus proven the existence of these new interaction potentials 7754 and 7”,; and have demonstrated how these
are related to the two-photon coefficients k,, and kp,. In the semiclassical solution of Sec. II and Ref. 11, it is shown
how these lead to the occurrence of the dynamic Stark shift. Here in the quantum calculation we see they also play a
major role in the process of spontaneous emission. Note that the presence of the &3 in the 75, and 77, potentials
represents an absorption of a classical field photon, and is depicted in Fig. 3 as an upward transition.

We project Egs. (51)—(54) onto the basis states | n;n,) and make use of Egs. (64). We find
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psi=— (¥ +iBpsi—i[ 7 s1(p11—pss)+i 7 2(p2a1—psa) —ps2? 21+ ¥ saparl (67)
psa=—(C+iA)psa—i[ 7 51p1a—ps517 sa+ 7 s2p2a— i ¥ salpss—pas)] » (68)
P2=Tpss—iApy1+i[p2s? 51— 25ps1+p2u? a1 +i 7 2lpna—p11)] , (69)
pru=— (Y —iB3)p2—i(F 25psa—pn? 14+ 7 21P1a—P257 "54) » (70)

where 7, =2"5;=2"41= —kap & 2 is the classical interac-
tion potential. Substituting for ps4 given by the trace con-
dition
Pn,;n,+IEP01 =psa+pP2i (71)
into Eq. (69), we have
P.21= —(T+iA)py+T'Py,
+i[p2s? 51— 7 25ps1
+pu? s+i7 nlpn—p11)l] - (72)

As we asserted earlier, we assume the atoms relax
quickly compared to the field variations and so we solve
Egs. (67), (68), (70), and (72) in steady state. We then sub-
stitute these solutions along with the semiclassical equa-
tions for pys, sy, €tc., into the photon number equation of
motion (66). Solving Eq. (67) in steady state, we have

ps1=iD (¥ 51dosi + 7 21ps2— ¥ "sapar) +i D 17 5d 54
=pQ+iD\ Y dise (73)

where in general do;j=p;—pj; and dis4=ps4—py;, and
4, is the n =1 case of the complex denominator

f

1
D,= S TiA, (74)

Similarly Eq. (70) yields
Pu=—iDI Y ypia— ¥ sapas)—i D3 ¥ dyss
=p(2)4-—-l.g;V2d154 . (75)

Subtracting the steady-state solution of Eq. (72) from that
of (68), we have

disa= F Po,
—iD [ 7 s1(pra+pas)—27 1ps1+27 1 p2
— 7 sidosa+ 7 ndont ] » (76)
where the complex denominators
D= T‘i‘i—& , (77)
F=T9, . (78)

Substituting Eqs. (73) and (75) into (76) and solving for
d 54, we have

—iD [ 51(pra+pas) — 27 3pS1+ 2% 3p34— ¥ "sadoss + ¥ 2doa1 1 — F Py

d154=

1+I%9’32’—(.%+.@;)

F Py
=d{ss— .

1+I%y12’—(,@1+@;)

(79)

Using the explicit values for the various density-matrix elements inside the [ ], we have (for typographical simplicity, we

set n=n,)

[ ]=yil(Pn+l+pn)Eba—ZiVSIy;gl(Raapn_Rban+l)

—2D\ P 3Rp(¥ 210 — ¥ 54Pn +1)+ 2 D3P 3 Rpo ¥ 54D — 2 2101 41)

—(Pn —Pn +1( ¥ 54Raa — 7 21Rpp) -
From the trace condition (71) we also have

psa=75(Por+d1sq)

pa1=5(Poy—ds4) .

(80)

(81)

(82)

Substituting these equations and Egs. (73), (75), and (79) into (66), we find
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. . i
bry =5 (3t P3P+ 1508+ | S (F 45—V 10— D707 |diss
&4 + _ + _ .
— —4h———(k,,ap55+kup44+ku,p”+k,,,,p22)-—(same with ny—n;— 1)+c.c.

é(%_‘,_%z)_.@,%%s ]y

= Py, é(y45+7/12)— [ +i?1p%+

é(%s—%z)—.@l%%s diss
1+1§9’12’—(.@1+,@;)

&, 12
—i-u—;l(k;p55+ka;p44+k:;p”+k,,_,,p22)——(same with ny—ny;— 1)+c.c. (83)

Further taking the derivative of the trace condition (71) and using (68) and (69), we have

Py, =pss+pP21

= —iAPg +i 7 51(p2s—p1a) +i7 sadosa +i7 21d 21 - (84)
In steady state (assuming the field varies little in a time 1/A), we have the off-diagonal matrix element
Po= p"—_Ap"*—‘( ¥ 51Rpa + 7 ssRua+ 7 21 Rap) - (85)

Substituting this along with Eq. (73) for p;, (75) for p3s, (79) and (80) for d%,, we have the sidemode photon-number
equation of motion

Pn,={—(n+D[41p,—Bpy 11]+n[4\ps_1—Bip,1} +c.c. (86)
where
i (051 Rpg +054Raq +021 Rpp) (Vas—v1, +2i1D 7 w15)F
1= — A Vgs+V1p—
1+535 L2+ 23)

+i | &1 |2k Ras + ki Rep)+0152D (051 Ry +051 Ryp)

.@ Vas —U +219 7 u R
_Za |Vas—Vn 12 2715 (01 +2i D37 s4)Rpg

* |1+ns Lt
—21.917‘;U21§¢b—(2l.y;!)51g1+054)RM +v21Rbb , (87)
i (01 Rpg +54R g +031 Rpp) (Vg5 —v1+21 D\ 7 " 15)F
1= — A Vgs+vyp—

1+1§5r12'—(_@1+.@;)
—i | &1 | kppRop+kgaRag)+015D (v Rpp +s4Rpp)

g v —0 +2i@ VU R
_ Za |Vas—Vn 17 2V1s (—vs5, +2i D37 5021 )Ry,

2 1+1§9*32’—(.@,+9;)

—2iD 7 3v54R oy — (27 305D | —v31 )Rpp —Vs4Rgg (88)
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and where we set vs; =2"51/V'n;+1, vs4=2"54/V'n| +1, etc. We note that Eq. (86) is identical to the result derived in
Ref. 1, Eq. (64), except for the cavity loss constant which we have neglected here for simplicity. The corresponding ex-

pressions for the 4; and B, terms are considerably more complicated, however.
Equations (87) and (88) may be written in a form more closely resembling the one-photon coefficients derived in Ref.

1, Eqgs. (70) and (71) of that paper, by substituting the equations for the atomic density elements from Egs. (34), (35), and
(36) and for the interaction potentials vs4, v5;, and vs;. We find

ke | | €117 V7T
Ll I8 r, @08, + VAT L Dok / s )

T 201+13.2y)
2l(k:‘;f;:+kbtfb)_15y‘/ﬁ_‘- ’}’Izgl—l'(l),/r
s | 1+135 L@+ 23)
,@; kaag;g;"}'kbbglgz i(kbbfb—kaafa)
X\ D f,— +i I —
Vo3 +IVYTh 21 kap | VAT, [ |
+\/yl"lzgi/2+i(k“fa+k,,,,fb)/|k,,b| LF(YTLD —iwy) _NWM
ia 1+1§732’-(@,+@;) Kap |
(89)
Ik | | €117 ) 2i(kgafa+konfs)
=—————— |\ VY[ LD, 2f, +iVYTI, Dk / | kap | ) —
1 2(1+I§.2”2) yIL, 2 \(2f, YU, D ke / | Kap | [k |
1,9 ,—iw /T
—I%f\/ﬁ" vL, Y —iwg/
1+1§.7321<.@,+9;)
23 kD3 D3 +kea D192 i(kppfo—Kaafa)
X @Lf-f- +ivyI'l —
b T 2| ke | VITL, | ke |
VYTLD 3 /2+i (ke fo+kopf5)/ | Kap |
* iA
LW L% ,—i I,(k k
2F YT LD —iwy) _iv7T 2 Kag +Kpp) . (90)

1+1§y321(91+.@;) | Kap |

VI. THE RESONANCE FLUORESCENCE SPECTRUM
Following the same procedure as in Ref. 1, we calculate the build up of mode 1, which can be described by the average
photon number (n,)=3, n,p, . Using Eq. (86), we find the equation of motion
%(m Y=[—A,;({n})+{(n, =B (n?)+B,({n}) —{n N+ 4,({n]) +2(n;) + D]+c.c.

=[(A1—B1)(n1)+A1]+c.c. (91)

As for the one-photon case, this consists of the gain coefficient 4; —B,; and the resonance fluorescence coefficient 4;.
The gain coefficient given by Egs. (89) and (90) is
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[ kas | | 8112

A —B;=—
= 21+12.75)

17 F/’}’ y12=@1(2—10)312.@2)+21(kufa +kbbfb)/|kab |

iCz)sIz

1+I%7%(@1+°@§)

This agrees with the two-photon semiclassical sidemode
absorption coefficient calculated in Ref. 11 that adopts a
completely semiclassical approach.

Some discussion of the two-photon resonance fluores-
cence spectrum as given by Eq. (91) has already been
given in Ref. 10. Due to the complexity of the expression,
in this section we present additional examples. We first
consider the case of zero Stark shift. As discussed in the
semiclassical case of Ref. 11, for no Stark shift the spectra
closely resemble the equivalent one-photon problem, and
we find this to be the case in the quantum calculation as
well. Figure 4 plots the inelastic spectrum of
Ai+A}=A for the strong pump field of I,=10,
T,=2T,, and w; =0 for the detunings o —2v,=0, 2T},
and 5T;'. We note this has the same appearance and
behavior of the one-photon result of Mollow.!* In partic-
ular, for central tuning, the heights and widths of the
peaks have the same proportion as the one-photon spec-
trum and it remains symmetric when detuned. Note also
that the side peaks are at the detuned Rabi flopping fre-
quency and that the central peak rapidly drops with de-
tuning.

We now consider the fluorescence spectrum from Eq.
(89) for nonzero w,. This is by far more realistic since
practically all two-photon systems have a nonzero Stark
shift. Initially considering central tuning, Fig. 5 depicts
the spectrum vs AT, for I,=10, T,=2T;, and for
ws=0,0.2T7 !, and 0.5T{!. This means the actual Stark
shifts w,I, are 0, 271!, and 5T '. In a manner similar

A |
(8]
) JN\
9]2 . 6 ‘ 12

AT,

FIG. 4. A,+c.c.=4 of Eq. (89) vs AT, for I,=10, w,=0,
T,=2T), for detunings of 0, 277, and 5T .

D\+D5+

S, (D195-2.2) || . 92)

to varying the detuning in Fig. 4, we see once again the
side peaks move outward and the central peak drops.
More obviously, one sideband is increased in intensity and
the other is attenuated—the Stark shift leads to a notice-
ably asymmetric spectrum. Thus we see that in some
respects w,J, behaves like a detuning, yet is is also quite
different in other respects. That it is similar to a detuning
is understandable because of the appearance of w,J, in
£, and the complex Lorentzians &,. However, the
asymmetry is not like a detuning, and so this is evidently
due to the w,; and k,,, k,p, and kg, terms appearing else-
where in Eq. (89). Figure 6, which is also presented in
Ref. 10, shows the effect of “balancing” the Stark shift
versus detuning, i.e., o,J,=5T1", but w—2v,=—5TT".
We see that the main effect is to raise the central peak
back to its centrally tuned, zero Stark shifted value. In
addition, the sidebands are brought back in, but the asym-
metry remains.

We may gain some insight into the cause of this asym-
metry from the two-photon probe gain/absorption coeffi-
cient A —B of Eq. (92). This quantity has already been
graphed and discussed in Ref. 11. In Fig. 7 we plot 4 —B
from Eq. (92) for the following parameters: I,=10,
wl,=5T7!, w—2v,=0, and T,=2T,. The spectral
gain (gain is positive) is almost antisymmetric; there is
strong gain at one sideband and an almost equal absorp-
tion at the other. Note that the probe gain appears at al-
most the same place in frequency as the sharply increased
sideband of the fluorescent spectrum, and vice versa for

04}

0 B BEEY-

FIG. 5. A vs AT, for I,=10, o —2v,=0, T,=2T, for
0,0, =0,2T7", and 577"
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0

93 0 12

AT,

FIG. 6. A vs AT, for I,=10, T,=2T,, o —2v,=—5T},
and w1, =5T7".

the other sideband. Thus the increase of one sideband and
the decrease of the other is related to the asymmetric
shape of the gain/absorption spectrum.

One other property of the inelastic scattering spectrum
of Eq. (89), unlike the one-photon result of Mollow, is
that the total energy scattered does not saturate as
I,— o, but instead increases linearly with I,. This can
be seen from the expression for A;. This is characteristic
of two-photon processes, and is due to our first-order per-
turbation treatment of the off-resonance j levels.

The two-photon two-level resonance fluorescence spec-
trum also has a significantly more complex expression for
the elastic portion of the spectrum, also called the Ray-
leigh peak. The Rayleigh peak is given by the term in the
expression for the A, coefficient, Eq. (89), that is divided
by iA. To evaluate the Rayleigh scattering from this
model, we allow A—O0 in this term, which gives a real
numerator. This gives a delta function spectrum because
i/A+c.c.=2w8(A). The elastic contribution is then

=4
~J
A-B
0
_5 1 + " "
-12 0 12
ATl
FIG. 7. A,—B,+cc.=A—B vs AT, for I,=10,

®—2v,=0, and w,J,=5T7".

I, | &,
Ad___z,m/yr__z_iz_‘!_z
(1+15.75)
(Kgafa+keofs)* | kao | Tfa
Ikab| 27’
(kgafa+kepfo ) 2L H(yT)/2A
4 aafa+kesfo 22 2y 2 5a), (93)

14

where A, is the detuning (including the Stark shift) of the
strong mode, w+wsl,—2v,. The Rayleigh scattering
consists of three contributions, (1) the off-resonant di-
poles, (2) the two-photon two-level coherence R, and (3)
the interference between the dipoles and R,,. Because of
this third term, the elastic scattering is asymmetric with
respect to detuning, totally unlike the one-photon reso-
nance fluorescence case. Depending upon the relative
values of k.4, ks, and kg, this part of the spectrum may
either dominate the total emission, or, for an appropriate
detuning and intensity I,, be very small. We recall that
the elastic scattering of the one-photon case bleaches to
zero for strong, resonant fields, and is symmetric with de-
tuning. The two-photon result of Eq. (93) is considerably
different.

The expression for the elastic scattering intensity, Eq.
(93), may also be obtained from the semiclassical expres-
sion for the complex amplitude of the polarization of the
medium, Eq. (25). This provides an additional check on
our calculations. From the slowly varying amplitude and
phase relationship, the scattered radiation field amplitude
is proportional to the complex polarization Z of Eq. (25).
Hence, the intensity of the elastic scattering is proportion-
al to the squared modulus of Z. Evaluating the square of
Eq. (25) we find that it agrees with the expression of Eq.
(93).

Figure 8 plots Eq. (93) vs the detuning w—2v, for
1,=10, ko =kgg, To=2T, for wJ,=—5T{", —2T7},
0,277, and 5 T,’l. The asymmetry of each curve is evi-
dent. Figure 9 is similar except only the w,l,=—2T !

200

FIG. 8. The elastic scattering Ag vs (0 —2v,)T;=8,T, for
1,=10, ko =kgaq, and w, I, = —5T7!, =277 0,277, 5T
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140

0 . t
-30 0 30
82T,

FIG. 9. The elastic scattering 4, vs (0 —2v,)T,=8,T, for
I,=10, ko =5k, and &, I, = —2T7',0,2T7".

0, and 271! curves are plotted and now kg, =5ky,. In
addition, the intensity of Rayleigh scattering does not
bleach to zero as in the one-photon case, but increases
linearly with I,, just as for the inelastic spectrum.

VII. DOUBLE SIDEMODE SOLUTION

We now include the second sidemode of frequency
v3=v,+A. This means that we consider mode-coupling
contributions arising from terms like a;a; in Egs.
(51)—(55) that were dropped in Sec. V. We again project
these terms onto a set of basis states like those of Fig. 3,
only now we must include four additional atom-field
states to account for the coupling to the third mode. Fol-
lowing Ref. 1, we denote the new states as

|0)=|bn,+1nyn3+1)
and
[7)=|an ny+1n3—1)

that are coupled by the strong mode potential 77, to the
states

I6)= !an1+1n2——2n3+1)
and
[3)=|bnyny—1n;—1),

respectively. These are shown in Fig. 10. Note that the
states of Fig. 10 are almost identical to those of Fig. 4 of
Ref. 1, except that the lower-level states have an addition-
al n, photon because of the two-photon transition. In
Fig. 10, a mode 3 transition is shown by a line slanting
downward to the right, in comparison to mode 1 transi-
tions that are down to the left, and mode 2 transitions
that are straight down and in boldface.

In the one-photon problem the second sidemode intro-
duces the new potentials 77y, and 775;. In the two-
photon theory we are presenting here, we also have these
potentials, but analogous to the new appearance of the
754 and 77, potentials, we again have additional interac-

[7>=]on,n,+1 ny—1> [6>=lan,+1 n,—2 n;+1>

|3>=|bn,n,+3 ny—1>

[o>=|bn,+1 nyny+1>

FIG. 10. Two-photon eight-level atom-field energy level dia-
gram valid for one strong central mode and two weak
sidemodes. This case treats coupled-mode phenomena such as
phase conjugation and modulation spectroscopy.

tion potentials due to the two-photon process. Referring
to Fig. 10, we see that by emitting an n, photon and ab-
sorbing an n; photon, |5) is connected to |7), |6) is
connected to |4), |0) is connected to | 1), and |2) is
connected to |3). Thus we expect to acquire the new po-
tentials 757, y“, Vo], and V23' We also see from Flg
10 that the pairs of levels | 7) and | 1) and |5) and |0)
are connected by a transition of the form & & ,, indepen-
dent of &,. These potentials connect the upper and lower
levels (and thus involve k) even in the absence of the
pump field, and they are also unique to the two-photon
model. As we demonstrate below, these do not enter into
the equations of motion for the atom-field density-matrix
elements, but do appear in the equation of motion for the
reduced field density operator P.

To justify these assertions, we now find the components
of our operator equations (51)—(54) using the | n;n;n3)
states of Fig. 10 as a basis. Because the single sidemode
case has been presented, in all of the equations that follow
only the coupled mode terms are shown. We designate
these terms by the subscript a;. Using Egs. (65), we find

psilay=—(y +ib1psi—i(7 53p11— 7 01ps0) » (94)
psala,= — (L +il)pss

—i(7 51p18— 7 " 64ps6— 7 04 P50) > (95)
P21 la,= —iBpy1+Tpss
— (7 331+ 7 211 — 7 01P20) (96)

P2 la,= — (¥ —iB3)prs
— (P 3034+ 7 2918 — 7 "64p26— 7 0ap20) » (97

where the interactions potentials are

Y 7= —koa&,831V 15 (98a)
Y o1=—kop&,&3V n3+1 (98b)
Y oa=—koa& 283V n5+1 (98¢)
¥ 3= —kp &,83V 0, (98d)
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7 ou=—kap 8383V n;+1 (98e) P 1=k 8183V n +1vn;
P n=—ka383Vn; . (98f)  and
In a similar manner, we project the P equation, Eq. (63), Yos=—kup&E1E ?\/ﬁ'l\/n_a—fl .
to obtain We proceed as before, solving Eqgs. (98)—(101) in steady
15"1 = |i¥ psi+1Y psa+i? 3 pa state. In particular, for p5; we obtain
Ps1la, =i (7 d1sa+ 7 01pso— 7 s7p71) - (100)

—i | & Xn + Dkgapas+kaapss+kinp1i+kaap)
We eliminate the ps4 term in Eq. (100) by using
+é(7/17p71+7/05p50)——(n,—>n, —1) ‘—i—c.c, s

(99)

where The equation for d;s4 in this case becomes
|

Pyoro={nin3| P |n;+1n3)=pss+py; .

disg|a,= —F Pooi0—iD o =277 (¥ d1ss+ ¥ 0ipso— 7 s1071)
—22,D5( 7 3d s+ 2 53p3a+ 7 1p1a— ¥ 6 P26— ¥ 04 P20)
+(F 51p1a— 7 " 6aps6— 7 0apso— 7 23p31— 7 23pn+ 7 01P20) » (101)

which can be solved to yield
—F Pooro—i D o[ =27 3D (Y o1pso— 2 "s1p11)]

d154‘a3= 17 .
1+Iz.?'2 (Z2,+Z7)

B 1D [ —27,D5( 7 3psa+ 7 3pra— 7 6aPrs— 7 04 P20)]

1+I§5f}2’—(,@1+9§)

n 7 s1p1a— 7 6aPse— 7 0apso— 7 23p31— 7 29P711+ 7 01p20
1+I%9’—72’—(..@,+9;)

(102)

The equation for 150010 is also complicated by the additional potentials. We define Py | a, t0 be the part of Py in-
volving only the coupled-mode terms. Using Egs. (99) and (100) we obtain
Pooio | ay=—iAPoo10 | ay— i ¥ 51914+ 7 sapss+i? 0apso—i ¥ 13pu—i? ympn+i7 pao » (103)

and hence

(=7 51p7a+ 7 sapss+ 7 0apso— 7 23p31— 7 23p711+ 7 01P20)
Pooto | o, = A , (104)

where we again assume the field varies little in a time 1/A. Substituting Egs. (100) and (102) into (103) and making use
of Eqgs. (81) and (82) yields

Pnylay= anl"@ﬂymPso—V57P7x)]+é(yg4+y;1)Pmlo|a3

—F P |0, =i Do =273D (7 gpso— 7 s1011)]

HI T+ 5 U—730)]
1+I§5"12’—(@,+9§)

(D[ =27 ,D3( P 33psa+ 7 2pra— 2 6aPr6— 7 04 P20)]

1+1%9*121<91+9;>

4 7 s101a— 2 6aPss— 7 0aPso— 7 23p31— 7 23p11+ 7 01 P20
1+1§9’12’—(9,+,@;)

+‘;“(7/17;0714-7/‘05950)-("1—*"& —1) [+c.c.

(105)
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Analogous to Ref. 1, Egs. (98) and (99), we introduce the C, and D, coefficients by letting

Pnlay= | =2 Vm+UC V' n3Po_110—D1V'n3+1Pgor;)
n3

+2 V n](C1 V n3P_1_100—D1 V n3+1P_1001) +c.cC. (106)
n3

The coupled mode matrix elements p,, py4, €tc., are found in exactly the same manner as in Ref. 1. Because they are al-
ways multiplied by the weak double sidemode interaction potential, they are calculated in steady state from the strong
mode alone. Thus the atomic and field dependencies factor and

p1n=RaPo_110 (107a)
P34=RpPo_110 (107b)
p31=RuppPo_110 (107¢)
P14=RgaPo_110 (107d)
pso=RabPoony (107e)
p26=Rya Poor1 (107f)
P20=RppPoo11 (107g)
Ps6=RaaPoor1 - (107h)

Selecting the proper terms in Eq. (105) by comparing to Eq. (106), with the help of Egs. (107), we have, after substituting
the expressions for the interaction potentials and the atomic density-matrix components,

|kao | €183 &3 | VITD
201+13.7,) &2 2

LF Y1, D —iw, /T)
L (4 2VFTL, D kg / |k | )= VT2 102

1=
1+I%9’32’—(@1+,@;)

(ko D3 D+ koo D1 D) i keofo—koafa
2| kg | VyL 1| kg |

9
-_Ezv—_°@;fa‘{'iL ’}’F

4= VYTL,D /2 +i (koo fo+kppf5)/ | Kap |

iA
FGYTLD —iw,) Koo +k
Yo —i\/_-yl“% , (108)
1+535L2,+23) I Kab |
kyp | E1ES &3 VyT 2 LF (Y1, 2 —iw,/T)
p——aw|®i8s ”'2:/ | - VITL D s/ ey )=V 7T
A1+13.7,) & 1+1§5f§<,@,+9§>
D, I)(kaa D3 D3 +kop 21 2D)5) i kepSo—Kaaf.
—————@‘ ‘/T aa. _ aaJ a
x 2 3fb+l 4 Zlkabl v '}’F 12 Ikabl
. VYT D /2 +i(kagfa+kepSfs)/ | Kap |
iA
FWTLD —iw,) Koo +K
e N (109)

1+I§?-72/—(@1+.@§) | K |
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We express our results for both the single and double sidemode coefficients by combining Eq. (86) and its coupled-
mode addition, Eq. (106), and converting to an operator equation. This also may be obtained from Eq. (66). We find
that the equation of motion for the reduced field operator P is given by

i’:{[—A,(Pala{—aI{Pal)—Bl(afalP —alPa{)+C,(a¥a§P—a§Pa{)+D1(Pa§aI——a{Pa§)]+(1—->3)} +H.c.

which has exactly the same form as Eq. (100) of Ref. 1.

(110

We may recover the semiclassical three-mode coupling coefficient — ik} by computing the difference C; — D, just as

in the single photon calculation. We find

ke | BT &3
201+13.%,) &?

Cl'—D1= VF/Y

712.7(712.@1—1@,/1“) iw

X Y@z(l—iw,gl)—

1+I§5'12'-(.@,+9;)

which agrees with the calculation in Ref. 11.

Figure 11 depicts C;+C] =C, Eq. (108) plus its com-
plex conjugate, for I,=10, T,=2T;, w;=0, and 0 =2v,.
The shape of the curve closely resembles the one-photon
result of Fig. 8 of Ref. 4. Note, however, the slight asym-
metry of the spectral dependence, even for a zero Stark
shift. From Eq. (108) we see this arises from the &, term
in the first line, which is absent in the one-photon case,
Eq. (98) of Ref. 1. This term results from the presence of
the 777 potential in the P equation, and is due to the
presence of all of the off-resonant j levels. In the semi-
classical two-photon laser instability work of Ref. 14, this
is interpreted to result from a scattering off the field in-
duced two-photon coherence R, and it is shown in that
work to have significant consequences. When a Stark
shift is introduced, the spectral dependence is significantly
altered. This is depicted in Fig. 12 for w,I,=5/T),
©—2v,=—5/T,, and I,=10. In comparison to Fig. 11,
the central peak is practically unchanged, one sideband is

i i
T

-12 0 12
AT,

03]

FIG. 11. Cy+c.c.=C vs AT, for I,=10, 0 —2v;=w,=0,
and T2=2T1.

oI
D+ D+ 22@;@;-.@1@2) , (111)

[

amplified, and the other is reduced, reminiscent of Fig. 6
for the A coefficient. The “balancing” effect of the Stark
shift versus the detuning is also evident for this case.

In conclusion, this paper generalizes our quantum
theory of multiwave mixing to the two-photon two-level
model. The resulting expressions for the four coefficients
Ay, By, C;, and D, are all considerably more complex
than their one-photon counterparts due to the increased
number of interaction potentials and the appearance of
the dynamic Stark shifts. We have calculated and dis-
cussed the two-photon resonance fluorescence spectrum,
and have shown that for vanishing Stark shifts, the spec-
trum is very similar to the one-photon result, but that
with a Stark shift present, the spectrum becomes quite
different.

Because the P equation, Eq. (110), has the same for this
two-photon level scheme, all of the solutions derived in
Refs. 4 and 5 also apply to the two-photon two-level
model. Thus coefficients derived in this paper, Egs. (89),

9]

_8 L + 1
-12 §] 12
AT,

FIG. 12. Cvs AT, for I,=10, T,=2T,, o—2v,=5T7", and
oI, =5T7".
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(90), (108), and (109) can be used in the formulas of those
references to predict cavity and propagation effects for
two-photon two-level media. Due to the increased com-
plexity of the two-photon model, more complicated calcu-

lations would be required to analyze this case, especially if
a thorough understanding of the role of the Stark shifts is
desired. The theory derived in this paper, however, makes
this potential work possible.
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