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A technique for efficiency enhancement in free-electron-laser and "ubitron" amplifiers (where the
ubitron is essentially a free-electron laser operated at electron beam energies less than 500 keV) is

analyzed which makes use of both tapered wiggler and axial guide magnetic fields. A set of model

equations is derived which describes the coupling between an ensemble of electrons and the radiation
field. The analysis is fully three dimensional, and treats the propagation of an electron beam of fi-
nite cross-sectional area through a loss-free cylindrical waveguide in the presence of a helically sym-

metric wiggler field and an axial guide magnetic field. The model equations are solved numerically,
and substantial enhancements in the interaction efficiency are found for a variety of choices of the
model parameters. The efficiency enhancement is observed to be a sensitive function of both the de-

gree of taper in the wiggler and axial magnetic fields as well as the point at which the taper is begun.
In order to illustrate the physical mechanism underlying the efficiency enhancement, a modified
pendulum equation which describes the interaction is derived from the orbit equations under a set of
idealized assumptions, and used to construct a small-signal theory of the efficiency enhancement.

I. INTRODUCTION

The free-electron laser (FEL) and the "ubitron" have
been shown to be feasible radiation sources over a broad
spectrum from millimeter through optical wave-
lengths. ' ' However, the interaction efficiencies that
have been experimentally observed rarely exceed a few
percent for systems employing uniform wigglers and axial
guide magnetic fields. In order to overcome this problem
and achieve significantly higher operating efficiencies, a
variety of schemes has been proposed. One approach to
efficiency enhanceinent used in a visible-wavelength FEL
experiment using the ACO storage ring at Orsay involves
construction of an optical klystron, s in which two sections
of wiggler magnet are separated by a drift space. In such
a device, the first wiggler section and the drift space act to
bunch the electron beam in such a way as to enhance the
interaction efficiency in the second stage of the wiggler.
A more commonly discussed procedure, however, makes
use of a tapered wiggler field (in either period or ampli-
tude) to accelerate a bunched electron beam. '3 6 A relat-
ed approach applicable to FEL or ubitron experiments
which employ an axial guide magnetic field involves
tapering the axial magnetic field. i

The motivation for the present work is to develop a
fully-three-dimensional nonhnear analysis and numerical
simulation of the t'EL or ubitron amplifier with tapered
wiggler and axial guide magnetic fields. The analysis we
employ is an extension of a previously described nonlinear
theory applicable to the case of uniform external fields.
The configuration employed consists of an energetic elec-
tron beam propagating through a loss-free cylindrical
waveguide in the presence of a helically symmetric
wiggler and axial guide magnetic field. To this end, a set
of coupled nonlinear differential equations is derived
which self-consistently describes the evolution of both an
ensemble of electrons and the electromagnetic fields.

Space-charge fields, however, are neglected and the
analysis is valid only in the high-gain Compton regime of
operation. The equations are solved numerically for the
case in which a monoenergetic electron beam of arbitrary
initial cross section is adiabatically injected into the
wiggler region. The adiabatic injection is modeled by al-
lowing the wiggler-field amplitude to increase slowly from
zero to a constant level. The finite-waveguide geometry is
included by the introduction of the boundary conditions
appropriate for either the TE or TM modes in a loss-free
cylindrical waveguide. Since the configuration of interest
is that of a FEL or ubitron amplifier, only single-wave-
mode propagation is considered. This permits an average
over the wave period to be performed which eliminates
the fast-time-scale phenomena from the analysis and re-
sults in a great increase in computational efficiency. The
effect of magnetic field tapering on the interaction effi-
ciency is greatest only after the bulk of the beam electrons
have been trapped (i.e., bunched) in the ponderomotive
wave formed by the beating of the wiggler and radiation
fields. Hence, we consider a system in which the external
magnetic fields are uniform (apart from the initial adia-
batic entry taper in the wiggler field) up to a point close to
the saturation of the interaction, after which the field
tapering is begun. Note that we consider tapers only in
the amplitude of the fields (not in the period of the
wiggler field) since most operational and proposed experi-
ments employ this approach.

The organization of the paper is as follows. The gen-
eral equations are presented in Sec. II. In order to illus-
trate the physical basis for the efficiency enhancement, a
modified pendulum equation which describes the axial
bunching of the electron beam and a small-signal theory
for the gain in the case of tapered wiggler and axial mag-
netic fields are derived in Sec. III, on the basis of an ideal-
ized set of assumptions. Numerical solutions of the gen-
eral set of coupled nonlinear differential equations are
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presented in Sec. IV, and a summary and discussion is
given in Sec. V.

II. GENERAL EQUATIONS

The physical configuration we employ includes an axial
guide field and helically symmetric wiggler field generat-
ed by a bifilar helix, so that the static magnetic field can
be written in the form

B(x)=Bp(z)+ B (x),

where Bp(z) denotes the axial field,

form

CCt l
5 A(x, t ) = g 5Al„(z) Jl(kl„r )e,sinai

k1„r
n=1

+J,' (k,„r)ettcosat

for the TE modes, and

5A(x, t)= g SAl„(z) Jl'(kl„r)e„cosal
1~0

(6)

B (x)=2B I', (k)e, cosX ——
I i(A, )essinX

1 1
Jt(kt„r)essinat

lar

+Ii(k, )e,sinI (2) 1n+ Jl(kl„r)e, sinai

represents the wiggler field in cylindrical coordinates, and
B~(z) describes the slowly varying amplitude of the
wiggler magnetic field. In Eq. (2), )I,—=k„r, g—=8—k z,
k~ —=2ir/A~ (where A~ is the wiggler period}, and I„(A,)
and I„'(A, ) represent the modified Bessel function of order
n and its derivative, respectively. The adiabatic injection
of the electron bum is described by allowing the wiggler
amplitude to increase slowly from zero over N~ wiggler
periods. In addition, both the wiggler and axial magnetic
fields will be tapered starting at some position zp close to
the saturation point of the interaction. To this end, we
choose

8 sin (k z/4N~), 0&z&N~A~

8 (z)= 8, N A, &z&zp

S„[l+e k (z —zo)], z &zo

for the TM modes, where, for frequency co and wave
number k (z),

a1= z z' + —cot . (8)
0

In Eqs. (6)—(8), Jl and Jt' represent the regular Bessel
function of the first kind and its derivative, and kl„de-
scribes the cutoff wave number. For the TE modes,
kt„=x/„/Rs, where Ji (x/„) =0, and Rz is the waveguide
radius. In the case of the TM modes, kl„—=xl„/Rz, where

Jl(xl„)=0. It is implicitly assumed that both the mode
amplitudes 5Al„(z) and wave number k(z) vary slowly
over a wave period.

Substitution of the microscopic fields into Maxwell's
equations for the TE mode yields

r

and

ape„z &zp

d co
5al„+ —k z —kl„5al„

dZ C

Bp(z) = ' Bp[ 1+epk (z —zp) Jc,——,
'
Bpeok re„

z &zp

(4) COy

c' '

where 80 ~ are constants, and

1
eo, —= „ lnIIo, (z)

Qp
z

is assumed to be constant (i.e., to describe a linear taper)
for convenience. As a consequence, it will be possible to
vary both the degree of taper and the initial point of the
taper to determine the optimal configuration. It should be
remarked that the representation of the wiggler magnetic
field we employ is valid only as long as e «1; however,
the tapered axial field is self-consistent since it is both
curl and divergence free.

Since space-charge fields are neglected in the analysis,
the boundary conditions at the waveguide wall may be
satisfied by expanding the vector potential in terms of the
orthogonal basis functions of the empty guide. Thus, we
write the vector potential of the radiation field in the

~(-) T( —)

2k'~' (k'~ Sa )= 8 00 ),

(10}

where 5at„=e5At„/rnc p p —=u, p/c, col, =4m e ns/m, and
( ui, uz) are the transverse components of the electron velo-
city relative to the basis vectors

ei ——e cos(k z)+e„sin(k„z)

ez ———e sin(k z)+e„cos(k z) .

For the TM modes, we find the similar result



H. P. PREUND AND A. K. GANGULY 33

kl„
5al„+ 1+

dzz kz
z mt, r&Tj+ +&&WE'+ +2(kt /„k)r Jt(kt„r)~ma~

lC

k—' k—l„5al„—— 2 p, pHl„
C z

k2
2 k+ d

dz

' 1/2ki„col, ui WI ' u2—Tl '+2(k „l/k) UJ l(k „lr) cosal

k
(12)

In the preceding equations, HI„, TI-', and 8'I'-' are
mode- (i.e., polarization-) dependent quantities defined as

(»n)'
TEI„mode

[(»'n) —l ]Ji(»'n)

1
TMI„mode

[Jl'(»„)l

(13)

Fi 'isni(((l-+G i-' cosp ,lTEl„mode
(+)

Fl+'costi —Gl+'sin/i, TMl„mode

F~'+'cosset(l —Gl+'sin|i(l, TEl„mode
(+)

—CFl -'sin1l(l+ Gi -'costi ), TMl„mode

where
r

fl= itlp+ J d—z' k+lk~ ——
0 Ug

(14)

(15)

(16)

is the phase relative to the ponderomotive frame, fp
(:——lptp) is the initial phase,

I

Finally,

(F)=
2 f dgpoii(gp) f„ f d8pdrprpoi(rp, ep)F

2 Rs

describes the average of the beam electrons over both the
initial axial phase and cross section of the waveguide. It
is important to recognize that this average includes the ef-
fect of the overlap of the electron beam with the
transverse-mode structure of the radiation field (often in-
cluded in one-dimensional formulations in an ad hoc
manner by the inclusion of a filling factor} in a self-
consistent way.

In order to complete the formulation, the electron-orbit
equations in the presence of the static and fluctuation
fields must be specified. Since we describe an ainplifier
configuration, we choose to integrate in z and write the
Lorentz force equation in the form

u, p= —e5El„——vX(Bp+B +5Bl„),'
Z C

where

Fl' '=Jl i(—kl„r)cos[(l —1)X)+Jl+i(kl„r)cos[(l +1)X], 5El„=———5Al„, 5Bl„——V X 5Al„
1

c t
(21)

and

Gl
+-' —=Jl i(kl„r)sin[(l —1)X]+Jl+i(kl„r)sin[(l + 1)X] .

(18)

are evaluated using the appropriate expressions for 5Al„
for either the TEl„or TMl„mode.

The interested reader is referred to Ganguly and
Freundz for a more detailed description of the derivation
of the dynamical equations.

III. THE SMALL-SIGNAL THEORY

In order to illustrate the underlying mechanism for the efficiency enhancement of a tapered field configuration, we
derive a modified pendulum equation for the axial phase itl which describes the phase trapping of the electron beam in
the ponderomotive potential formed by the beating of the wiggler and radiation fields. For convenience, we consider
only the TE mode.

The orbit equations for the TEl„mode (20) are of the form

U i = —
I Qp[ 1 +Epk (n( z —zp )]—1 kn(u 3 +20n( (z )Ii ( l(, )SlnX j U 2 +Qn( (z )V 3I2 (1 )Siii( 2X ) —2 0pV 3epA, SlnX

d ~ ~ 1

1—2C5QI~ ' u 1—U1

2
( —) U102 (+)ku3 ~l kin u2 Jl(kin )cosal + 3 plTl

C
(22)

d
y U2 IQp—[1+—e—pk (z zp)] yk u3+—20 (—z)Ii(A)sinXIU& —0 (z)U3[Ip(A)+Iz(A)cos(2X)]+ ,'Qpu3e+COS—X

2
1 U2+ 2 c5QI„' co 1—

2
(+) U1U2

( )ku3 Tl 2kl„u iJl(kl„r)cosal + 2
co W~

C
(23)
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y —u3
——0 (z)U2[Ip(A, )+Iz(A. )cos(2X)]—0~(z)u&I2(k)sin(2X)+ —,

'
Qpeg(uisinX —vzcosX)

t '

—
2 c5ai„k—co (u) W( U—2T( ),1 U3 (-) (+)

C

(24)

—y= ———5ai„(u& W~ vz—Ti ),( —) (+)
dt 2c (25)

X=k~ A, ( —U
&
slnX +U 2 cosX —ku3 ),i

(26)

—A, =k (uicosX+uzsinX), (27)

and

—PI =(k+lkw )u) —co,
d

(28)

Q=+u~/u~~, where

20 u((Ii(Ag}/Q

Qp —yk~uii+20~Ii(Ag)
(30)

where

0„(z)—:0~+50~(z),

Qo, = ~eBo, /'mc
~

and

Closure of these equations is found by noting that

U~+U[( =(1—yp )C (31)

50~(z)—:Q~e„k (z —zp) . (29)

Solution of these equations will be found under the as-
sumption that terms in ep and 5ai„are all of first order
and a perturbation theory about the zeroth-order solutions
will be derived.

A class of zeroth-order, steady-state solutions has been
extensively discussed in the literature, and are
characterized by vo ——u ei + v~~e„Xp ——+n /2, and

l

Note that two distinct classes of trajectories are found
corresponding to relatively low axial guide fields (upper
sign} for which Qp&ypk u~~, and relatively high axial
guide fields (lower sign} for Qp&ypk u~~. For conve-
nience, we shall refer to the trajectories corresponding to
low axial guide fields as group I, and those for high axial
fields as group II. Perturbing about these steady-state or-
bits, we write u=vo+5u, X=Xo+5X, A, =Ap+5A, ,
y =yp+5y, and obtain to first order

V~
yp5vi = [0o y—pk u—11+20 I~(Ae)]5U2 2Q I2—(Ao)5X 5ai—„—a) 1 —

z
—k u

C
(32)

V~
yp5uz ——[Qp —ypkn u~(+20n Ii(ko)]5ui — [Qo+20~Ii(Q)]5u3

k„v.v-~~5y 20.U~~-
0

+U~Qpepk~ (z zo ) 2U
i i

(+A,o I i (A,p)50~

+ 5aln[(~ ku[[)TI 2klnuw~l(kin~0)co~!] ~N (33)

yp5U3 ——20~ I((Q)5ui+20~U„IZ(Ag)5X 5ainu~ k —co
z
—W—i

C
(34)

~ I V
( —)5y = —T5aI„co 8'I

C

1 15X= —k~ 5U3+ 5UI + z U~5A.
Xo

(35)

(36)

M, = +k„(5U2 u5X ), —

where Rp =+/k~. Observe that to this order
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I'I+ '=2Jt' (kt„Rp )sin[Pi + (1 —1)Xp],

II t' '=2Jt' (kt„Rp )cos[Pt + (1 —1)Xo] . (39)

We have imphcitly assumed that Q ~ 1 in the perturbation analysis, so that the contribution from the radial component
of + can be ignored.

Differentiating Eqs. (33) and (36) with respect to time, we obtain

=1+toi 5X=—A25ui — 5at„A icos[gt+(1 —1)Xo]
1

dt Vo

pvhere

1 C

2 +co& 5u2 cB——z5X+ k„u„u~~[eoQo e~(—Qo yok—~u~~)]
— 5at„B&cos[gt+(1—1)Xo],

t 'Yo 'Yo
(41)

2 2 2 2
pii =k~v )[ + Q~k~v)(

Xo

1+A,o Ii(Q),
0

1 2
2 (Qp —yok v[~)[Qp —ypk v~~+2Q Ii(Q)]+ Q k u~~

ck
A2 =+ (Qp —2ypk~uii )

Ii(Ag},
0

(43)

Bg = —
2 Q~ (1+g)[Qo+2Q~Ii(kp) ]Ig(1(p}+ yp@c~u ) ~

Io(A o) — I i (A o)
yo c 0

(45)

ck 2
Ai =—+ [ai —ku)~(1+lip)]Ji(ktgRo), (46)

Bi ——
I [t0 k~~u(1+Re—)][Q +o2QuIi(Q)] yokwu~~(t—v ku~~)) J/(—kt„Ro)

'Vo

1
+5oit (te ku(()+—kt„u~ Jt(kt„Ro),

tÃ ro
(47)

and btot =ca —(k+1k )u~~. This pair of coupled second-order differential equations can be converted into the following
set of two uncoupled fourth-order differential equations:

d 2 d 2 1 2+Qi +Qp 5v2 — k~u~u[~cpi[EpQp —E(Qp —ypku~[)]
dt dt Vo

Qo
5at„[(cubi —hipt )B,+A, Bi]cos[ft + (1 —1)Xo] (48)

d2

dt
+Qi

where

+Q,' 5X= k u A~[epQp —e„(Qp—yok~u~~)]
dt 'Vo

5at„[(o)2 beet )A i +A2B i ]co—s[ft +(I —1)Xo],
1

3'o
(49)

Q»= '(~i+~2)+ —'[(~i ~2)'+4AiB2]'" (50)

If we now assume that the FEL or ubitron resonance condition is satisfied, that is, ft dcot=O, then operating on the 5ui
equation (34) with the fourth-order differential operators in Eqs. (48) and (49) can be shown to give
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where

k vii 1 —4(Ao)

cu (k+lk~)
5ai„4(Ao)J/ (ki„Ro)cos[gt+(i —1)Xo],

~0~II
(51)

4(Ao) —=1+ y iiAoI i(Ao) [yok~uii +2Q~Ao 'Z(Ao) ]
I ( 1+Ao) [Qo+2Qw Il(Ao) ]—yok~u

~ ( 1 Z(Ao) —Aoyokw v
~ ~

l (Ao)

Z(Ao) —=(1+Ay)I'& (Ao) — It(Ao),
2

(52)

(53)

F(Ao) —= (1+Ao)I i (Ao) — Ii(Ao) .
VO

The modified pendulum equation follows immediately by noting that

d vI( d'
dt oi dz2

so that we obtain

(54)

(55)

z 1(t = Kt Icos[—gt+(1 —1)Xo]—cos[P,~+(1—1)Xo]j, (56)

where
cv (k+lic )z

Kt =
z z 'Sais@'(Ao)Jt (klNR0)

and the resonant phase g is given by

yklo [[ ( o) p([ QoEo e~(Qo yok~v(( )
cos[y, +(& —1)Xo]—= +

yok~u((+2Q~Ao Z(Ao) Ao@(Ao) ~t„Jt (kt„Ro) co

(57)

(58)

2

(k 5at„) + p (kt„bR ) (cos[y/+($ —1)y ] )y

where the average is now purely over the initial phase po. For a beam sufficiently tenuous that the gain is small, we as-
sume that the wave vector is constant aiid given approximately by

2

(59)

f«P~~ =v
~~

~c
&n order to illustrate the implications of this expression for the resonant phase (58) for the efficiency enhancement in a

tape«system, we now consider the small-signal gain. We observe that the zeroth-order steady-state orbits describe heli-
cal «ajectories and assume that the configuration of the electron beam is that of a "thin" helix of radius ~ centered
abo« the position of the steady-state orbit. Hence, we take cri(ro eo) =w~ $(6)o—go)$(ro —Ro)/ro, lt then fonows
from Eq. (10) that

We assume the system has run to saturation at z =zo, at which point the electrons have been trapped by the ponderomo-
tive potential, and define the gain over a length L relative to zo as

5at„(z =L +zo) —5at„(z =zo)
5at„(z =zo)

subject to the requirement that Gt & 1. It can be shown fiom (59) that

orb P.o, &oJt'(k«Ro) k' I +,
GL ——+ z 2 5 «t,~),2 i z, „J dz(cos[pt+(/ —1)A'o])& .

Satn (x/„I )Jt (x('„) k— '0

In the trapped-particle regime pt =f,~, and the gain can be expressed as

ahab P(( Lk~ (kt„~ )i yok u~~ 1 —4(Ao)

+2Q A
—1Z(A) @(A )

0 0 0 yeoQo e~(Qo yN~u )], — —

(61)

(62)
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dvII~dB -(C' l)«p r—pk vII) —.

Group I Orbits

0.6
I-

04'

8 = 1I&G
=3.0 crn

y„=2 96

I

10
I

12
I

14

8 (kG)

FIG. 1. Plot of the axial velocity vs axial guide field for the
ideal steady-state orbits.

using Eq. (58). The gain in the tapered field region, there-
fore, depends upon the resonant phase and is proportional
to the slopes of the tapered fields. Note that the total gain
relative to the start of the interaction region (z =0) is the
sum of the gains for the uniform and tapered field re-
gions.

The essential feature of the efficiency enhancement
mechanism which this idealized theory illustrates is the
effect of the axial guide field on the sense in which the
fields must be tapered to provide for an enhancement. In
order to show this, we must first describe some charac-
teristics of the steady-state trajectories. The axial velocity
and 4{}Io}are plotted in Figs. 1 and 2 as functions of the
axial guide field for an arbitrary choice of parameters.
Note that the daahed line in Fig. 1 corresponds to orbital-
ly unstable trajectories, and 4(Q) calculated in Fig. 2 cor-
responds to the stable orbits. For our present purposes we
are most interested in the behavior of 4(Q), and we ob-
serve that 4(Q) displays singularities corresponding to
the transitions to orbital instability for both group-I and
group-II orbits. It is also evident from Fig. 2 that
4(Q}&1 over the entire range of stable group-I orbits,
while 4(}Io)& 1 for graup-II trajectories. Indeed,
4(Q) & 0, corresponding to group-II orbits with Bp-14.2
ko for the chosen parameters.

In view of these characteristics of the steady-state or-
bits, it follows from the expressions for GL, , (63), that
both the axial and wiggler fields must be tapered "down"
(i.e., op&0 and e„&0}to achieve an enancement in the
gain and efficiency for group-I orbit parameters
(Qp&1 pk vII}. However, the situation is more complicat-
ed in the case of group-II orbits (Qp & ypk vII), for which
twa distinct regimes occur. When 0 & 4(Q) & 1, the axial
field must be tapered "up" (i.e., ep&0), while the wiggler
field must be tapered "down" (a &0) ta achieve an effi-
ciency enhancetnent. In contrast, when 4{+)&0 efficien-
cy enhancement occurs when either the axial field is ta-
pered "down" or the wiggler field is tapered "up."

In order to understand this behavior we note that the
characteristics of the zeroth-order, steady-state orbits im-
ply that

dvII ~dr-c' dvII~dBp-(1 —@»

8 Gmup I

0 bt

B =I kG
=30 cm

y =2.96

0-

—12—

I

2 4 6 8 10 12 14 16 18

8, (IcG)

FIG. 2. Plot of 4(Q) corresponding to the stable steady-state
trajectories.

For group-I orbit parameters, therefore, the electrons are
axially decelerated as they lose energy to the radiation
field, and must be accelerated through the effect of the ta-
pered fields ta maintain resonance. Since 4(Q) & 1 and

Qp& ypk~vII for group-I orbits, this is accomplished by
decreasing both the axial and wiggler fields. A similar sit-
uation holds for group-II orbits when 0&@(Q)&1, ex-

cept that the axial acceleration of the electrons is accom-
plished by means of increasing the axial field and decreas-
ing the wiggler field. However, when 4(Q) &0 for
group-II orbits, the electrons are axially accelerated as en-

ergy is lost to the radiation field. This "negative-mass"
type af effect is accompanied by an enhanced energy loss
in the transverse velocity. As a result, the electrons must
be decelerated by the tapering of the external fields in or-
der to maintain resonance with the wave. This is accom-
plished by decreasing the axial field and increasing the
wiggler field. These conclusions formed on the basis of
an idealized small-signal theory are fully borne out by the
simulation results described in the next section, for which
no such ideal assumptions are imposed.

It should be remarked that the FEI. or ubitron mecha-
nism is extremely sensitive to the presence of an initial
spread in the axial momentum (or velocity) spread of the
electron beam. This occurs because the effect of the ini-
tial velocity spread is to render the particle-trapping
mechanism ineffective and, while resonant amplification
of the radiation field may still occur, the nonlinear effi-
ciency of the interaction is substantially reduced. Since
the tapered field efficiency enhancement scheme described
herein involves the acceleration or deceleration of elec-
trons which have been trapped by the ponderomotive
wave formed by the beating of the wiggler and radiation
fields, the presence of an initial beam-velocity spread also
renders the efficiency enhancement process ineffective.

In order to determine some measure for the maximum
allowable-velocity spread, we consider the nonlinear pen-
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dulum equation (56) which describes electron motion in

the ponderomotive potential. In the uniform field region
cos[g +(1—1)Xp]=0, and the equation can be integrat-
ed to give

T 2

2K—i sin[ir'ji+ (I —1)Xp]+C,

10'—
10'—

10

8
8

N

TEq q Mode (Rg ——1.5 cm)
I t ( I I

d A=2IKil (65)

when u~@(Q) &0, and

where C is an integration constant. The separatrices be-
tween trapped and untrapped trajectories are given by

' 1/2
1 —sin[it'i+(I —1)Xp]

2

0.03—

0.02—
I

0.01—

I I I I

@=7.27/p

(u/ck = 8.3

( l I I I 1 I

40 60 80 100 120 140 160 180
' 1/2

1+sin[pi+ (/ —1)Xp]
@i=2 IKi I (66) k z

when v~@(Q) &0. The depth of the separatrix (i.e., the
trapping potential), therefore, is 4

I
Ki I

. Since

=@+lk —pi/v, ,

FIG. 3. Graphs of the radiation power and growth rate vs

axial position for a TE[ ~ mode and in the absence of an axial
guide field.

this corresponds to an axial velocity spread of

Ev~[ 4
I
Ki I v~~

vll
(67)

In order for the particle-trapping mechanism to be ef-
fective, the initial velocity spread must be much less than
the effective velocity spread (67) associated with the
trapped particle trajectories at saturation. Thus, we write

' 1/2
vg

i 2 5a(I 4(Ag) I
Ji"(ki„Rp)

l'O'V~iv
&(4

v x=0
(68)

IV. NUMERICAL SIMULATION

where 5ai„ is to be evaluated at saturation.
For the parameters associated with the various cases

considered in this work, it follaws that (hu, /u, ), p must
be less than a few percent. However, it is important to
consider the effect of the axial guide field on this con-
straint. As shown in the preceding discussion, u~ and
4(A,p) are both enhanced near the resonance at
Qp-ypk u~~ relative to the zero-guide-field limit, and u~~

is decreased. In addition, it has been shown that the
saturation efficiency may also be enhanced, leading to
an increase in 5ai„at saturation for Qp-ypk~u~~ as well.
The effect of this is to increase resonantly the depth of the
trapping potential near resonance, which permits opera-
tion for somewhat greater levels of the initial velocity
spl cad.

technique in each of the variables (gp rp Hp); hence, the to-
tal number of particles included in the simulation is Ni.
For all the cases discussed herein, a choice of %=10 was
found to provide an accuracy of better than 0.1%. The
initial electron positions are chosen by means of the
Gaussian algorithm within the ranges n( gp (—7p,

0(op &2ir, and 0&rp &Rs. A more detailed description
of the numerical procedure is given in Ganguly and
Freund z

The first case we consider treats model parameters in
the absence af an axial guide field (Bp ——0). The wiggler
field is characterized by B~=1.0 kG and A,~=4.0 cm
with an entry taper region of 6 wiggler periods (i.e.,
N =6). The electron-beam energy and current is 750
keV and 200 A, respectively, with an initial beam radius

Beam Grass Section (k~z = 0)

1.0

—1.0

The set of coupled nonlinear differential equations
described in Sec. II is solved numerically for a configura-
tion in which the initial state is chosen to model the injec-
tion of a salid, axisymmetric, monoenergetic electron
beam of zero emittance and uniform cross section. Hence,
we choose 0& ——o

~ ~

——1, and initiaHy set pz
——0 and

p~~ =me(yp 1)' . The average—s in Eqs. (9)—(12) are per-
formed by means of an ¹h-order Gaussian quadrature

—2.0 —1.0 1.0 2.0

k x

FIG. 4. Plot of the initial electron-beam cross section. The
outer circle represents the waveguide wall.
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Beam Cross Section (k z =37} Beam Cross Section ]k~z =132}

2.0 2.0

1.0

0-

—2.0

—2.0 —1.0 1.0 2.0

—2.0

—2.0 —1.0 1.0 2.0

FIG. 5. Electron-beam cross section at the end of the wiggler

entry taper region.

of Rb ——0.5 cm Fina. lly, the waveguide radius is R ——1.5
cm. Before discussing the results with a tapered wiggler,
we first consider the interaction for a uniform wiggler
field.

The evolution of the radiation power (watts) and
growth rate [I'=d(ln5ul„)/dz] as functions of axial posi-
tion are shown in Fig. 3 for the TE& i mode and a fre-
quency of ro/ck =8.3. Input power was chosen to be 10
% and saturation was found at k z =199 with a power of
10.9 MW for a total efficiency of g=7.27%. Note that
radiation growth was observed over the frequency range
7.7 &ro/ck~ & 9.3, and this choice of frequency is for il-
lustrative purposes only. The linear stage of the interac-
tion is seen to occur over the approximate range
70& k z &170, and the regular oscillation in the growth
rate results from a coupling with betatron oscillations in
the electron trajectories due to the transverse inhomo-

Beam Cross Section tk~z =120}

wX

FIG. 7. Electron-beam cross section during the linear phase
of the interaction at a local minimum in the growth rate.

geneity in the wigger field. In order to see this, we con-
sider the axial evolution of the beain cross section.

The initial beam cross section (i.e., k~z =0) is shown in
Fig. 4, in which the circle represents the waveguide wall
and the dots represent a superposition of all the electrons
projected onto the transverse x-y plane. Thus, each dot
initially represents 10 ele:trons with a total of 100 dots
plotted. The beam cross section at khz=37 is shown in
Fig. 5, which corresponds to the end of the entry taper re-
gion. Three principal effects are evident from these fig-
ures. First, the adiabatic increase in the wiggler ampli-
tude has imparted a transverse motion to the electrons, as
evidenced by the displacement of the beam center from
the axis of symmetry. Second, as shown by the rotation
of the two close-set "spokes, " the beam is executing a
pinwheeling type of motion about the beam center. Third,
the beam has been substantially compressed. This

2.0
Axial Phase Space Ik z =199)

1.0 .20-

0—
.10

0
~t N

—
~ 10

—2.0 —.20—

—2.0 —1.0 1.0 2.0
2 3

FIG. 6. Electron-beam cross section in the linear phase of the
interaction at a local max~~um in the growth rate.

FKx. 8. Axial phase space at saturation. The solid lines
represent the separatrices calculated on the basis of the ideal
steady-state orbits in a uniform wiggler field.
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TE~ ~ Mode (Rg=1.5 cm, co/ck =8.3}

20—

10—

8 =00
Q =1.0 kG

=4.0 cm
N =6
Vb =750 keV

lb ——200 A

Rb=0.5 c~

0.008

k z, =190

W

FIG. 9. Radiation power vs axial position for a variety of choices for the wiggler taper in the absence of an axial guide field.

compression of the bemn is due, in part, to a focusing ef-
fect of the wiggler field, as well as betatron oscillations.
The "pinwheeling" of the beam results from the combined
effects of the betatron oscillations and a transverse veloci-
ty shear across the beam. Subsequent evolution of the
beam cross section displays (1) a bulk oscillation of the
beatn about the axis of symmetry which twists the beam
into a helix at the wiggler period, (2) the "pinwheeling" of
the beam about its center, and (3) a "scalloping" of the
beam cross section due to the betatron oscillation. It is
this scalloping of the beam which imparts a modulation
to the radiation growth rate. This correlation is shown

clearly by comparing the bmm cross sections at the local
maxima and minima of the growth. In Fig. 6 we show
the beam cross section at k z = 120, which corresponds to
a maximum in the growth rate. The beam radius at this
point represents a local maximum. The subsequent
minimum in the growth rate occurs at k z = 132, which is
displayed by approximately two wiggler periods and one-
half of a betatron period. The beam cross section at this
point is displayed in Fig. 7, and shows a local minimum
in the be'un radius.

Finally, saturation occurs at k z=199 by means of
particle trapping in the ponderomotive potential formed

TEq q Mode (Rt}——1.0 cm, cu/ck~=8. 0}
I I I

8 =140 k
8 =1.0 kG

=3.0 cm
N =10
V =1.25 M

lb =50 A

Rb 0.25 c

10—

I

100 200 300 400 500 600

FIG. 10. Radiation power vs axial position for a variety of choices for the wiggler taper. This is the strong axial guide field limit
in which 4(Q}& 0 for the steady-state orhits.
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TE~ q Mode (Rp ——1.0 cm, cu/ck~=8. 0)

B =140 kG
B =1.0 kG
+=3.p cm
N =10
V„=1.25 MeV
lb=50 A

Rb
——0.25 cm

k z. =220
=0

I

300
I

400
I

600

W

FIG. 11. Radiation power vs axial position for a variety of choices for the axial field taper.

by the beating of the wiggler and radiation fields. This is
shown clearly in Fig. 8 where the axial phase space is
plotted, and where the solid line represents an approxi-
mate separatrix calculated on the basis ef the ideal,
steady-state trajectories.

The results of simulation runs with a wiggler taper is
shown in Fig. 9 for the aforementioned parameters. We
plot the power in the radiation mode versus axial position,
and include the untapered case for comparison. In gen-
eral, the efficiency enhancement obtained by means of the
tapered wiggler was found to be extremely sensitive to the
choice of both the position at which the taper was begun
(zp) and to the slope of the wiggler amplitude (e ). The
optimal results for this choice of parameters are shown in
the figure. The maximum efficiency enhancement occurs
if the taper is initiated slightly prior to the saturation
point of the untapered interaction, which was k„zp=190
for this choice of parameters. In addition, too high a
taper was found to be as bad as too low, and the greatest
efficiency enhancement (g =13.7%) occurred for
e = —0.006, which represents an approximate doubling
of the efficiency in comparison with the untapered result.
Greater enhancements in the efficiency are not possible in
this case because the wiggler must be tapered "down, *' and
the results shown have tv~ carried to the point at which
the wiggler field and, hence, the interaction vanish.

A series of simulation runs in the presence of an axial
guide field has also been carried out for 8o ——14 kG,
8 =1 kG, A, =3 cm, and X =10. The electron-beam
parameters used for these runs were Vi, ——1.25 MeV,
Ib ——50 A, and Rb ——0.25 cm. As before, we consider the
TE» mode, but the waveguide radius has been decreased
to Rg=1.0 cm. Wave amplification in a uniform field
structure was found to occur over the frequency range
7 5&co/ck &8.5, .and we have chosen co/ck =8.0 for
purposes of illustration. The untapered efficiency in this

case was found to be i'd=5. 61% at k z=225. These pa-
rameters correspond to group-II trajectories with

4(Q) &0; hence, the wiggler field must be tapered "up"
(i.e., e„&0) in order to obtain an enhancement in the effi-
ciency. We also observe, from the small-signal theory
described in Sec. III, that the resonant enhancement in the
untapered gain and efficiency described in the previous
literature, is mirrored by a resonant enhancement in
the effect of tapered fields on the interaction. Thus, in
the vicinity of the resonance at Qp-ypk v~~, smaller de-

grees of taper are required to obtain comparable levels of
the resonant phase 1t,~. This effect is shown in Fig. 10, in
which we plot the radiation power versus axial position
for several choices of e~, and ep ——0, (i.e., uniform axial
field). Optimal results are found for k zp=220, and
@~=0.001. The maximum efficiency in this case was
r1=37.1%, which is enhanced over the untapered result
by almost 700%. Observe that in contrast to the zero-
axial-field case, the requirement that e~ & 0 in this regime
means that the tapered interaction region can be extended
over an indefinite length. This permits larger efficiency
enhancements to be achieved. Even so, there appears to
be an asymptotic state in which the efficency tapers off as
a function of axial length, and only small additional
enhancements in the efficiency occur. This is shown in
the figure for the choice of e =0.002.

The case of a tapered axial guide field is shown in Fig.
11, in which we plot the radiation power versus axial posi-
tion for a variety of choices for ep, e~ =0 (uniform wiggler
field), k~zp ——220, and the same parameters chosen in the
generation of Fig. 10. As in the case of the preceding ex-
ample, these parameters correspond to group-H orbits for
which @(Q)&0. Hence, the axial field must be tapered
"down" to achieve an efficiency enhancement. As shown
in the figure, optimum efficiency enhancement occurs for
ep ———0.0005, in which rl 34.5%. As in the case of a ta-
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pered wiggler field, an asymptotic state is found in which
the efficiency enhancement tapers off as a function of axi-
al position. Finally, it should be remarked that the de-
crease in the axial field implies a divergence of the field
lines with axial position. This divergence ultimately re-
sults in the loss of the electron beam to the waveguide
wall. For the chosen parameters, this loss of the beatn to
the walls becomes an important consideration for axial
field tapers greater than eo & —0.0005.

V. SUMMARY AND DISCUSSION

In this paper we have developed a three-dimensional
nonlinear theory and numerical simulation of the I'EL
and ubitron amplifiers with tapered wiggler and axial
guide magnetic fields. The model we consider is one in
which the field tapering begins close to the saturation
point of the untapered interaction, and the results are
found to be extremely sensitive to both the starting point
and the degree of taper employed. As a result, we con-
clude that the tapered field configuration required to pro-
duce an optimum efficiency enhancement will be a sensi-
tive function of the specific frequency of interest in any
given experiment since the saturation length will vary
widely over the resonant spectrtim.

The axial guide magnetic field is also found to have a
profound effect upon the nature of the efficiency enhance-
ment process. The resonant phase (58) is seen to exhibit
an enhancement in the regime in which Qo-yok u~~, so
that a smaller degree of taper relative to the zero-guide-
field limit is required. In addition, the axial field affects

the sense of the required taper. In the low-axial-field re-

gime (Qo & yok~ v
~ ~

}both the wiggler and guide fields must
be tapered down in order to obtain an efficiency enhance-
ment. This situation is well known in the literature, and
results from the fact that decreases in the wiggler and axi-
al fields cause an axial acceleration of the electron beam
which, in turn, preserves the wave-particle resonance.
However, the presence of a strong magnetic field
(Qo & yok~u } results in a markedly different behavior. In
particular, when 4(Q)&0 a negative masslike effect
occurs in which the electrons are axially accelerated as
they lose energy to the wave. As a consequence, the elec-
trons must be decelerated in order to maintain the wave-

particle resonance. This is accomplished, in this regime,
by an upward taper in the wiggler field and/or a down-
ward taper in the axial guide field. One important conse-
quence of this is that while a "downward" taper in the
wiggler field can be maintained only until the wiggler
field becomes negligibly small, an "upward" taper can (at
least in principle) be maintained over an indefinite interac-
tion length and allow for extremely high levels of efficien-
cy enhancement. Depending upon the specific parameters
in any given experiment, this may have an important ef-
fect upon the ultimate efficiency achievable.
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