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The two major proposed first-order test theories for special relativity are shown to be equivalent.
The results of many experimental tests of special relativity are given in terms of the free parameters
of this unified test theory.

The special theory of relativity was first formulated by
Einstein in 190S. It predicts that the relationship be-
tween moving frames in given by the Lorentz transforma-
tion,

t =y[T —(u/c )X],
x =y(X —vT),

y=Y,
Z=Z.

Here the capital letters represent measurements in the rest
frame, and the small letters represent measurements in a
frame moving relative to the rest frame with a velocity
ux. This convention is used throughout this paper, as
well as letting P=u/c and y=(1 —P ) '/. Robertson
proposed a test theory for special relativity and more re-
cently Mansouri and Sexi proposed another. Test
theories are needed to interpret the various experimental
tests of special relativity. This paper demonstrates that
the two formulations are equivalent and also examines
what parameters of this theory are tested by various ex-
periments.

Robertson proposed the following general transforma-
tion:

Mansouri and Sexi give the transformation as

t =aT+6 x,
x =b(X vT), —

y =(d)&,

z =(d)Z .

They also state that this is also the most general linear
transformation, but they use only assumptions (1) and (2)
above. The vector e is dependent on the clock-
synchronization condition used. Either formulation
reduces to the Lorentz transformation if special relativity
is correct. Assuming Einstein clock synchronization as
Robertson does, e=(e,0,0). Equating the two formula-
tions, one sees by inspection that d =1/a2. A little alge-
bra gives a =1/ao, b =y /ai, and e= —(ai/ao)(u/c ).
Thus, using Einstein synchronization the Mansouri and
Sexi formulation~ is equivalent to the Robertson formula-
tion with

a =1/ao,
b =y /ai,
d =1/a, ,

'r=aot+(u/c )aix,
I=vaot+a~x,

Y =any,

Z =a2z .

and

—al
ao 2

He states that this is the most general linear transforma-
tion between two frames based on the following assump-
tions: (1) Space is isotropic and the spatial coordinates are
chosen correctly, (2) the only vector of intrinsic signifi-
cance is the velocity vector, and (3) clocks are synchron-
ized in ail frames using Einstein synchronization.

Robertson also expresses ao, ai, and a2 in terms of go,
g I, and g2 as ao ——ygo, a I

——yg l, and a 2
——g2. Special rel-

ativity represents the limit where go ——gl ——g2 ——1. Any
test of special relativity can be equated with a measure-
ment of go, gl, or g2. Mansouri and Sexi express a, b,
and d in the low-velocity limit as
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a =1+au /c +
b =I+Pu /c + .

d =1+5u /c + . -.

There are no odd-order terms in these expansions because
a, b, and d are assumed to be independent of the relative
direction of motion of the two frames. In the special-
relativity limit, a= —,, P= —,', and 5=0. A measurement

of a is equivalent to a low-velocity measurement of gp.
The ratio gp/gi, at low velocity, is equivalent to P—a
since

gp/gi -b/a =
z z =1+(P a)u lc—1 +Pu'/ci

1+au /c

Similarly, gp/g2 is related to 5—a and gi/g2 to P—5.
Using the equivalencies derived above, one can compare

the results of all the experimental tests of special relativi-
ty. Differences of Greek letters are the same as ratios of
the g's measured at low velocity. The expansions in terms
of a, P, and 5 are only valid when u «c, but the values of
gp, g1, and g2 can be measured at any velocity. In Table
I the relationships between the various symbols are sum-
marized.

Derivation of a useful result follows. From the general-
ized transformation, T and X are given by

T =apt +(u/c )aix

and

or atom's frame. Using Eq. (1), a time difference at a
fixed position in space is

go5 T„om —— ht1,b
y

or, in terms of frequencies,

=y
&atom = &1ab .

go

Since the nonrelativistic Doppler effect can be written as
E =Ep(1+P cosa), ' the relativistic Doppler effect is

E =Ep y(1+P cosa) .1

go

This result can also be obtained from a purely relativistic
derivation. Testing the relativistic Doppler formula is
equivalent to measuring the difference between gp and 1.
The transverse Doppler effect depends on the same for-
mula as the entire relativistic effect, but a=90', so
E =Epy lg p. Therefore, the transverse Doppler effect is a
measurement of gp.

A lifetime seen in the laboratory frame is a factor of
y/gp longer than the lifetime seen in a moving frame,
thus particle lifetime measurements are sensitive to
gp.

' ' Taking Eq. (1) in the particle's rest frame where

Xi ——X2 (Xi and X2 are the particle's position at t, and

t, )

TABLE I. Conversion factors relating the two test theories l
consider.

Term is equivalent to either or

ao

Q2

1/ao

1/a2
Q IU

aoc 2

1/a

y /b

1/d

1+au /c + . -

1+Pu'/c'+
1+5U /c +

g03'

g I'V

g2

I=uapt+a1x .

Noting that ap/y =gp/y, combining these equations re-
sults in the expression

T= t+ — --X .
go u

C

First consider tests of special relativity that are sensi-
tive to the time transformation or gp. The archetypical
experiment of this type was performed by Ives and
Stilwell. One such test is of the Doppler effect, both the
transverse Dop ler effix:t " and the entire relativistic
Doppler effect. ' The relativistic Doppler effect is the
more general case. Effects can be observed in two refer-
ence frames: the laboratory frame and the center-of-mass

2y, Moc
E, = Mpc =

8p go

V,
' —1/2

1—
c2

Solving this equation for the electron velocity gives the
following result:

4 1/2
lH oc

V, =c 1—
Eeg p

Therefore, any lifetime measurement is also sensitive to
gp. A twin-paradox test' is a matter of measuring times
in two different frames and hence is the same as the life-
time measurements mentioned above. A paradox test is
therefore sensitive to gp as well.

One could also measure the effective mass of a particle
moving at a high velocity' ' and see that it matches the
form M =yMp. Equivalently, one could measure the en-

ergy of a moving particle ' ' and see that it agrees with
the relativistic form E =yMpc . Let ~ be defined as the
time difference between two events in their rest frame
('r= Ti —T2). Then, taking Eq. (1) with X, =X2, one ob-
tains ~=5T =(gp/y )dr Since . p is defined as
p=M(dx/d~), it follows that p=(y/gp)Mpv. By analo-

gy to the usual case, M =(y/gp)Mp, and, similarly,
E=(y/gp)Mpc . Therefore, energy and mass measure-
ments at high velocities are sensitive to go.

Another timelike test of special relativity is to measure
the velocity of a high-energy electron and compare it with
the velocity of a photon, c. An electron's energy is
given by
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If y»1, then E, »Moc, and one can expand the
electron's velocity as

Moc
V, =c I—

2' g 0

g2

'2

I sin8+ I cos8,

so L 2

g2
I' sin u+ cosa.

Vy —V,
Moc

2E2g2
If a=8—m/2, by equating the expressions for I. one
de&Yes

The difference between the velocity of a high-energy elec-
tron and c is thus sensitive to go.

Thomas precession, or g —2, measurements are also
used as a test of special relativity. z In these experi-
ments y is compared with y where y=(1 —P )

' ' and

y =(p/Mo)(dp/dE). The quantity g/2 —y/y is mea-
sured for a particle (an electron or a muon) at both high
and low velocities. The two results are then compared.
From the previous discussion M=yMo/go. It follows
that p =yMou/go, and E =yMoc /go, therefore,
dp/du =y Mo/go, and dE/du =y Mou/go. Given these
values, y=(p/Mo)(dp/dE) = (1/go)(yMou/Mo)(1/u)
=y/go. The comparison of y and y is sensitive to the
parameter go.

A second type of special-relativity test is sensitive to
spatial transformations, or g& and gz. This effect was
first observed in the Michelson-Morley 9 and Kennedy-
Thorndike experiments. One could measure a length in
two perpendicular directions ' as Michelson and Morley
did. If the two lengths are equal in some preferred or eth-
er frame, then the situation shown in Fig. 1 holds. Using
the Pythagorean theorem in the preferred frame,

2
I
I'

1' '2
rg2

sin 8—

'2

cos28=0 .

The ratio I/I' depends on ygz/g~ weighted by sin 8 and
on g~/ygz weighted by cosz8. A few examPles may serve
to clarify this dependence. If 8=0, then I/I'=ygz/g, ,
and if 8=m /2, then I/I'=g~ /ygz. For 8 near n /4, there
is little correlation between I/I' and g&/gz. A length-
measuring experiment of this type is sensitive to the ratio
of g~ and gz.

Measuring the speed of light from a moving frame is
also a test of spatial relationships. As an example of a
moving frame, the speed of the light emitted by a moving
particle could be measured. Special relativity predicts
that the speed of light is a constant c in all frames. In the
rest frame assume a beam of light with velocity c travels
at an angle a to the X axis. The X and Y components of
the velocity are

X= X dF
T

=c cosa and F= =c sina .
dT

—i' cos a
9,

From the generalized transformations

— J. cos 8
'Y

Ql

I-sin 8
Qp

Ether
Frame

1

g X sl n 0

and

d& = dT zdX—
go C

dx = (dX udT), —
gl

dy= dY,1

g2

2 cos 8

2 sin8

Lab
Frame

S'cos e

I
g sin a

or

dx go
dt gl

(X—u)

1 — X
c2

dy go F
gz y(1 —(u/c )X)

go c cosa —U
C

gl C —U COSa

FIG. 1. Comparison of two lengths I and I' in the laboratory
frame. These lengths are assumed to be the same in the pre-
ferred or ether frame. Here y=(1 —pz) '~' and p=u/c, and
the laboratory frame is moving with velocity vx with respect to
the ether frame. Experimentally, a =0—m/2 in most cases.

go c sina
C

gz y(c —u cosa)

In the moving frame
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TABLE II. Experimental tests of special relativity. Here R is the sensitivity of the experiment divid-
ed by the expected size of the effect. The expected size is 1 in all experiments except the ether drift
where it is v/c for the earth moving through the ether or =10 . (Note that the electron velocity mea-
surement is sensitive to go so the result cannot be directly compared with the other go tests. )

Ref. Test

Parameters

10

15

16

17

18

19

20

21

22

23—26

25—27

28

31

32

33

34

Transverse Doppler

effect

Transverse Doppler

effect

Transverse Doppler

effect

Transverse Doppler

effect

Transverse Doppler

effect

Transverse Doppler

effect

Relativistic Doppler
effect

Relativistic Doppler

effect

Pion lifetime

Muon lifetime

Twin paradox

Mass of a

high-velocity proton

Mass of a

high-velocity proton

Relativistic energy

Relativistic energy

Velocity of a

high-energy electron

Muon g factor

Electron g factor

Electron g factor
Ether drift

Ether drift

Speed of light

Speed of light

1x10-'

4X10 '

7y 10

7 y10-'

2.3 x10-'

3.6x10 '

1.0y 10-'

0.84

0.92

0.9994
1X10-'
0.7

0.81

0.9995
0.9988

1—(5x10-")

0.9994
0.57

0.99999
10-4
10-4

10

Q.999 75

go

go

go

go

go

go

go

go

go

go

go

go

go

go

go

go

go

go

go/g i ~go/g2

go /g 1 ~go /g2

3g10

1x 10-'

4y10-'

5 X10-'

1y 10-4

4y10-'

5X10-'

2.7X10-4

4y 10-'
1x10-'
3 y10-'
6X10-4

1X10-'

3x 10-'
1X10-'
2X10 '

2.7X 10-'
3 x10-'
1.7g10-'
1x 10-'
5 x10-'
2X10-'
1.3 X 10-4

V=x+y2=.2 .2

2 gO=C
g&

C COSA —U

C —U COSA

2

go+
g2

c sina
y(c —U cosa)

Thus, given a and U, measuring the constancy of the
speed of light is equivalent to observing a function of the
ratios go/g~ and go/g2.

The results of all experiments can be expressed in terms

of one set of parameters. I have chosen go, g&, and g2,
but ao, a„and a2, a, b, and c; or a, P, and 5 could be
used just as well. In general, experiments that measure a
time are sensitive to the parameter go, and experiments
that measure lengths are sensitive to g& and g2. The pa-
rameter go would be different from 1 if the speed of light
were not a constant in all frames. If there were a pre-
ferred or ether frame that we were moving through, then
g&&1. The parameter g2, which relates to measurements
perpendicular to the motion of the frame, is assumed in
most treatments to equal l. A deviation from 1 in this
parameter would not have any physical significance. It
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should be emphasized that gq, g ~, and g2 are all functions

of U rather than constants, so the g's should be measured

at many different velocities. In Table II, results of many

experimental tests of special relativity are listed, along

with the velocity at which the experiment was done and

the parameters to which the experiment is sensitive. The

theory of special-relativity tests has been discussed recent-

ly by Maciel and Tiomno.

This work was done under the auspices of the U.S.
Department of Energy.
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