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Random-telegraph-signal theory of optical resonance relaxation with applications
to free induction decay
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We derive the effects of random telegraph noise on the equations of optical resonance. The
random-telegraph-signal model allows some results to be found exactly, independent of the strength
of the noise or the strength of the field that induces the resonant transitions. Our optical resonance

equations depart from the well-known empirical optical Bloch equations in several ways. We obtain
exce11ent agreement at high, low, and intermediate Rabi frequencies with the data of DeVoe and
Brewer [Phys. Rev. Lett. 50, 1269 (1983)j. This is the first such agreement that has been reported
with a value of the noise coherence time smaller than about 20 psec.

I. INTRODUCTIOX

In magnetic' or optical resonance the effective dynam-
ical equations in universal use are the Bloch equations
which are conventionally written using the rotating frame
and the rotating-wave approximation as follows for any
two-level or spin system:
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Here X and b, are the Rabi frequency and detuning, and u,
U, and w are defined according to the optical convention
(w = —1 indicates the lower energy state). These equa-
tions have been applied to a very wide range of different
effects with enormous success for more than three de-
cades.

The Bloch equations include, in addition to the
coherent evolution matrix, a diagonal relaxation matrix
containing the two homogeneous lifetimes Ti and T2.
These two phenomenological lifetimes were added by
Bloch to take into account transverse ( Tz) and longitudi-
nal ( Ti ) losses caused by the interaction of a spin system
with all additional degrees of freedom that are not ac-
counted for by the spin's coherent evolution matrix.

For optical transitions in completely isolated atoms or
molecules the dominant contribution to T~ and Tz comes
from radiative effects associated with radiation reaction
or zero-point fluctuations of the free electromagnetic
field. But in most realistic situations the radiative effects
are certainly not the only source and usually not the dom-
inant source of relaxation fluctuations and incoherence.

In other words, additional nonradiative damping is under-
stood to be included in the definitions of T, and T2. Be-
cause of the very complicated, and in many cases even ob-
scure, microscopic nature of all the relevant relaxation
fluctuations, it is well established to model them by classi-
cal random processes. Depending on the source of the
fluctuations, different modifications of Ti and Ti occur.

In some cases it has been shown that external fluctua-
tions lead to so-called "substitution" rules. In such situa-
tions we can derive certain rules explaining how to add
"by hand" (but exactly) the nonradiative contributions to
Ti and T2. Even if it is rather difficult to give a very
general criterion for the substitution rules to hold, it ap-
pears that in most situations when the noise enters the
dynamical equations of inotion in a multiplicative way,
and has an infinitely short coherence time r„substitution
rules are to be expected.

However, realistic noise fluctuations have a finite
coherence time, perhaps comparable in magnitude with
other typical lifetimes. What is the impact of such fluc-
tuations on the empirical lifetimes in the Bloch equations'
Are the substitution rules still valid? Do the Bloch equa-
tions themselves remain valid and in the same form?

Some attacks on such questions were undertaken in the
past. ' In these studies the focus was on high power of
the exciting resonant field. We can thus regard them as
studies of the case r, ~ 1/X, i.e., the case where the noise
coherence time is a substantial fraction of one Rabi cycle
or greater. The result of Redfield's work is particularly
notable because it predicts accurately (verified repeatedly
in magnetic resonance observations) that T2 is dependent
on X in such a way that Tz~2T& as X~~. That is, at
the highest powers, Tz approaches its purely radiative re-
lation with T&. However, in none of these past studies
was a formula given appropriate to intermediate-field
strengths. Also, one can criticize reliance on the concept
of' entropy, which should not be necessary in a properly
dynamic theory.
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Just recently the first optical experiments involving
measurements of effective free-induction-decay (FID) life-
times at large, small, and intermediate values of X have
been reported. " The quality of data obtained in these
experiments calls for a much more systematic and quanti-
tative approach to the problem. The observed data show
that we have to deal with a completely new regime where
the usual substitution rules are not valid any longer.

In this paper we give a detailed theory of optical reso-
nance relaxation in a format that avoids many of the tech-
nical problems associated with other approaches. It is
based on a random-telegraph-signal description of noise
fluctuations. The telegraph model is simple enough to al-
low a full exact analytic solution to the steady-state opti-
cal resonance equations (ORE} for any X or ~, .

This paper is organized as follows. In Sec. II we intro-
duce different models of noise fluctuation based on the
random telegraph signal (RTS). Phase, frequency, and
amplitude fluctuations are then defined. In Sec. III we
show how it is possible to derive the generalized relaxa-
tion structure that replaces the purely "diagonal" damp-
'ing of the Bloch equations.

In Secs. IV—VI we apply this method to the explicit
derivation of the effective resonance relaxation dynamics
arising from frequency, amplitude, and phase fluctua-
tions, respectively. We define effective linewidths in all
cases.

In Sec. VII we discuss free induction decay (FID). In
Sec. VII A we give a simplified theory of the absorption
line shape and we discuss in this framework the impact of
various noises on FID. In Sec. VIIB we make a detailed
quantitative discussion of the recent experiments and our
theory and show that good agreement exists between
them. This agreement is obtained for the first time with a
value of ~, smaller than about 20 @sec. Finally, Sec. VIII
gives some concluding remarks.

II. RTS MODEL OF EXTERNAL FLUCTUATIONS

We are going to assume that the environment of a two-
level system acts as a reservoir and gives rise to fluctua-
tions in various system parameters. The Rabi frequency,
its phase, and the detuning frequency are examples of
these parameters. In each case we wiB use a random tele-
graph signal (RTS) as a working model for the way these
parameters fluctuate.

We shall assume that these fluctuations can be decorre-
lated from purely radiative vacuum fluctuations charac-
terized by the lifetime 1/2y and linewidth y, where 2y is
the spontaneous Einstein A coefficient. Because the
coherence time or the "memory" of spontaneous emission
is extreinely short, we believe that this is well justified.
This approach is in agreement with the point of view that
certain types of fluctuations can be treated or modeled at
the so-caBed mesoscopic level, where a partial reduction
of some other degrees of freedom has already been per-
forined. A full theory would of course require that all
kinds of fluctuations are treated on equal footing using a
complete microscopic description.

With this important simplification of the vacuum reser-
voir we shall assume that the stochastic incoherences due

(5b,(t)) =0; (5b, (t+~) 5b, (t) ) =a'e (2.2)

Rabi amplitude fluctuations will be described by a devi-
ation 5X(t) from the constant coherent value X, and this
deviation is a random telegraph signal:

(5X(t)) =0; (5X(t+~) 5X(&))=a'e ' " . (2.3)

The phase fluctuations correspond to a noise in which the
phase p(t) performs random jumps with statistics charac-
terized by

(5P(&)) =0; (5P(&+~) 5$(r)) =a'e (2.4)

In each of the three cases (2.2)—(2.4} we have used the
same symbols a and ~, to denote the strength and the
coherence of the noise. Obviously in each case the physi-
cal meaning and the interpretation of these parameters is
different but because we are going to treat all these cases
separately and independently we shall preserve this uni-
form notation in this paper.

We close this section by giving one simple example that
illustrates the difficulties one encounters in making con-
nections between reasonably flexible noise models and
well-known relaxation formulas. We consider free induc-
tion decay of a collection of linear oscillators. We want to
compute the macroscopic polarization at times following
application of a saturating laser field that is turned off at
t =0.

to the fluctuating environment are going to be described
by a two-step random telegraph signal x(t) jumping be-
tween two states a and —a. In this respect our approach
is qualitatively different from several other discussions
that have appeared, ' ' and, as we shaB show, it has a
number of advantages. The jurnp process is characterized
by the frequency I /T that the telegraph signal changes its
state. This very simple well-known dichotomic Markov
process is fully defined by the following correlations

(x(t)) =0; (x(t+v)x(t)) =a2e ', (2.l)

where the coherence time ~, is related to the telegraph
jump time by r, =T/2. It is well known that a random
telegraph signal is not a Gaussian stochastic process,
though it is entirely defined by its correlation functions up
to second order, as given by Eq. (2.1).

We shall not give here any deep justification or physical
reasons for choosing a random telegraph stochastic
description of the external noises. Basically one adopts a
stochastic description in the first place only when the
physical fundamentals are obscure or too difficult. Thus
convenience and flexibility of the model are more than
sufficient motivation. The flexibility of the telegraph
model is great enough, for example, to admit a finite
coherence time r, This w. ill be fundamental to our study
of the relaxation dynamics of the optical resonance equa-
tions.

We shall include these RTS. incoherences into Eq. (1.1),
assuming that the atomic detuning, the amplitude, and the
phase of the Rabi oscillation perform independent random
telegraph jumps. For detuning fluctuations (sometimes
called frequency fluctuations) the detuning b, is replaced
by 6+55,(t) where
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The relevant equations are just those for u and u given
in (1.1) with w = —1. We choose detuning fluctuations
for illustration and so have, for t & 0,

d
(tt —iu) = [—y+i 5+i 56(t)](u i—u) .

dt

The solution to (2.5) is of course trivial:

(2.5)

(tt —tu)g =(Q —lu)oe r exp —l dS Mk($)
0

(2.6)

and (u —iu)0 is determined completely by 6 and the field
X that saturated the dipole prior to t =0.

To obtain the FID polarization we must average over
the distribution of detunings g(b ) and over the ensemble
of fluctuations 5b.(t). The result can be written

P(t)=Re f dhg(b, )(u iu)oe—'r+' "C(t),

where

C(() (exp =—( J ds ()d(s)

For a telegraph noise model of 5b, (t) we have' ' '

C(t) =(1 /2A, )(A, +1/2r, )e

(2.7)

(2.8)

+ (1/2A, )(A, —1/2r, )e (2.9)

& ~T2 =r+rC (2.11)

where (1/2r, ) —A, =a . In contrast, a Gaussian
Ornstein-Uhlenbeck model of M, (t) gives

C(t)=exp[ ar, [—t+r, (e ' —1)]j . (2.10)

As is clear from expressions (2.9) and (2.10), FID in
general cannot be described by a si.ngle parameter. The
two different models' characteristic functions (2.9) and
(2.10) depend explicitly on the two parameters a and r, in
different ways.

This situation has already been encountered in measure-
ments of multiphoton-absorption line shape in the pres-
ence of laser fluctuations. In that case, the strength as
well as the correlation time must be fixed separately. '

This is the same as saying that the correlation function
simply does not decay as a single exponential. In particu-
lar, for t ggr, the Ornstein-Uhlenbeck correlation func-
tion always strongly deviates from an exponential, as does
the telegraph correlation' if 2a = 1/v;.

These obvious remarks are nevertheless important be-
cause they show that there is not a unique definition of
Bloch's transverse relaxation time T2, even in the weak-
field limit. That is, one identifies Tz as the overall life-
time for homogeneous polarization decay [the d 5 integral
in (2.7) is irrelevant], so if C(t) is characterized by the
single exponential decay rate y„ then

In order to make contact with reported data, which ap-
pears to fit a single exponent, we will use (2.12) in (2.11)
to determine the value of Ti when necessary for numeri-
cal purposes. However one can keep in mind that a possi-
ble result of future experiments, which will assist theoreti-
cal developments greatly, will be careful observations of
line shapes. These will help discriminate among various
possible C (t) functions proposed in theoretical models.

III. EFFECTIVE OPTICAL RESONANCE EQUATIONS

In the case of optical resonance, the dynamical equa-
tions of motion, which have their origin in the basic Liou-
ville or Heisenberg equations, can be written in the follow-
ing general form:

dV(t)
dt

iM(x —(t))V(t) (3.1)

( V(t) ) = —,[V.(t)+ V .(t)], (3.2)

where the marginal average V, (t) can be calculated from
the following master equation

dV, (t) —iM(a)—
dt 2Tc

V.(t)+ V .(t) .1

C

(3.3)

We now use (3.3) to write the equations for the sym-
metric and antisymrnetric superpositions of V, (t}. Form-
ing the solutions of Eq. (3.3) we can write the following
exact and closed system of equations involving the sto-
chastic expectation value of V:

dv, (t)
dt i' V~(t) iM—q V~ (t), —

d Vg (t)
dt

= ( i' —1—/r, ) V~ ( t) i' Vs (t), —

(3.4a)

(3.4b)

with a given operator M which depends possibly non-
linearly on the external arbitrary random telegraph noise.
In the most familiar case, which is to be treated here,
there are four independent Heisenberg operators or densi-
ty matrix elements, corresponding to the populations of
the two relevant levels and the real and imaginary (disper-
sive and absorptive) parts of the transition dipole moment.
Thus in this case M is a 4&&4 matrix and V is a four-
component vector. If transitions out of the two-level sub-
space are assumed absent (automatically the case for
spins, but not for atoms), then one of the four independent
dynamical elements corresponds to the conserved total
population and can be removed from consideration. The
small price is the familiar inhomogeneous term shown in
(1.1). Temporarily we will work without the inhomogene-
ous term in the more convenient 4X4 format and revert
to the 3)& 3 format at the end.

It is well known that the stochastic expectation value of
Vis given by

But if C(t) is not a single exponential, then T2 does not
have a meaning in any usual sense.

Note that an assumption about the telegraph model,
namely ar, &&1, leads to very-nearly-exponential decay
with

where

Vs, g(t)= —,(V, + V, ),
Ms „&[M(a)+M( a)]—, —

(3.4c)

(3.4d)

2
yc —«C ~ (2.12) and following Eq. (3.2),
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( V(t) ) = Vs(t) . (3Ae)

&&M„(V(S) ) . (3.S)

This equation has a convenient Laplace transform and the
solution has the form

Note that the evolution of Vs(t) in Eq. (3.4a) does not in-
volve the coherence time r, of the noise. This jump time
appears in an explicit way only in the evolution of Vz (t).

We can easily derive the following integro-differential
equation for ( V(t) ) along from Eqs. (3.4a) and (3.4b):

d( V(t) ) . 1 ~
& ( iM—s —1/~ )(t —s)

0

dt
u =( iM—h

—I —X) u +
W

(3.11)

where we have recovered the inhomogeneous term missing
from Eq. (3.1), by returning to 3)& 3 matrices, as discussed
there.

IV. ORE WITH ATOMIC-FREQUENCY
FLUCTUATIONS

containing only the Einstein 3 coefficient and M„h de-
pends only on the detuning and Rabi frequency. Thus the
optical resonance equations can also be written in the
more explicit form

Q Q

J dz

1
z +iMs+M

z +iMg+ 1/v.,

V(0)

(3.6)

For atomic-frequency fluctuations' ('
(2.2) we have the following relations:

0 —6 0 y
0 X, r, =o

0 —7 0 0

0 0

y 0
0 2y

(4.1)

described by Eq.

which can be simplified if we focus our attention on long
times by using the "pole approximation" (taking z =0 in
the term proportional to Mq). In this approximation
(valid, roughly speaking, when the early transients have
died away) the denominator takes the form z+iMs+X,
where the "line broadening" or "relaxation" matrix X is
given by

&=M~(iMs+ I/&. ) 'M~ .

and from Eq. (3.7) we calculate

Ii2
r= —I „r„o

0 0 0

where

(4.2)

In this long time approximation Eq. (3.5) is strictly
equivalent to the simpler equation

d ( V(t) ) /dt =(—iM —X)( V(t) ) (3.8)

which has a time-independent damping matrix. It is this
equation that we define to be the random telegraph equa-
tion of optical resonance, or the optical resonance equa-
tions (ORE), and which can be taken as the substitute for
the Bloch equations. That is, the ORE in (3.8) are in the
spirit of the Bloch equations, because the relaxation ma-
trix is specified and time independent. But, as we discuss
below, the ORE are not even approximately, except in a
very loose sense, the Bloch equations themselves.

It is very important to note that a steady-state solution
of Eqs. (3.4) leads to the following nontrivial formula:

( iMs —X)Vs—( ) =0 . (3.9)

Equation (3.9) shows that X not only determines the relax-
ation time scale of the (necessarily approximate) ORE de-
fined in (3.8) but also defines a power- and noise-
dependent effective linewidth matrix, which is exact in
steady state.

In the 3X 3 Bloch-equation case, given by Eq. (1.1), the
matrix M~ contains on its diagonal part the radiative
dampings characterized by y. This means that regardless
of the character of the noise (collisional, phase, etc.) we
can rewrite the matrix Ms in the following form:

and

, (I/r, +y)(l/~, +2y)I» ——a P

, (I /~, +y)( I/r, +2y)+XI 22
——a

P
( I/~, + 2y)I )2———a 5

P

(4.3a)

(4.3b) '

(4.3c)

r„=, ; r„= „r„=o.2 c 2

1++ c
(4.4)

Note that I » and I 22 are proportional to the strength
of the noise a and I » depends on the Rabi frequency X
of the driving field in such a way that the damping forms
of u and u are different and this difference is power
dependent. This asymmetry between I » and I 22 is most
pronounced in the very-strong-field regime (Xr, » 1 )

where

l' =I (I/&. +y)'+~'](I/~. +2y)+X'(I/r, +y) . (4 3d)

These relations give an exact expression for the effec-
tive linewidths of the steady state Bloch vector -(u ( ao, h),
u(ao, b, ), w(oo, i)).)). In order to get a rough idea of the
power dependence of these effective linewidths we tem-
porarily simplify the relaxation matrix (4.2) by assuming
that I/v, & y, b.. As a result we obtain

(3.10) I"22—a z, .2 (4.5)

where I, is the diagonal spontaneous emission matrix Expressions for the conventional transverse and longi-



K. %'ODKIEWICZ AND J. H. EBERLY 32

1/T2 ——@+a z, ,

1/Ti ——2y .

(4.6a)

(4.6b)

This means that at zero power, frequency noise influences
only the value of the transverse rate 1/T2, leaving an un-
changed longitudinal rate. From Eqs. (4.6) it follows that
one can fix the noise parameters a and r, (or rather their
combination) by measuring the difference between the two
homogeneous lifetimes at zero value of the incident field:

tudinal damping times are associated with the weak-field
limit. We can obtain these very simply now from (4.4).
For a weak incident field (or, equivalently, a very short
fluctuation coherence time) we have Xr, &&1 and we ob-
tain from Eqs. (4.4), I »-I 22-a2r, . As a result the fol-
lowing expressions are found for the usual homogeneous
relaxation rates 1/T2 and 1/Ti of a two-level system ex-
posed to telegraph frequency noise:

2
7 ++C

~23—a1+7 + 1+7 (5.3)

1/Ti 2y+——a ~r, (5.4a)

In the strong-field limit X~, &&1 all these 'additional
noise-dependent dampings go to zero, leaving ihe Bloch
vector damped only by its radiative rate y. This means
that in the super-strong-field case there is no impact of
the fluctuations on the Bloch-vector evolution, in sharp
contrast to the previous case of atomic-frequency fluctua-
tions where a nontrivial saturation of I 22 occurred. Note
that a different conclusion would be obtained if a denoted
relative rather than absolute jumps of Rabi frequency.

If the incident field fluctuates about a zero average
(X=O but a&0), we obtain from Eq. (5.2) the following
lifetimes:

I/T2 —1/2Ti ——a r, .
1/Tz ——y+a ~, , (5.4b)

V. ORE VfITH LASER INTENSITY FLUCTUATIONS

Intensity fluctuations of the laser give rise in the ORE
to fluctuations in g. For Rabi-frequency fluctuations
described by Eq. (2.3) we have the coherent and the radia-
tive evolution given by the same matrices (4.1) as in the
case of atomic-frequency fluctuations. What is different
is the matrix Mz and accordingly different is the damp-
ing matrix X. For such fluctuations we have

0 0 0
I 22 I 23

—I 23

(5.1)

The appearance of this particular combination of the
parameters a and ~c when +~0 can be easily understood
for the frequency noise in the limit of r, ~O but with a
fixed value of a ~, =$. In this limit the random tele-
graph has all of the mathematical properties of Gaussian
white noise with diffusion constant D and accordingly we
obtain from Eqs. (4.3) the well-known result

I ()——I 22 ——D and I )2——0,
i.e., the usual substitution rules for the natural Iinewidths
in the Bloch equations. For fluctuations with a finite r„
these substitution rules are not valid any longer and the
effective linewidths become power dependent.

where T2 indicates that only the damping of the u com-
ponent of the Bloch vector is affected. Note that the
damping term of u is not influenced by the noise because
I ii ——0 and a single universal transverse lifetime 1/T2
cannot any longer describe the damping of the u and u

components of the Bloch vector.
In the limit of Gaussian white noise, i.e., when ~,~0

with constant D =a ~„we recover the known result

I 22
——I"33——D and I 23 ——0 for r, ~0, (5.5)

and, again, simple substitution rules with power-
independent lifetimes hold true. This case gives an in-
teresting example of a "partial" substitution rule for the
ORE. For +=0, Rabi-frequency fluctuations differen-
tiate the transverse dampings of the u and u component
of the Bloch vector. This asymmetry follows, of course,
from the obvious fact that for +=0 the dynamical evolu-
tion of u can be fully decoupled from the u and the w
components.

VI. ORE mITH I HASE FLUCTUATIONS

For phase fluctuations' ' ' described by Eq. (2A) the ra-
diative damping matrix I, is the same as in Eq. (4.1), but
the coherent evolution is modified [see the definition of
Mz given by Eq. (3.4d) and the relation (3.10)]:

0 —5 0
where

, (1/r, +y)'+ b, '
I 22

——a
P

, (1/r, +2@ )(1/r, +y)I 33——a
P

(1/r, ~y)
023 ——a g P

(5.2a)

(5.2b)

(5.2c)

—~M,.„= 6 0
0 —g cosa

g cosa
0

(6.1)

r„o r„
0 0 0 (6.2)

where a is now the jump size of the fluctuating phase.
From Eq. (3.6) we calculate the following expression for

the damping matrix:

and the expression for I' is again given by Eq. (4.3d).
In the transient regime, from Eqs. (5.2) we obtain the

following expressions for the effective linewidths:
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( I /r, +y)'+ 6'
1]$——y sin a (6.3a)

(I/7', +y)(1/r, +2y)+X'cos ~
I 33-—-7 sin a (6.3b)

lhX cosQ
(6.3c)

aIld

Q =[(I/r, +y) +b. ][(1/r, +2y)]
+X cos a ( I /r, +y) . (6.4)

Note that the expression for I' introduced in Secs. IV and
V can be obtained from Q simply by taking a =0:
I' =Q(a =0). As in the case of atomic-frequency fluc-
tuations, the off-diagonal damping I &3 vanishes for
resonant interactions. The damping terms in the matrix
(6.2) depend in a nonlinear way on the jump size a of the
phase fluctuations in obvious contrast to the two previ-
ously discussed cases. This follows from the fact that
laser phase fluctuations cannot be incorporated in the
ORE as a linear multiplicative noise.

In the transient-time regime we obtain from Eqs. (6.3)
and (6.4) the following expression for the effective
linewidths:

2 2r=x--
1+g v cos a

33 g '7 sin a I $3 0
(6.5)

In the strong-field limit (Xr, & 1) the damping I'ii be-
comes power independent. Because the phase fluctuations
accompany the incident field 7 it is not surprising at all
that in the limit X=O there is no impact of the fluctua-
tions on the-homogeneous lifetimes and as a result in that
limit we have 1/Ti ——2y, 1/Ti ——y. In this case the pa-
rameters of the noise a and r, should be fixed by an in-
dependent measurement of the laser-field correlations.
Here it is useful to recall the appropriate autocorrelation
function' ' '

work of telegraph noise with no constraints on the power
of the noise. In order to give better insight into the theory
of the effective ORE with intensity-dependent lifetimes
we shall present in this section two approaches to this
problem.

The first approach, contained in Sec. VII A, is based on
simplified expressions (1/r, »y, b, ) for the effective
linewidths derived in the previous sections. This simpli-
fie theory will give us approximate expressions for the
absorption line shape of the optical Bloch vector under
the influence of relaxation fluctuations and a strong in-
cident field. These linewidths could be determined for a
two-level system strongly driven by external stochastic
perturbations in a variety of measurements.

This simplified approach need not give a good quantita-
tive agreement with the observed data, but it should con-
tain the essential ingredients of the effective line shapes,
and give at the same time a qualitative explanation of the
observed effects.

In our second approach, contained in Sec. VIIB, we
perform a more careful and a more detailed discussion of
FID with random telegraph frequency fluctuations. We
will use the exact form of the steady state effective
linewidths derived in Sec. IV in order to derive the FID
signal observed in an optical transition in an impurity-ion
solid. Vfe obtain a good quantitative agreement between
our theory and the recently published experiments. %'e
postpone such a detailed discussion of phase and ampli-
tude fluctuations because present experiments do not ap-
pear to require them.

A. Absorption line shape

We shall now present a simplified version of the ab-
sorption line shape based on the approximate values of the
effective linewidths in the ORE derived in the previous
sections under the condition that 1/r, & y, b, . Note that
for all three cases (frequency, amplitude, and phase fluc-
tuations) the only nonvanishing elements of the effective
damping matrix X are the following [see Eqs. (4.4), (5.3),
(6.5)]:

(e '~"+'e'~'") =cos a+sin a exp( —
~

r
~
/r, ) (6.6)

which is needed for the calculation of the power spectrum
of the driving laser light.

I )i 0 0

0 I 2z I 23 (7.1)

VII. FREE INDUCTION DECAY
OF THE EFFECTIVE ORE

One possible way of testing the behavior of the effective
ORE is the measurement of the optical free induction de-

cay (FID) of the Bloch vector for different values of the
incident field and for different sources of noise. The first

experiments of this type have been performed recently, '

and they show quite clearly that the approach via the
standard Bloch equations to FID fails to describe properly
the observed experimental data. Several theoretical'analy-
ses of these experiments have been constructed recently
with power-dependent lifetimes induced by weak Cxauss-
ian fluctuations of the atomic frequency. '

En this paper we reconsider this problem in the frame-

&(I p3
—X)ii(m)= —2w, qy D

(y+ I"ii)(1'p3 —X)
U ( oo ) = —2N~qy D

where

(7.2a)

(7.2b)

where the analytic form of any of these I";J can be found
in Secs. IV—VI. Due to our approximations (1/r, &y,
and 6) the matrix elements of X are dependent only on
the noise and on g.

With this form of the damping matrix we calculate that
the steady-state solutions of Eq. (3.11) for the two real
components of the atomic dipole moment (u and U) are
the following:
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D =(y+ rf] )(y+ r22)(2y+ r33)

—(y+I )(I' +X)(r —x)

+(r33+2y)~' . (7.2c)

From the resonance form of u(00) and v(00) we obtain
immediately the following expression for the absorption
linewidth of the strongly driven two-level system:

' 1/2
(y+ r„)(y+r„)(2y+r„)—(y+ r„)(r„+X)(r„—X)

I 33+2
(7.3)

In the absence of external fluctuations, i.e., when 2=0,
the absorption line shape has the well-known Lorentzian
form with linewidth

r„=[(1/T', )'+x'T", /T", ]'~', (7.4)

where 1/T2 ——y and 1/T& ——2y are the purely radiative
lifetimes and where, for strong excitations, we have

r~-X(T~/T3)' =X/3/2 for X&&y . (7.5)

With external noise we have X&0 and as a result the
absorption line shape I z depends on the power of the
driving field. For some values of the characteristic pa-
rameters of the noise, r, and a, we can have a significant
modification of X as a function of X compared to the
noise-free case.

For detuning fluctuations we have only I » and I 33 not
equal to zero [see Eq. (4.4)] and as a result, the absorption
line shape (7.3) takes the following form:

cs1Q a

1+7 && cos a

X2
y+ 2y+7 ~ sin a

where, because the impact of the noise is different on v

than on u, no simple relation connecting I ~ at X=O with
1/T2 exists.

Again, for very strong excitations we have

I g-X/~2
as in the case of frequency fluctuations. For very large
powers the saturated line for detuning and amplitude fluc-
tuations is noise free. This can be easily understood on
the grounds that for X&y, b, a standard perturbation
theory can be applied, treating the noise as a small correc-
tion to the dominant term due to X.

For phase fluctuations only I'», I 33 and I ~3 are not
equal to zero [see Eq. (6.5)] and as a result we obtain the
following expression for the absorption line shape:

1/2

y+a' '» (y+a'v, +X'/2y)
&+X ~,

1/2

(7.6a)
For 7=0 this reduces to

r~ (X=O)=y =1/T,

(7.9)

r'„(X=O)= I/T, =y+a'r, (7.6b) and there is no impact of the noise on 1/T2. In the
strong-field limit (sina&0 and cosa&0) we have from
Eq. (7.9) the limiting form

I q —X/V 2 for X & y, 1/v; . (7.6c) I ~
——I [y+(1/r, ) tan a][y+(1/r, ) sin a) I'~ (7.10)

I g(X=O)=y(y+a3r, ), (7.g)

Note that in the limit of very high power, I z reaches the
noise-free limit given by Eqs. (7.6). For lower power, I ~
is considerably modified by X, and the transverse lifetime
1/T2, which does not show up for high intensity, fixes
the value of rq at X=o. A fixed value of T2 for arbi-
trary X would lead to the standard prediction that
rz -X(1/2yT2)'~ for large values of X. This behavior
has been shown to be in disagreement with the observed
data. ' The experiments have shown that the saturated
I „behaves according to Eqs. (7.6).

For Rabi-frequency fluctuations I 33
——I 33 and I 33 are

not equal to zero [see Eq. (5.3)] and as a result we have

2
cXI~= X+ 1+X'~,

yX [1 ar, /(I+X'~, )]-
+ (7.7)

2y+a v, /(1+X ~, )

with

Here, contrary to the two previously discussed cases, the
saturated absorption line shape depends on the phase
noise. This is due to the fact that, for high power, the
phase fluctuations cannot be cast as a small perturbation
to the coherent dynamics. As a result, phase fluctuations
will have a persistent effect on any effective linewidth. ' ' '

We note here that the familiar "phase-diffusion" or
Gaussian %'iener-Levy model is based on frequency, not
phase, fluctuations. This is important to keep in mind if
connections are sought between results obtained here and
results available in the literature for short-memory fluc-
tuations (see, for example, Ref. 5).

B. FID experiments

Experiments by DeVoe and Brewer' were carried out
on the Pr + optical resonance in samples of Pr +:LaF3.
The flip-flop motion of the F nuclear spins is expected to
give a time-dependent magnetic field at each Pr + even at
very low temperatures. We assume that this magnetic
field creates a random fluctuation M, (t) in the resonance
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detuning of the ions. We shall assume that 56(t) per-
forms a random telegraph motion with jump size a and
switching rate 1/T to be determined later.

In the experimental situation two states of the Pr + ion,
which make up a two-level system, interact resonantly
with the incident laser field. The macroscopic polariza-
tion P(t, tap) due to such a two-level system is allowed to
reach its steady-state value. Next the laser is effectively
switched off at t =0 by detuning the resonance by Stark
shifting the atomic frequency from cop to P3p+5cos.

The FID signal is proportional to the real part of
(u iv—)e ' ' averaged over the detunings associated with
whatever inhomogeneous broadening is present. We as-
sume the inhomogeneous linewidth is far larger than any
other, as is typically the case for low-temperature solids.
The sample polarization can be written

X J db. e ' 'e '[u(oo, b, ) i—v( oo, h)]

+C.C. (7.11)

where the field-free transverse lifetime T3 is defined as
follows [see Eq. (2.12)]:

I/Tz y+——a r, (7.12)

and the steady-state values of the atomic dipoles u ( oo, b, )
and v ( oo, b ) are given as solutions of the exact equation
(3;9) with the damping matrix defined by Eqs. (4.2) and
(4.3).

After some simple algebra we obtain from Eqs. (3.9)
and (4.2) the result

Xb, +iX(y+I )))
u ( e),h) —iv( oo, h) = —2w~y {y+1»){y+1»)2y+X'(y+I»)+2

(7.13)

where I », I », and I &z are defined by Eqs. (4.3). By per-
forming the Fourier transform of this exact expression,
we can obtain an FID rate R:

u(oo, 4) iv(oo, b)=-N(b, )

D(b, )=d65 +d46 +dzh +dp,

(7.15a)

(7.15b)

where the coefficients can be evaluated at length from Eq.
(7.1) if necessary. The rates 8 and I", can be evaluated
numerically by an integration over h.

8 =1/Tz+I, ,

where 1/Tz comes from the field-free contribution and
I, is totaBy determined by the b, integration of
u ( oo, b. )—iv ( oo,4 ).

From Eq. (7.13) it is quite clear that the atomic dipole
moments can be written as the ratio of two rational func-
tions of the atomic detuning

In order to obtain an analytical expression for the FID
signal we shall adopt a simplified approach based on the
so-called single- (slowest-) rate approximation. ' ' In this
case the FID can be described by a single rate obtained
from the linearization of the polynomial D (5):

D(h)=dzb, +dp . (7.16)

' 1/2
Q

dz
(7.17)

After some simple algebra one can easily calculate the
two coefficients dp and d2 from Eq. (7.13). As a result
we obtain

This approximation of D by the smallest eigenvalue (the
slowest rate) has been used and tested in several physical
situations, but must usually be justified a posteriori.
Equation (7.17) allows a trivial calculation of the FID
rate:

fi(2yf i+X'fr)
4y 2 [(1+2yr, )/( 1+yro )lf i +[{1+2yr, ) /( 1+yr, )]X r, (f& +yf 2 ) +2yf 3

{7.18)

Here the functions f&, fz, and f3 are given by

f, =(1+2yr, )(y r, +y+a r, )+yr, X

2/7 CQ

fz ——(1+2yr, )(1+yr, )+X 2+ 1+ye,
(1+2yr, )f3 ——(1+yr, )(1+2yr, )+X r, —a 22

+ V+c

(7.19a)

(7.19b)

(7.19c)

It is now easy to check the limit of a "white-noise" tele-
graph, that is, to compute the value of the effective
linewidth I, when the telegraph correlation time scale ~c
is shorter than any other time scale. Thus we take

I, [(y+D) +X (y+D)/2y]'i as r, 0 . (7.21)

For high power of the laser the "white-noise" formula

1/r, »X,y, l, (r, ) and find

1,~(y +X /2)'~ as r, ~0. (7.20)
Clearly only radiative relaxation and power broadening
remain in this limit, and at high powers, (7.20) is in agree-
ment with observation.

Another short-coherence-time limit also exists. It is
familiar in other physical problems as the white-noise dif-
fusion limit. If r, ~0, while a r, is held fixed at the
value D, then the telegraph tends to Gaussian white noise,
and expression (7.18) takes the following form:
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all types of fluctuation considered.
We have applied the theory to explain qualitatively and

quantitatively recent FID experiments of ion impurities in
solids. We can contrast our results with several other
theoretical predictions made recently as a response to the
DeVoe-Brewer experiments by focusing attention on the
values chosen in those theories for r„ the single fitting
parameter in recent theoretical discussions. A purely nu-
merical, but microscopically modeled, Monte Carlo calcu-
lation, ' including a large number of neighboring interact-
ing spins, leads to the selection of r, =70 @sec, which
seems too high (because then ~, )Tz). Numerical investi-
gation of the full hierarchy of equations' associated with
an Ornstein-Uhlenbeck model of fluctuations leads to a
value of ~,=27 psec, which again seems high. An analyt-
ic theory which includes numerical evaluation of the inho-
mogeneous broadening integration, developed in Ref. 15,
leads to 7,=20 p, sec, which is also unsatisfactory. Only
the second-cumulant approximate analytic theory of Ref.
13(b) shares the property of our solution that ~, can be
chosen significantly smaller than T2, and still obtain good
agreement with the experimental data. Interestingly, the
theories of Ref. 13 also make our prediction that the re-
laxation matrix is nondiagonal, and thus departs from the
Bloch form, but they do not find the same off-diagonal
elements to be nonzero as given here. The solution of Ref.
13(b) is restricted to weak noise.

Compared to most of these theories, our RTS approach
to detuning fluctuations is very simple. The model is ex-
actly soluble in steady state, leading to exact expressions
for the power-dependent effective lifetimes. The principal
approximation involved in our calculations has been the
slowest-rate approximation. ' ' It is remarkable that
such a very simple theory leads to good agreement with

the experimentally observed data and also predicts a quite
sensible value for r, . The supersimplified version of the
theory explained in the first part of Sec. VII leads, howev-
er, to a value of r, which is too high (in this case v, =25
@sec).

From all the theoretical discussions given, beginning
with that of Redfield, it is easy to see that there is no
basic problem to fit very accurately the data at very high
values of X. The situation is actually more complicated
for small or moderate values of g. All the theoretical cal-
culations (with the exception of the simplified theories
which neglect detuning in the expressions for X), includ-
ing ours, indicate that the value of I", at +=0 is different
from 1/T2 and this difference is dependent on the value
of r, . This indicates that the relation of a and ~, to T2
can be more complicated than the one suggested by Eq.
(7.12) and similar relations obtained in other papers. Our
discussion of the linearized theory in Sec. II illustrates
some of the possibilities. In order to clarify this point,
more experiments with a careful measurement of the
shape of the FID signal at low power would be most use-
ful.
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