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The semiclassical equations of motion for a system of coupled lasers are developed and the fre-
quency locking of the lasers comprising the system is analyzed. It is shown that the frequency-
coupling range, in terms of the coupled cavities mismatch, is proportional to the coup1ing coeffi-
cient. For a system where the cavities are uniformally filled with the active medium, the coupling
vanishes regardless of the transmittance of the coupling mirrors. Our theory is valid for a11 values
of coupling and for any number of lasers in the array. It may also be adapted to study different
types of coupling arrangements.

I. INTRODUCTION

The use of two consecutive Fabry-Perot interferometers
for the purpose of better axial-mode selectivity was sug-
gested by Kleinman and Kisliuk' and has since been fur-
ther investigated by several workers. Coupling two or
more resonators can lead to desirable properties such as
selective mode suppression, enhancement of intracavity
laser power, frequency stabilization against cavity-length
fluctuations and phased laser arrays.

Spencer and Lamb had previously studied the
coupled-laser problem. Their treatment, which was based
on expanding the laser field in terms of the individual
passive-resonator eigenmodes is hmited to the weak-
coupling regime. In order to study the strongly-coupled-
laser problem, one has to expand the laser field in terms
of composite passive-resonator eigenmodes. Recently,
we have shown that by using the composite resonator
eigenmodes, the semiclassical equations for the fields of
coupled lasers are very similar in form to those of a
single-resonator laser. This is a useful result because the
solution of the single-resonator problem is well known. 'o

The effects of the coupling between lasers are primarily
due to changes in the passive-resonator-mode structure.
In particular, the frequency spacings between the modes
are no longer uniform, and the cavity losses of different
modes are different.

In this paper we derive the semiclassical equations of
motion for a system of coupled lasers. We apply these
equations to study frequency locking in coupled lasers.
The ability to lock the frequencies of the coupled lasers in
the presence of resonator-length fluctuations is important
for phased laser-array applications. The approach adopt-
ed here is general in that it places no restriction on the
strength of coupling or the relative lengths of the coupled
lasers. It also applies to a variety of geometrical forms of
coupling. Throughout this paper, homogeneous broaden-
ing is assumed; however, it is a straightforward problem
to derive the corresponding equations for an inhomogene-
ously broadened active medium.

Our theory is based on the knowledge of the composite
resonator passive modes. In Sec. II, a simple method is

developed for computing the eigenfunctions and eigenfre-
quencies of these modes. Even though we developed the
analysis for resonators coupled in series, the same ap-
proach applies to other forms of coupling (Sec. VII). In
Sec. III, the results are applied to the case of two coupled
resonators. The semiclassical equations of motion are de-
rived in Sec. IV.

Frequency locking is discussed in Sec. V where the cou-
pled resonator field equations are solved numerically for
the stable solutions. In Sec. VI the field equations are re-
duced to equations similar to those encountered in con-
nection with ring lasers. The "decoupled" approxima-
tion' is used to solve these equations. In Sec. VII the
methods of Sec. II are applied to a different form of cou-
pling (star coupling).

II. THE COMPOSITE RESONATOR EIGENMODES

Consider a high-Q composite resonator consisting of M
subresonators (see Fig. 1). These subresonators are cou-
pled via transmitting mirrors. These mirrors are charac-
terized by their reflectance amplitudes r (j), r(j), and the
transmittance amplitude t(j) Here, r. (j) [r(j)] corre-
sponds to the reflectance amplitudes when a mirror is
viewed from the left (right). The transtnittance ampli-
tudes as viewed from both sides are taken to be equal
since we are assuming that the refractive index of the
medium on both sides of the mirrors are the same. The
choice of r (j), r(j), and t (j) is not completely arbitrary.
In the case of a lossless mirror, they must satisfy the rela-
tion r(j )Itj()= r*j()It'(j). —

The intracavity electric field is analyzed in terms of the
right and left running waves, A+(j) and A (j), respec-
tively. These running waves have constant, but different
amplitudes in each (passive) subresonator. To relate the
wave amplitudes of these waves in different sections of
the composite resonator, we first relate the waves at both
sides of a given mirror, say mirror j which is located at
z =zj. The waves to the left are labeled A+(j) and
A (j), while the ones on the right are labeled A +(j) and
A (j). Here, A(j) is a shorthand for A(zJ). With the
aid of Fig. 2, one can immediately write the following re-
lations:
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FIQ. ]. (a) A coupled array of M resonators. (b) A reflector element-with reflectance amplitudes r(j), r(j), and transmittance am-
plitude t(j).

A +(j)=r(j)A (j)+t(j)A+(j),

(j)=r(j)A+(j)+rj()A (j) . (2)

The waves to the right of mirror j are related to the waves
just to the left of mirror j+ 1 through the relations

A +(j)=A+(j +1)exp(ikLJ+&), (3)

A (j)=A (j +1)exp( ikL&+, ),— (4)

A (j)= . [ A (j +1)r (j)e px(i kLJ~+)r(j)
+ A (j+1)[r (j)—r(j)r(j)]

where k is the field k vector and Lz+, zJ+~ —
z~ is th——e

length of the subresonator bound by mirrors j and j+1.
In what follows, we will label this subresonator as the
j + l subresonator.

Substituting Eqs. (3) and (4) in Eqs. (1) and (2), and
after rearranging terms one obtains the following useful
relations:

A+(j)= . [A+(j+1)exp(ikLi+, )
+ 1

r(j)
—A (j+ 1)F(j)exp( ikLJ+ &)], —

It is useful to introduce the concept of the effective reflec-
tance amplitude R (j ) =A (j ) /A + (j ), which is the net re-
flectance amplitude due to the system of mirrors to the
right of the point zJ, including the jth mirror. " Dividing
Eq. (5b) by (Sa), one gets the recursion relation for the ef-
fective reflectance at zJ in terms of the effective reflec-
tance at zJ+~,

r (j)+[t (j) r(j)r(j)]R—(j +1)exp( 2ikLJ+—~)R(j)=
1 r(j )R (j+1)—exp( 2ikLJ+—&)

Since there is no mirror to the right of the point zM, we
have R (M) =r (M), which are the starting values for the
recursion relation, Eq. (6). The eigenmodes U„(z) of the
composite resonator corresponding to the eigenfrequencies
Q„=ck„,can be derived as follows.

The total field at a point z is the superposition of the
two counterpropagating waves at that point. Hence,

U„(z)=A„+(z)+A„(z)=A„+(j)exp[ ik„(z ——zi)]

+A „(j)exp [ik„(z —zJ ) ] .

Since A„(j)=R„(j)A„(j),Eq. (7) can be rewritten as

U„(z)= [ exp[ ik„(z ——zJ )]

+R„(j)exp[ik„(z—zJ )]]A+(j) .
X exp( ikLJ + ~ ) ] . —, (5b) Since the terminal mirrors are assumed to be total reflec-

tors with no losses taking place, R„(j) will have a unity
amplitude. Hence, one can write R„(j)as

A (j) A (j}

R„(j)= —exp[i5„(j)],
where 5„(j)is a phase factor.

Thus, Eq. (8) can be simplified to

A+(j}

FIG. 2. Counterpropagating waves in the (j + 1) cavity.

U„(z)=B„(j)sin[k„(z—zJ )+5„(j)/2],
zJ i &z &z)

where

B„(j) = —2iA„(j)exp[i5„(j)/2] .

The amplitude A„+(j) can be calculated by combining the
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definition of R„(j) with Eq. (5a) which results in the fol-
lowing:

1A„+(j)= . [exp(ik„LJ+&)t(j)

and

R„(1)=r(0) . (15b)

Assuming that r(2)= —1 and r(1)= r(1—), Eq. (15a)
simplifies to

—r(j)R„(j+1)exp( ik„LJ+,)]A„(j+1). R„(1)= —exp[i5„(1)], (16)
(12)

Equation (12) is a recursion relation for the mode ampli-
tude in different sections of the composite resonator. The
starting value for the recursive computation is
A„+(M)=C, an arbitrary constant. To summarize, Eq.
(10) is the field distribution in any section of the compos-
ite resonator corresponding to an eigenfrequency
Q„=ck„. The amplitude 8„(j) of the mode in each
subresonator can be calculated by first computing R„(j)
and A~+(j) at each mirror by using Eq. (6) and Eq. (12)
and then substituting in Eq. (12). As for the eigenfre-
quencies, we show in Appendix A that they can be calcu-
lated as the roots of the following dispersion equation

where
T

5„(1)=2 tan tan(k„L2)
r(1)+1

Applying Eq. (13) for j=1 and using Eqs. (15a) and (15b),
we get a transcendental dispersion equation for the eigen-
frequencies which can be written as [assuming r(0) = 1],

r (1)cos[k„(L~ L2)] =—cos[k„(L~+Lz)] .

The eigenmodes can be calculated with the aid of Eq. (12).
Setting the arbitrary constant 8„(2) to unity, 8„(1)be-
comes

R„(j)R„(j)exp( 2ik„L—J ) =1, (13) 8„(1)=[1 2r(1)co—s(2k„Lz)+r (1)]'~ /t(1) . (19)
or equivalently,

5„(j)+5„(j) 2ik„LJ————2am, m =0, 1,2, . . . (14)

where R„(j) is the effective reflectance amplitude to the
right of mirror [(j—1) when the system is viewed from
the right] causing a phase shift of 5„(j),while R„(j) is the
effective reflectance amplitude at the left side of mirror
(j). The physical meaning of Eq. (14) is that for any wave
that makes a complete round trip in a subresonator j, the
total phase shift should be 2~m, otherwise there will be
destructive interference. The waves that satisfy Eq. (14)
are the modes of the system. In Appendix A we also
show that if Eq. (13) or Eq. (14) is applicable to one of the
subresonators comprising the system, then every subreso-
nator will satisfy the same equation. In other words, j is
arbitrary and any of the subresonators can be used in Eq.
(13).

III. A TWO-RESONATOR SYSTEM

For two coupled resonators such as the one depicted in
Fig. 3, the recursion relation (6) gives

r (1)+[t (1)—r (1)r(1)]r(2)exp( 2ik„L2)—
R„(1)=

1 r(1)r (2)exp( 2—ik„L2)—
(15a)

Hence, the eigenmodes take the form

sin[k„(z —z2)], z~ &z&zz
U„(z)= '

B„(1)sin[k„(z—z&)+5„(1)/2], 0&z &z~

(20)

where B„(1)is as given in Eq. (19).
For a given mode, the ratio of the amplitudes ih the

two subresonators is

8„(1)/8„(2)=[1 2r(1)cos(2k„L2—)+r (1)]'~ /t(1) .

(21)

which has a maximum value of [1+r(1)]/t(1) and a
minimum value of [1—r (1)]It (1).

IV. SEMICLASSICAL EQUATIONS OF MOTION

Instead of representing the laser field in terms of the
eigenmodes of one of the subresonators, as in the
Spencer-Lamb theory, we represent the electric field by
superposition of the normal modes of the whole compos-
ite resonator. Hence,

E(z, t)= —,
' g I'„(t)e " " U„(z)+c.c.

Ll The polarization can be similarly represented

P(z, t) = —,
' g S'„(t)e " " U„(z)+c.c. (23)

ZO . Zy Z2

FIG. 3. Two coupled resonators.

By substituting Eqs. (22) and (23) into Maxwell's wave
equation, by performing the standard simplifications by
adopting the slowly varying phase and amplitude approxi-
mation, and by separating the real and imaginary com-
ponents, one obtains'

(24)
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v„+$„=0„—— 8'„' Re(9'„),
2 6'p

where I „ is the laser-mode bandwidth due to nonresonant
losses and the dot represents time derivative. The slowly
varying complex polarization, 9'„(t), can be written as'

P M z.
H„(t)=2 exp[i (v„t +p„)] g J dz U„'(z)p,b(z, t),

where p,~ is the off-diagonal matrix element of the polari-
zation of the two-level atomic system, P is the dipole mo-
ment, and the normalization constant is

(27)

where the summation over j corresponds to the contribu-
tion of each subresonator.

One can show that under the rate-equation approxima-
tion (REA), '

p,b(z, t) = — Ã(z) g 8'„(t)exp[ i (—v„t+p„)]U„(z)&(co—v„) 1+ Q I
~

U
~

W(co —v ) (2&)

where N(z) is the population inversion density, y is the atomic dipole decay constant, and y, b
——1/2(y, +yb), the spon-

taneous emission and inelastic collision contribution to the decay of the atomic dipole Al.so

~(~—v )=y'/[y +(to —v )'], (29a)

&„(co—v )= 1/[y„+i (co —v )],
where x =a,,b or x may stand for nothing (missing).

Substituting Eq. (28) into Eq. (26), the REA expression for H(t) becomes

p2 M L.
H„(t)= i —gW(co —v~)8'~(t)exp[i(v„—v~)t+i(P„—P~)] g I dz

U„'(z) U~ (z)N (z)

(29b)

1+ gI
~

U ~2W(to —v )
V Q'

(30)

where I is the dimensionless intensity defined as I = , (Pe —/R) /(y, yb). For weak coupling between the subresona-
tors, only one mode will be predominant in each subresonator. This predominance is acquired by the mode with a fre-
quency close to the resonance frequency of the subresonator when isolated (i.e., not coupled). This can be seen clearly
from an inspection of Eq. (20). Hence, for single-mode operation, Eq. (30) can be solved and yields

2p~ (co —v„)+iy
H„(t)= — N

2 2 [1—(1+y) ' ]8'„/y,
(~—v„)2+y

where

2xab
y = I„W(to v„)—

y
and

M L.
g J dz

i U„(z)
i
2N(z, t) .

(31)

Ex«pt fo«he single-mode case, Eq (30) is n. ot amenable to analytical manipulation. To overcome this difficulty, we
resort to the perturbation theory and evaluate the polarization to third order. To accomplish this, one needs to evaluate
the off-diagonal matrix element p,b(z, t) to third order. The first- and third-order contributions are derived in several
texts' and can be written as

p.b = ———N(»t) X 8'm(t) exp[ —i(v~t+4~))U. (»~(to vm) ~—
2 A

(32)

and

3

p~b = N(z t) g Q g 8'~8'pS' UqUpU exp[ i (v~ vp+v~)t —i (pq—pp+p~)]— —

X&(to—v„+v~—v )[W, (vp —v )+Nb(vp —v ))[&(co—v )~&(vp co)] . — (33)
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Substituting Eqs. (32) and (33) in eq. (26), one obtains the required expression for the polarization. In terms of the com-
plex field amplitude E„(t)= 8'„exp[ —iP„(t)], the equation of motion can be written as

E„(t)=i (v„—Q„+iI'„)E„(t)++M~E (t) exp[i(v„—v~)t] g g g T~qp~EpEqE~ exp[ —i (vp —vp+v~ —v„)t],
m P P

(34)

where

and

&n~M„= .&(c0—v ) W„
2eokrV

&n&'
T„„p — &(co—v„+vp —v )[W, (v~ —v )+Nb(vp —v )][&(co—v )+W(vp co)]S—„„p2e,m'm

g B„*(j)B(j) f dzN(z)cos[(k„—k )z+ —,g„(j)——,g (j)],
j=1

(35)

(36)

(37)

S„&z ———,
' g B„*(j)B~(j)B&(j)B(j) J 'dzN(z)cosI(k„—k& kz+k —)z+ ,'[g„(j) —g„(j) —gz(j)+g—(j )]I'
j=l

+cost(k. —k„+k —k.)z+ ', [k.(i ) —k„(J)+K—,V) CV)] I—

+cosI(k„+k& —kz —k )z+ ,' [g„(j)+g—zj() gz(j ) g—(j )] I .—'

(38)

A comparison of Eq. (34) with the corresponding equa-
tion for the standard single-resonator laser reveals the
similarity between the two. Equation (34) indicates that
the composite laser system has much in common with the
single-resonator laser. Qf course, the mode structure of
the effective laser is different from that of a single cavity.
For example, the modes are not equally spaced in the fre-
quency domain and it is possible to have modes that are
very close together such that frequency locking can easily
take place between these modes.

The coupling coefficient M„and the saturation coeffi-
cient T„&& are the sum of the contribution from all
subresonators. If any of the subresonators is empty, then
there is no contribution from that subresonator since
N(z) =0 for that section. It is obvious from Eq. (37) and
Eq. (38) that the coupling coefficients depend on the pop-
ulation inversion density N(z). This is in contrast to
Spencer-Lamb theory of coupled lasers where the cou-
pling coefficients are independent of the population inver-
sion density. It is important to note that according to Eq.

(37), the coupling coefficient M„vanishes if the popula-
tion inversion density N(z) is uniform and fills the whole
composite resonator. This is true since the eigenmodes of
the composite resonator are orthogonal.

An important aspect of the composite laser system is
the fact that if two or more subresonators have nearly
equal lengths, then two or more eigenmodes will be very
close to each other in the frequency domain. This implies
that it is likely that these modes will lock together and os-
cillate as a single mode. This phenomenon will be dis-
cussed in detail in the next section. Hence, in Eq. (34),
terms oscillating at the difference frequency (v„—v ) can-
not be neglected as is the usual practice in single-resonator
laser theory. '

V. TWO-MODE FREQUENCY LOCKING

Assuming that only two modes are oscillating, the
equations of motion as represented by Eq. (34) become

2 2 2

Ei(r) i (v —Qi+il —i)Ei ——aii(1 i()Ei+ai2(1—i()Eq —g g—g R„~p W(g)(1 ig)E~EpE—
p, =1p=1 cr=1

(39)

and

2 2 2
Ez(r) i ( v II2+i I 2)E2 —a22( 1 —g)E2 +a2i( 1 g)E Q g Q + ~(g)( 1 g)E

@=1p=1 cr=1
(40)
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where we have assumed that the two modes have close
frequencies and replaced vi and v2 by v such that the
difference in frequency is absorbed in P(t) .The relative
laser frequency detuning g=(co —v)/y, where co is the
atomic line center frequency.

Also, we have

(41)

0. 6

0. 3—

CQ

and

&nI.p~=&n~ (42)
I

-0.02 -0.01
i

0.02
For convenience, the electric field, frequency, and time
variables have been scaled such that they are dimension-
less. The scaling is as follows:

CAVITY DETUNING - 1

Y

and

&(y, y )' ' (43)
FICi. 4. Total intensity I =8'&+8'2+2$'&8'icos/ vs the two

cavities mismatch (0&—02) /y.

All frequency terms are measured in units of y.
An inspection of Eqs. (38) and (39) shows that a&2 ——a2~

and that terms with similar indices are equal regardless of
the permutation of the indices. Hence, on. separating the
real and imaginary terms in Eqs. (39) and (40), we end up
with

d 8'(
2 2(~11 ~1)+ I (+ 1 1 1 I +1+2+ 1122+2)~(g) @1

dv

+a&z(cosP —/sing) 8'z,

d 2= 2 2

d'T
(~22 I 2) +2 (+2222 +2+2+ 1122@1)~(f) +2

Since we are interested in the steady-state operation of
the composite laser system, the time derivatives are set to
zero and the four simultaneous nonlinear equations are
solved for the unknowns 8'~, 8'2, g, and P. For these
solutions, the two modes are locked and oscillate at the
common frequency v or, equivalently, g. To solve the
nonlinear simultaneous equations we used the Newton-
Raphson method for a system of equations. The solutions
were also checked for stability using the Hurwitz criterion
for stability. '

In Fig. 4 we show the total intensity ( 8'&+ 5'z
+28'~$'2cosg) as a function of the relative detuning of
the two passive modes; (Q~ —Qz)/y. The different curves

+a~z(cosP+g sing) 8'~, (46)

20

2 2

d7
ktzil+(+1111@1+2+ j122@2)~(f)+2

—a~2(sing+g cosP) 8'2/5'&, (47)

18

16
m

14

2 2

d'T
It'2 v +2 k~22+(+2222 @2+2+ 1122+1)~(k)k

+u~2(sing —g cosP) N'~/8'z, (48)

where P=P~ P2, and we have —neglected terms such as
8'&8'ze'~ since these are small compared to the first-order
terms like 8'&e'&, because we are assuming low-intensity
fields in accordance with the assumptions of the third-
order theory.

In Eq. (45), for example, (a~~ —I'~) is the net gain for
the first mode and should be positive for sustained oscilla-
tions. R1111 is the self-saturation term while R1122 is the
cross-saturation term. o, &2 is the phase-coupling term that
can lead to frequency locking between the two modes.

K

8

10

P 8

4

3 4 5 6 7 8 9

phase coupling coefficient my2 (10 Y)

FIG. 5. Maximum locking range EQ,„vs the coupling coef-
ficient al2.
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pv

Ch

tern. In general, the strength of phase coupling a]2 de-
pends on the location of the active mediums in the dif-
ferent subresonators for the two-resonator system, it is not
difficult to show that the upper limit on the value of a]z
is given by

a]z & P(g') N(2)+N(1)vP 1 r(1)—
4eoky 1+r 1

(49)

where
L.

N(j)= f 'N(z)dz .

-O. 0& I
-0.02

i
-0.01

I
0

i

0. 01
I I

0.02 VI. THE DECOUPLED APPROXIMATION

CAVITY BETUN IN(» 1 2
'Y

To gain same physical insight into the locking problem
we try to cast the equations of motion into a inore fami-
liar form. Subtracting Eq. (48) from Eq. (47) the result is

FIG. 6. Relative frequency detuning g vs the two cavities
mismatch (0&—Q&) /y. d =d + I, cosP+ I, sing, (50)

correspond to different values for the phase-coupling
coefficient a]z. It is apparent that the larger the phase
coupling is, the wider the locking range EQ,„=

~
(Q] —Qz)/y ~,„ is. As a matter of fact, b,Q,„

varies linearly as a function of a]z, as indicated in Fig. 5.
The frequency of operation for the two locked modes, as a
function of the modes mismatch EQ, is shown in Fig. 6,
for the same values of the parameters indicated in Fig. 4.
The locked phase difference P is shown in Fig. 7.

The phase-coupling term cx», is the term that may lead
to frequency locking of the two modes, as can be seen
from inspecting Eqs. (45)—(48). According to Eqs. (41)
and (37), the phase-coupling term vanishes if the popula-
tion inversion density N(z) is uniformally distributed
throughout the whole composite system. This follows
from the orthogonality of the modes of the composite sys-

g]
I, =a]2$

2
(52)

and

g] g,
Is= —a]z B, + N,

2
(53)

Equation (50) can be rewritten as

dP =d + I sin(P —$0), (54)

where the unlocked beat frequency

d = Q2 —Q]+Pazz —a i i)

+k~(k)(+11]1+1+2+1122@2 +2222@2 2+]lzz N ] )is

(51)

and the locking coefficients
~'

-2 I

-0. 02
I

-0. 01
I I

0. 01
I I

0. 02

Qg -Q2
CAVITY DETUN ING

PIC'r. 7. Relative phase P vs the two cavities mismatch
(Qi —02)/y.

b.v=d(1 —I /d )'

(ii) d =I. This defines the locking limits. ' Since

@22+g ]

(55)

then setting d =I„one obtains the following relation for

where

I =I,(1+I,/I, )'~ and Po ——tan '(I, /I, ) .

Equation (54) is identical to the phase-coupling equation
of motion for ring lasers. ' If we assume that d, I„and I,
do not change appreciably, they can be considered con-
stants. This amounts to the so called "decoupled approxi-
mation, "well known in connection with ring lasers.

An inspection of Eq. (54) indicates that there are three
possible cases.

(i) If d & I, then locking cannot take place and the two
modes oscillate at different frequencies. The average beat
frequency between the two modes can be shown to be'
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the maximum locking range in terms of the composite
resonator frequency difference,

~+max N~22 1zll) g~(p@ 2(R2222 2R 1122)
r

g2 $1
+gW(g) $'1(R1111—2R1122)+1212 g + g1 2

(56)

which shows that AQ „is proportional to the phase cou-
pling coefficient a12, in agreement with the numerical
solutions of Eqs. (44)—(47).

(iii) If a &l, then the two modes are locked. Solving
Eqs. (54) for steady state under the "decoupled approxi-
mation, "one obtains'

$0—sin '(d /l),
go+a-+sin '(d/l) . (57)

A stability analysis of Eq. (54) shows that the solution is
stable provided that

I cos(P —Po) & 0 . (58)

VII. ALTERNATIVE TYPES OF COUPLING

The series coupling of resonators is a relatively simple
form of coupling resonators. It is convenient for many
applications where the laser output power is not of pri-
mary concern. However, when one is interested in obtain-
ing high-power radiation by adding the output from a
number of lasers, other forms of coupli'ng should be used.
A general form of parallel coupling is shown in Fig. 8.
Assume that the coupling mirror at the center has a
transmittance coefficient t and reflectance coefficient r
for reflection from the upper face and r for reflection
from the bottom face. Following a procedure similar to

the one adopted for series coupling, one can relate the
counterpropagating waves in the four different resonators
and solve the resulting coupled algebraic equations in
terms of A+ and A, for example. If one performs the
calculations, the effective reflectance of the system just
outside the mirror M4 is

r (4)+ [t (4) r(4)r(4)]R e—xp( 2ikL4)—
R4 —— (59)

1 r(4)R exp( 2—ikL4)—
where

and

R = r (0)r(1)exp( —2ikL1)

+t (0)r(2) exp( 2ikL2)+R'— (60)

M2

FIG. 8. Four coupled resonators in a star-shaped coupling.
The coupling mirror is Mo. Each one of the mirrors can be a
system of resonators or an ordinary reflector.

R'= [t (0)r (0)r (1)exp( 2ikL1)+ t (0)r(—0)r (2) exp( —2ikL2)]

exp(2ikL3) —t (0)r(1) exp( 2ikL1) —r (0—)r(2) exp( 2ikL2)—
r(3) I

(61)

The length of the different cavities are measured with
respect to the center of the central coupling mirror. Of
course, each of the mirrors in the system can be a subsys-
tem of coupled resonators itself, in which case the reflec-
tance coefficients should be replaced by the effective re-
flectance coefficient of the subsystem. The eigenfrequen-
cies are the roots of denominator in Eq. (59).

APPENDIX

r (0)+[t (0)—r (0)r(0)]R (1)exp( ZikL1)—
R (0)=

1 —r(0)R ( l)exp( —2ikL1)

(Al)

Since we are interested in bound eigenmodes that are lo-
calized inside the composite resonator system, we require
that the external wave A +(z)(z & 0) should be zero. How-
ever, by definition, R(0)=A (0)/A+(0), which means
that

Here we derive the dispersion relation of Eq. (13). Sup-
pose we have calculated the effective reflectance of the
system at the point zo, just to the left of the reflecting sur-
face r (0). According to the recursion relation (6), R (0) is
related to R (1) via

r(0)R (1)exp( 2ikL1) =1 . —

However, from Eq. (6)

(A2)
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r (1)+[t (1)—r (1)r(1)]R(2)exp( —2ikL2 )R(1)=
1 r—(1)R (2) exp( 2—ikL2)

(A3)

r(1)+[t (1)—r(1)r (1)]r(0)exp( —2ikL2)R(1)=
1 r(1)r—(0)exp( 2ik—L|)

From Eqs. (A2)—(A4) one can obtain

R(1)R (2)exp( —2ikL2) =1, (A5)

R(j —1)R (j)exp( 2ikLJ
—) =1 .

where the bar denotes the effective reflectance with
respect to the right side. Carrying on the same procedure,
one can show by deduction the general dispersion relation

The eigenvalues of the system are those values of k
which satisfy Eq. (A6). In the general case where losses
are taken into account, k will be a complex quantity
where the imaginary component corresponds to the net
gain required to balance the net losses in the system.
These values are useful in the calculation of the threshold
intensity values for oscillation to take place. This can be
seen by inspecting Eq. (A6) or Eq. (A2). Representing un-
ity by the equivalent expression of exp( —i 2mn), where n
is an integer, one can see that Eq. (A6) results in two
equations with two unknowns; the resonance wavelength
and the overall losses of the system. If each segment of
the structure has a different amount of (nonresonant)
losses, then these can be incorporated in the analysis by
noting that the phase length of each segment (kLJ ) must
be multiplied by the refractive index of the medium in
that segment. Hence, one can introduce the losses by tak-
ing the refractive index to be a complex quantity, with the
imaginary component representing the losses.
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