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Generation of higher-order squeezing of quantum electromagnetic fields
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The concept of Xth-order squeezing and intrinsic Xth-order squeezing is introduced and applied
to several physical situations that are known to exhibit second-order squeezing. It is shown that the
field produced in degenerate parametric down-conversion is squeezed to a11 orders, as well as being
intrinsically squeezed to orders 2, 6, 10,. . . . The same is true for the fundamental mode in second-
harmonic generation within the short-time approximation, but in this case there is only intrinsic
second-order squeezing. In resonance fluorescence from a two-level atom squeezing is again found
to be intrinsically a second-order phenomenon, although an intrinsic second-order effect can give
rise to a weak form of higher-order squeezing.

INTRODUCTION

The subject of squeezing, particularly of a quantized
electromagnetic field, has generated a good deal of atten-
tion in the last few years. ' " This interest is related to the
possibility of reducing the noise of an optical signal below
the vacuum limit, or below that achievable in a complete-
ly coherent field. This has obvious attractions for optical
communication, and for such purposes as gravitational-
wave detection, where signals close to or even below the
quantum limit are expected. It has been shown theoreti-
cally that squeezing should be realizable in numerous
physical processes, such as degenerate parametric process-
es, ' " phase conjugation or four-wave mixing, ' ' har-
monic generation, ' ' resonance fluorescence, the
free-electron laser, etc. However, the phas'e-sensitive na-
ture of the squeezing phenomenon makes it very difficult
to observe experimentally.

In the usual approach to squeezing-within the context
of quantum optics, the real field E is decomposed into
two quadrature components E] and E2 which are canoni-
cal conjugates. In a squeezed state the fluctuations
((b,E~) ) of one of these components, E~ say, are re-
duced at the cost of a corresponding increase in the fluc-
tuations i(b,E2) ) of the other one. This is to be con-
trasted with the situation in a completely coherent field,
where both quadrature components fluctuate equally. If
information could be impressed on and extracted from the
E~ component, this would result in a reduced amount of
noise. Up to now the focus has been entirely on quantities
like ((b,E~) ) that are quadratic in the field. With the
development of techniques for making higher-order corre-
lation measurements in quantum optics, it is natural to
turn our attention to the higher-order moments of the
field also, and to ask if there are circumstances when
these also could be reduced below the vacuum limit, or the
values for a coherent state. If so, this opens the possibility
of extracting information efficiently from an optical sig-
nal by some higher-order correlation measurement.

In the following we introduce a natural generalization
of the squeezing concept that involves the higher-order

moments of the field. Like one that exhibits second-
order squeezing, a field that is squeezed to a higher order
is in a purely quantum mechanical state, and has no clas-
sical description. We show explicitly that the squeezed
quantum state studied by Stoler, which is a special case
of the more general two-photon coherent states introduced
by Yuen, is actually squeezed to all orders. Next, we
consider a number of physical situations that are known
to generate second-order squeezing, and show that in
several cases they also exhibit higher-order squeezing.
Indeed, the fractional noise reduction achievable for the
higher-order moments can be greater than for the second-
order moments. Finally, we show that the process of res-
onance fluorescence from a two-level atom exhibits the
weakest form of higher-order squeezing, in that it is in-
trinsically a second-order phenomenon.

II. DEFINITION OF HIGHER-ORDER SQUEEZING

Before introducing the definition of higher-order
squeezing, it may be useful to summarize the usual
second-order properties of a squeezed state. Let 8'+'(r, t)
and E' '(r, t) be the positive-frequency and negative-
frequency parts of an electromagnetic field vector, such as
the electric field. E '+', E ' ' may be given a mode expan-
sion in plane-wave modes k,s in the usual manner. In the
following we shall restrict this expansion in two ways.
Because most detectors are sensitive only to a limited set
of frequencies and directions, we limit the mode expan-
sion to the finite set of wave vectors [k], and also we re-
strict it to one polarization component. This allows us to
represent the measured field by a scalar, and to write the
expansion in the form

E'+'(r, i) = 1 ei(k r cot)—
L 3/2 k

[k]

Here aq is,the photon-annihilation operator for the mode
of wave vector k, L, is the normalization volume, and
i(k) is a simple factor that depends on which electromag-
netic field operatoi is being expanded [e.g.,
I (k) =(%co/2@0)'r for the electric field)]. From Eq. (I),
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& z. (+) i(cot —p —m/2) r. ( —) —i(cot —p —n/2)+~ e
(3)

where P is some phase angle that may be chosen at will

and e is the mid-frequency. Evidently E2 can be regard-
ed as just a special case of E„in which P is replaced by
P+n i2. From Eqs. (2) and (3) it then follows that

[Ei,E2]=2ic, (4)

so that E],E2 are canonical conjugates and obey the un-
certainty relation

&(«, )2) &(«, )2) & c', (5)

where b,E:E &E). Fo—r a —coherent state, including the
vacuum, each dispersion &(bEi) ),&(bE2) ) equals C,
and the uncertainty product has its minimum value. On
the other hand, the state is said to be squeezed if one or
the other dispersion is less than its value in the coherent
state. In other words, if there exists some phase angle P
for which

the commutator of E '+', E ' ' is given by

[E(+'E' ']= I y ~

I(k) ~2=CI [k]

where C is finite and positive definite. In the limit
L, —+ &x), the sum is replaceable by an integral in the usual
way. In some problems it may be legitimate to focus on
just one or two modes of the field, but in other cases we
shall have to deal with a continuum of modes.

%e now introduce the two slowly varying Hermitian
quadrature components Ei,E2 of the field, defined by

ly ordered variance &:(b.Ei):), which is easily related to
& («, ) ) with the help of Eq. (4),

&:(«,)'.) = &(«, )') —c .

Then the state is squeezed to the second order in E] if
there exists some phase P for which &:(bEi):) is nega-
tive. The negative value of the normally ordered disper-
sion makes it clear that the field cannot be described
classically when it is in a squeezed state, so that we are
dealing with an explicitly quantum mechanical
phenomenon.

It seems natural to generalize the foregoing by describ-
ing the state as squeezed to the (2N)th order in

Ei (N =1,2, 3, . . .) if there exists a phase angle P such
that &(b,Ei) ) is smaller than its value in a completely
coherent state of the field. Although this definition could
of course be extended to moments of odd order as well, it
is not very meaningful for odd powers. &(b,Ei) +')
vanishes for a coherent state, and for other states the sign
of the odd moments depends on the phase. Moreover,
only for even moments does squeezing imply that the
state is purely quantum mechanical. It is worth noting
also that whereas the commutator of Ei and E2 is a c-
number, so that the lower bound on the uncertainty prod-
uct is independent of the state, this is not so for the higher
moments of Ei and E2.

In order to show the nonclassical character of the
squeezed state, it is useful to relate the higher moments of
b.Ei to those in normal order. We make use of Eqs. (3)
and (4) and the Campbell-Baker-Hausdorff identity in the
form

xhFt
) &

xhEi
) x2C/2

then the state is squeezed to the second order in E~. An
alternative definition can be given in terms of the normal-

where x is any c-number. By expanding both sides as a
power series in x, and equating coefficients of x+N!, we
arrive at the relation

~(4)
&(«, )")= &:(bE,)":&+ „(-,'C)&:(«, ) -'.

& „(-,'C)'&:(«, )"-'.&+ ".
(N —1)!!C / if N is even,

~~gN/2 —3/2
&:(«i):) if N is odd .

3|2%/2 —3/2( i N i
)~

(9)

Here N'"' stands for N(N —1) (N r+1). Now the nor—mally ordered moments &:(bEi):) all vanish for a
coherent state. It follows from the definition that the state is squeezed to any even order ¹if

&(«) &&(N —1)!!C"", (10)

in which case the ¹hmoment is smaller than in the vacuum state of the field. Inspection of Eq. (9) reveals that one or
more of the normally ordered even moments &:(b,Ei )":) for r & N then has to be negative, and this is possible only for a
nonclassical state of the field. By limiting our discussion to moments of even order, we retain this important connection
with second-order squeezing. As examples of the inequality (10) we list below the conditions for squeezing of the second,
fourth, and sixth order, respectively:

&:(«i):)&0 for 2nd order squeezing,

&:(b,Ei ):)+6C&:(«i):)&0 for fourth-order squeezing,

&:(bEi ):)+15C&:(«i):)+45C &:(b,Ei):)&0 for sixth-order squeezing .
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Finally, there is the possibility that condition (10) may be
satisfied for some order N beyond 2, even though
(:(b,Et):& is not negative beyond N =2, simply because
the term (:(bEt ):& dominates in the series (9). We shall
describe that situation as one in which there is only intrin-
sic second-order squeezing, which however gives rise to
higher-order squeezing.

A convenient parameter tv for measuring the degree of
Nth order squeezing, which is a natural generalization of
one introduced for second-order squeezing, is

tion and creation operators 2,A ~ given by

A (z) = U(z)a U (z), (16)

and its conjugate, which also satisfy the commutation re-
lation

[A(z), A (z)]=1 .

By application of the transformation in Eq. (16) it follows
that

((gE )iv& (N 1)lt(, iv~

(N —1)!!C""
A(z)=acoshB+a e ' sinhB,

and conversely,11
(18)

q~ is negative whenever there is Xth order squeezing, and
it has the maximum negative value —1.

As the commutator C enters explicitly into the equa-
tions, it may be useful to have an estimate of its order of
magnitude for a continuum of modes. Let E be the elec-
tric field, so that l(k) in Eq. (1) stands for (fico/2eo)'~,
and let the set [k] of plane-wave modes correspond to a
band Av of frequencies centered on v in some direction
within the solid angle b,Q. Then in the limit of large L,
where the sum in Eq. (2) becomes an integral, if A, is the
mean wave length, we have approximately

a=A(z)coshB —A t(z)e ' sinhB.

Then one finds from Eqs. (15) and (16)

(19)

A(z)
i

u, z & =u
i

u, z &, (20)

E, =ga+g*a ~, (21)

and comparison with Eq. (13) shows that A(z) stands in
the same relation to the state

~

v, z& as does a to the
coherent state

~

v &.

Now from the definition (3) applied to a single-mode
field, we have

C= %co

2E'0

v bv ~~ M bvhQ
c &o

(12)
where

I (k)ei(k r P)—1

L 3/2 (22)

a[v&=u/v&, (13)

which is the coherent state
~

u &. Let U(z) be the unitary
operator

U(z)—=e' ' ' ', z—=Be'

Then the state
~

v,z & is obtained from
~

u & by making the
unitary transformation U(z), or

iu, z&=—U(z) iu& . (15)

It is convenient to introduce new, transformed annihila-

III. APPLICATION TO THE SQUEEZED STATE
i u, z &

In 1970 Stoler introduced the state
i
u, z& that is de-

rived from the coherent state
i

u & by a unitary transfor-
mation involving squares of a and a t, with the interesting
property that the dispersion ( ( b,E t ) & in this state could
be made arbitrarily small. This state, a form of which
had already been encountered, ' is a special case of the
more general two-photon coherent state later introduced
by Yuen.

For simplicity we limit ourselves to a single-mode field.
Let

~
v& be the right eigenstate of a belonging to the

eigenvalue U,

and

(23)

Also with the help of Eq. (19) and its conjugate we may
write

Et Af+A tf', ——
where

f—:gcoshB —g 'e'esinhB .

If l (k) 'is a real factor, then

(24)

(25)

—sinh(26)cos(2k. r —2tI) —8)] . (26)

Hence E t and b,E t can be decomposed equally well into
the operators a,a according to Eq. (21), or into the
operators A, A according to Eq. (24).

We now apply the Campbell-Baker-Hausdorff identity
in the form of Eq. (8), but with the normal ordering ap-
plicable to the A, A operators rather than to a,a, and
with the commutator C therefore identified with

~ f ~

We then obtain in place of Eq. (9), after equating coeffi-
cients of x /N!,

~(2) ~(4)
((&E ) &= (::(&Et)::&+ ( —,'!f [')(::(&E ) '::&+, ( —,

'
t f /') (::(&Ei) "::&+

2!

+ (N 1)!!
~ f ~

(N even)—, (27)
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where:::: denotes normal ordering with respect to A, A operators and plays the same role for A, A as does:: for a,a
Now for the state

~
u, z ) we have with the help of the eigenvalue Eq. (20) and its conjugate for any n~0,

(u, z [l::(bEi)"::
f

v,z) =(u, z l, ::(bAf+bA f*)"::
/

u, z)

(28)

so that from Eqs. (27) and (28)

( u, z [
(b,X, P

I
v, z ) =(N —»!!

I f I

"
=(N —1)!!

~ g ~

[cosh(26) —sinh(26)cos(2k. r —2p —8)]' (N even) . (29)

IV. DEGENERATE PARAMETRIC
DOWN-CONVERSION

As an application of these results to a physically realiz-
able situation, we consider the process of degenerate
parametric down-conversion, in which a strong, classical
field of complex amplitude u and frequency 2' is incident
on a nonlinear crystal. The interaction effectively splits
some photons of energy 21m into two photons of energy
%co. The simplest Hamiltonian for this problem has the
quadratic form

H =fuun+fig(ve ' 'a +H.c.), (31)

in which the interaction energy has the same general

structure as appears in the exponent of U(z) in Eq. (14).

Actually this result also follows directly from the fact
that Ei is a Gaussian variable in the state

~

u, z) (or in
any other two-photon coherent state ) when we invoke the
Gaussian moment theorem. If we compare this result
with the definition (10) of Nth-order squeezing, where
C=

~ g ~, we see that the state
~

u,z) is squeezed to all
orders N if there is some phase angle P for which

~

cosh(26) —sinh(26)cos(2k. r —2P —8)
~

& 1. In fact,
one can always find P to satisfy. this inequality. If 6 &0,
we choose 2k.r —2$ —8=0, in which case the factor
within square brackets in Eq. (29) becomes e, and if
6 ~0, we choose 2k.r —2P —8=+ir, when the same fac-
tor becomes e . It follows that the state

~
u, z) is

squeezed not merely to the second order as has long been
known, but to all orders. The squeeze parameter
q& ——e —1, and this can be close to —1 when—w)e)

f
6

i
» 1.

There remains the question whether the squeezing is
intrinsically of higher order, in the sense defined in Sec.
II. By using the ordering relation (8) in reverse, we can

derive the normally ordered moments (:(bE&):) from

((bEi) ) given by Eq. (29). Straightforward summation
of a series like that in Eq. (9) leads to the result for 6 & 0,

(.(bg )N. ) (N 1)tt
~ g ~

x( 1)Ã/z(l —26)iv/2

(N even) (30)

and it can readily be verified that this satisfies Eqs. (9)
and (29). It follows that there is intrinsic ¹horder
squeezing in this state for all values of N for which , N is-
odd, viz. for N =2,6, 10, . . . .

We might therefore expect the foregoing conclusions to
apply. The down-converted field is treated as a single
mode and only this mode is quantized. The general solu-
tion of the Heisenberg equation of motion for a(t) has the
form '

a(t) = a(0)cosh(2g
~

v
~

t)e

i — a i(0)sinh(2g
~

u
~
t)e (32)

In analogy with Eq. (3), we then define the quadrature
component Ei(t) by

Ei(t)=a(t)e'"' &'+a "(t)e

=a(0) cosh(2g
~

v l, t)e

+i sinh(2g ~u ~t)e'&

+a (0) cosh(2g
~

u
~

t)e'&

—i sinh(2g
~

u
~
r)e

which has the structure of Eq. (3), but with an effective
commutator

C=cosh(4g
~

v
)
r) —sinh(4g

~

u
~

t)sin(2$ —argv)

(34)

Now if we take the initial quantum state of the down-
converted light to be the vacuum, then all the normally
ordered dispersions in Eq. (9) are zero, and if P is chosen
so that 2$ —argu =m/2, then C=e s'" l', and Eq. (9)
leads to the result

([b.Ei(t)] ) =(N —I)!!e & l l (N even

As the right-hand side is less than (N —1)!!,which is the
corresponding ¹horder dispersion for a coherent state,
we see that the down-converted light is squeezed to all or-
ders. Moreover, for the same reason as in Sec. III, there is
again intrinsic squeezing of order n =2,6, 10, . . . . This
shows that the concept of higher-order squeezing is more
than purely mathematical, but should have physically
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realizable manifestations, because down-conversion is ob-
servable experimentally.

V. SECOND HARMONIC GENERATION

H =%conf +2fuun2+frtg(a 2a f+H. c. ) . (36)

-This leads to the coupled Heisenberg equations of motion

A g ~ A f A
&1s =: 2&g& 1s&2s

A. ~ A 2
&2s ig+ 1s ~

where

a =ae'' a:—ae''1s= 1 & 2s= 2

(37)

(38)

(39)

are slowly varying annihilation operators.
The general time-dependent solution of these equations

of motion for af, (t) and a2, (t) is complicated. However,
as the interaction between the modes persists only for a

To a certain extent this process is the inverse of the de-
generate parametric down-conversion treated in the previ-
ous section. If the incident light is described as mode 1 of
frequency to, and the harmonically generated light as
mode 2 with frequency 2', and there is parametric cou-
pling between them provided by a nonlinear crystal, then
we may write for the total energy, '

2 ..
a2, (t) =a2, (0)+taq, (0)+

2f
a2, (0)+O((gt) ),

and substitute in Eqs. (37) and (38), we readily obtain

a „(t)= a f (0)—2igta, (0)a2(0)

+2(gt) [n~(0)a f (0)——,
'
n, (0)a f(0)]

+O((gt)'),

az, (t) = az(0) igta —f(0)
—2(gt)'[n f (0)+ —,

' ]a2(0)+O((gt)'),

and we can use these to calculate the moments of

(40)

(41)

Ef(t)=af, (t)e '~—+a f, (t)e'& . (43)

For the initial state
i

u ) f i 0)2, in which mode 1 is in a
coherent state and mode 2 is in the vacuum state, we have
for the deviation bEf (t)—:Ef (t) —(Ef (t) ),

short time t, which is of order of the propagation time of
the light through the nonlinear crystal, we are justified in
using short-time power-series expansions in I; to solve the
equations of motion, as was done by Kozierowski and Ta-
nas. If we write

2 ..
(t) af (0)+taf (0)+

f
af (0)+O((gt) )

bEf(t)= [af —u 2igta fa2+—2(gt) (n2af ——,nfaf+ —,
i

u
i u)]e

+[a f
—u*+2igta2af+2(gt) (a fn2 —,'a fnf—+—,

i
v

i
u*)]e'~+O((gt) ),

where all operators without time arguments are understood to be zero-time operators. Then we obtain for the normally
ordered moments, for any even N,

x
(:[bEf(t)j:)= g ([a,—u*+2igta oaf+2(gt) (a fnz —,'a fn—f+ —,

'
j u

i
u')]"

r=0

X[af —v 2igta faq+—2(gt) (nzaf ——,nfaf+ —,
i

v
i u)] ')e

= —(gt)'[v'((af —u) '(a, —v*))e ' &+u*'((af —u)(a, —u') ')e' &]+O((gt)'),

after making use of the fact that only the terms r =0 and r =N make a contribution to the second order in gt. The
remaining operator expectations are readily evaluated with the help of the commutation relation

[(af u), (a, —u*) ]=—r(na, —u*)™1,

whose expectation vanishes unless m = 1. We then arrive at the result

(:[&Ef(t)]:)= —(gt) 5fvz i uze 'f +u* e '~
i +O((gt)3)

= —2(gt)
i

u
i

cos[2(f)!—0)]5fv2+O((gt) ),
where we have written u =

i
u ie' .

We now substitute this result in Eq. (9), and obtain for any even N,
N/2 —1

([bEf(t)] ) =(N —1)!!+ — (:[bEf(t)]':)
( —N 1)f 2

2) t
' X/2 —1

=(N —1)!!—2, — (gt)
i

u
i cos[2(P —8)]+0{(gt)3).

( , N —1)!—

(45)

(46)
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([AE) (t)]4) = 3—12(gt) f
u

f
cos[2((()—8)]

+O((gt)'),

([bE,(t)] ) = 15—90(gt)2
f

u
f

cos[2(P —8)]

+O((gt) )

(47)

From Eq. (46), the squeeze parameter q)v defined by
Eq. (11) has the value X(gt)

f
v —

f
. However, by virtue

of Eq. (45), we see that in this case there is no intrinsic
squeezing beyond the second order, because all the higher
normally ordered moments of b E i (t) are zero. The
higher-order squeezing exhibited by Eq. (46) to the order
(gt) is simply a manifestation of intrinsic second-order
squeezing.

VI. RESONANCE FLUORESCENCE FROM AN ATOM

It was first shown by Walls and Zoller that the light
emitted spontaneously by a two-level atom that is being
coherently excited by a light beam near resonance is
squeezed to the second order in E~. Here we wish to ex-
amine the possibility of higher-order squeezing in the
same situation.

We consider a two-level atom with level spacing %coo

and atomic lowering operator b(t), that is interacting with
a quantum field of frequency co) in a coherent state

f Iuj). The atomic Rabi frequency 0 is a convenient
measure of the amplitude of the exciting field, and we let
2p be the Einstein A coefficient for the transition. We
shall denote the relative detuning (5'+(v) —(v())/p by 8,
where 5(v is the Lamb shift. Because the spontaneous
emission from the atom has no well-defined direction or
frequency, the radiation field has to be treated as a mul-

The state is squeezed to order X whenever the second
term is negative, and this will be the case if the phase an-
gle ()) is chosen so that (P —8)=nor, where n is any in-
teger. It follows that the fundamental mode becomes
squeezed to all even orders in the process of second har-
monic generation, within the short time approximation.
In particular

([EE((t)] ) = 1 —2(gt)
f

u
f

cos[2($—8)]

+O((gt) ),

timode system in this problem. In the following we shall
make considerable use of results obtained in Ref. 34 for
the resonance fluorescence of an atom.

If the atom is located at the origin, the positive frequen-

cy part E'+'(r, t) of one polarization component of the
electric field at position r at time t (with r»c/co0) is
given by

E '+'(r, t) =K (r)b(t r l—c)+E t,+„'(r,t) . (48)

Et,+„'(r,t) is the free-field or external part of E'+'(r, t),
whereas the first term is contributed by the atomic source.
K(r) is a geometric factor independent of the quantum
state, that is given by "

2
( .r)P

r 2 (49)K(r)=
z

p-
4we0c r

where p is the atomic transition dipole moment, and e* is
the unit polarization vector characterizing the polariza-
tion that is being singled out. In the neighborhood of
r, E '+' can be given a mode expansion as in Eq. (1), with
l(k) =(irt(u/2')', and we define the measured real field
Ei as in Eq. (3). We shall suppose that the exciting field,
or the initial coherent state

f {uI ), is so chosen that the
right eigenvalue of E t,«' vanishes at r, t, or

Et(+,)(r, t)
f {v)&=0. (50)

In calculating moments of Ei(r, t) with help of Eqs. (3)
and (48), we encounter products of atomic and field
operators at different times. It is then convenient to make
use of the following commutation relation derived by
Mollow36

[b(t rlc),E t,„'(r,t)] —=0, — (51)

2 (+/p)(1+'8) —( t+X)

0 /2P +1+8 e

Then with the help of Eqs. (3), (48), and (SO)—(S2), we
have for the deviation

which allows us to evaluate normally ordered moments of
Ei as if the free-field operator were absent. We shall also
use the result for the expectation of b(t) in the steady
state " Q is an arbitrary phase angle),

r i [co&(t —r/c) —p] +~
g r —i [co&(t —roc) —P]b.E) (r, t) =Kb t ——e +Lb t ——e

C c 0 /2P +1+8

in which

2 1/2
=fKf b t ——e

r i[co)(t rlc) p+arsE] —~ t — r —i[a& (t)rlc) p+argt] (0/p—)( I+—8 )

c
+b t ——e

C
+ 0'/2P'+ 1+8' cosg (53)

/=X+([) —argK —tan '8 .

It follows from the multinomial expansion that

(54)
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,
k™

0 n! m!(N —n —m)!
(n+m &X)

I A r i. (m —n)~, (t —r)c)
b t —— )e

c c j

(Q/P)(1+8 )'
Q'/2P'+ 1+8'

N —n —m

Now repeated products of b and b operators vanish, so that the only nonzero contributions come from terms with
n, m =0, 1, and

(.[aE (r t)]" )=(X—1) IE: I"
Q'/2P'+ 1+8'

Q /2P +1+8
(Q/P)(1+8 )'i cosP

p'

X b~ t ——b t ——
C C

The expected excited-state population in the steady state has been shown to be given by

r r Q /4P
b t ——b t ——

Q'/2P'+ 1+8'

so that. we obtain

(55)

:[~E ('t)]":)=(Ã-1) IK I" (Q/P)(1+8')'"-.~
Q'/2P'+ 1+8'

Q /2P +1+8
(1+8 )cos g

(56)

Finally, we substitute this result in Eq. (9) in order to obtain ([AE&(r, t)] ) for even N. If each of the even normally
ordered moments (:(b,E~):) up to some value N, „were negative, then it is apparent from Eq (9) t.hat E~ would be
squeezed to all orders up to X,„. Then by choosing the phase angle P so that g=nm (n =0, +1,+2, . . .) and making

Q'/2P'+ 1+8'
t92

Of'

Q /2P ((4/K —1)(1+8 ), (57)

Qz/2P2+ 1+82—1+
2(1+8 )cos g

we ensure squeezing up to order N.
Condition (57) can readily be satisfied for K =2. However, it cannot be satisfied at all for larger even integers X, so

that the squeezing in resonance fluorescence is intrinsically a second-order phenomenon. The higher normally ordered
moments of b.E& are all positive.

Nevertheless, higher-order squeezing is not necessarily ruled out if the second-order squeezing is strong enough. To il-

lustrate this we calculate ( [b,E,(r, t)] ) from Eqs. (9) and (56). We find

([bE, (r, t)]') =3C'+6C(:[AE,(r, t)]'.)+(:[bE,(r, t)]':)
r

=3C+6C K=3c' 6CIz I' ' p"'+ "'""~
Q2/2P2+ 1 +82

r

+ (QlP)(1+8 )'i cosg
Q'/2P'+ 1+8'

—1+—Q l2P +1+8
(1+8 )cos f (58)

I.et us choose P=n~, as before, and put

Q /2P =a(1+8 ),
with a ~ 1 to ensure that the second term is negative, although the third term is positive. Then

3

([AE, (r, t)]') =3C'+6C
I
E

I
', + l2

I

E'
I

'
(a+1)' (a+1)

r'

=3C + C(a —1)+2
I
K

I(a+ 1) (a+ 1)
(6O)
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If a is sufficiently small, the positive term
2I K

I
a /(a+1) can be numerically smaller than the

negative term (a —1)C, with the result that
([bEi(r, t)] ) &3C . The field is then squeezed to the
fourth order in E&. In general, the condition for fourth-
order squeezing 1s

a C
(1+a) (1—a) 2

I
K

I

and the squeeze parameter q4 is given by
r

(61)

C(a+1) (a+1)'

C 2 hv r AQ

2IK I~ 3 13 A,
'

2 Av
7T

3 P k2

(63)

where A is the area of the detector aperture. As A ~~A,
usually and b,v is typically much greater than P, the
right-hand side is usually a large number, so that the con-
dition (61) for fourth-order squeezing is easy to satisfy
with almost any a & 1. However, the degree of fourth-
order squeezing is small, for we have approximately
q4-(2

I
K

I
/C)a(a —1)/(a+1), which is very small

numerically.
In a similar manner we find from Eq. (9), with f=n ~,

C2
([bE,{r,t)]')=15C'+ IK I' 45

IK I" (a+1)

It is interesting to examine how easy it is to satisfy con-
dition (61), by making an order-of-magnitude estimate of
the right-hand side, with Eq. (49) for K and Eq. (12) for
C. We may write approximately

o I v I

'
(4meo) c r

and with the help of the well-known expression for the
Einstein A coefficient

2/3=
4 la I'~o

4~&p 3Ac'

we obtain

3 iruooP
IKI

4~op 2 cr2

Hence

(:[bEi(r,t)]:) term. However, {:[bEi(r,t)]:) is the
only negative term in the expansion (9) for {[b,Ei(r, t)] ),
so that squeezing in resonance fluorescence is intrinsically
a second-order phenomenon.

VII. DISCUSSIQN

and let
I
P) be the state defined by

(E E )mn (E, Eo)'Z4—n'—

[v p~(m —I )!!(7~+]
IEi)dEi . (66)

Here m is an even integer, and Eo is the expectation of
Ei in the state

I
g), which is normalized to unity. Then

we readily find that for even X

(m —1)!! (67)

If we choose o so that

(m+1)cr =C,
where C is the commutator given by Eq. (2), then

(6g)

We have considered several different examples of sys-
tems that exhibit Xth-order squeezing with N &2. They
differ substantially in the degree of squeezing q~ achiev-
able, and also in the extent to which the higher-order
squeezing is intrinsic, or merely a manifestation of
second-order squeezing. In degenerate parametric down-
conversion there is squeezing to all orders X, with a
squeeze parameter qz that can be close to —1, and the
squeezing is intrinsic to orders 2, 6, 10, 14, . . . . In second
harmonic generation within the short-time approximation
[to order (gt) ], there is a small amount of squeezing to all
orders X, but it is intrinsic only for %=2. The higher
moments {:(b,Ei):) all vanish within this approxima-
tion. Finally, in resonance fluorescence, there is again a
small amount of higher-order squeezing, which is intrinsic
only to order %=2. But this time the higher even mo-
ments {:{b.Ei):) are actually positive for %&2. In a
certain sense resonance fluorescence therefore exhibits the
weakest form of higher-order squeezing.

Mathematically it is possible to construct states that are
not squeezed to the second order, but are squeezed to
higher order, although it is not at all clear whether they
are physically realizable. For example, let us consider a
single-mode field, let

I
Ei ) be the eigenstate of Ei,

A+ 180
IK I' (a+1)"

+20 a (3a+1)
(a+1) (64)

{(bE,)') =C, (69)

and by definition the state
I hatt) is not squeezed to the

second order in E]. However, the fourth moment is given
by

{(bEi) ) =(m+3)(m+1)a
and since C/

I
K

I
~~1 the term in parentheses is again

dominated by the negative first term with o. & 1, although
the remaining terms are positive. It is therefore apparent
that a small amount of squeezing is achievable to large
even order N when a or 0 /P is sufficiently small, be-
cause of the dominant effect of the negative

(m +3) C2
(m +1)

and this is smaller than 3C, as required for fourth-order
squeezing, for all even m. The squeeze parameter q4 is
given by —2m /(3m +3), and ranges from ' ——, for m =2



982 C. K. HONG AND L. MANDEL 32

to ——,
' for m —+Do. In fact, it is not difficult to see that

E& is squeezed to all even orders other than 2 in the state
~
g). However, the physical significance of this state is

obscure.
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