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spatial hole burning, and Gaussian beams
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The effects of inhomogeneous broadening, spatial hole burning, and Gaussian beams are calculat-
ed for the four coefficients derived in previous papers in this series [Phys. Rev. A 31, 3112 (1985);
31, 3124 (1985)) on the quantum theory of multiwave mixing. These coefficients uniformly describe
how one or two strong classical-field modes and one or two weak quantum-field modes interact in a
two-level medium. The phenomena for which this theory is applicable includes resonance fluores-
cence, Rayleigh scattering, laser and/or optical bistability instabilities, and phase conjugation. The
averaged formulas are illustrated by resonance-Auorescence spectra. We find the sidepeaks can be
"washed out" and that asymmetries can occur.

I. INTRODUCTION

In two recent papers' a quantum theory of multiwave
interactions with a two-level medium is presented. The
theory is able to treat a number of topics in quantum op-
tics involving nonlinear interactions with several fields,
including resonance-fluorescence, saturation spectroscopy,
laser and optical bistability instabilities, and three- and
four-wave mixing. It can be applied to cavity problems,
showing how stimulated emission alters the spontaneous
emission spectrum, and to propagation problems, reveal-
ing how quantum noise influences the emergent beam.

The theory assumes that a homogeneously broadened
medium interacts with one classical-plane running wave
of arbitrary intensity and one or two weak-quantized-
plane running waves. In this paper we separately study
the effects of (i) inhomogeneous broadening, (ii) spatial
hole burning resulting from a standing-wave pump field,
and (iii) Gaussian transverse-amplitude variations. By
treating them separately we obtain analytic formulas for
the averaged coefficients. Numerical analysis is required
to perform a second average. In particular, since reso-
nance fluorescence is a special case of the theory, we pri-
marily consider how the well-known three-peaked spec-
trum of resonance fluorescence is altered by these effects.

Inhomogeneous broadening occurs in many media of
interest in phase conjugation, lasers, optical bistability,
and saturation spectroscopy. In particular, the laser insta-
bilities have usually required inhomogeneous broadening
for observation. Saturation spectroscopy is often done
with gaseous media having Doppler broadening. Experi-
ments are done in atomic beams and for two-photon tran-
sitions to observe phenomena masked in classical spectros-
copy by the Doppler effect. Our calculations allow some
of these effects to be studied more easily with the natural-
ly inhomogeneously broadened state. Standing waves are
important both in cavity problems and in using four-wave
mixing to achieve phase conjugation. ' Cxaussian beams
are almost always encountered in nonlinear wave mix-
ing, ' although the effects of transverse variations can be

discriminated against by appropriate use of apertures.
Qur formulas can help in estimating the kinds of effects
that such transverse variations have on a number of com-
mon multiwave interactions. %e illustrate all three aver-
ages numerically with their effects on resonance fluores-
cence."' Further illustrations will be given in the fourth
paper in this series, which will discuss the effects of cavi-
ties on the spectrum of resonance fluorescence. '

The theoretical derivation of Ref. 1 uses a two-excited-
level model with a lower-lying ground state as depicted in
Fig. 1. The field modes of interest cause transitions be-
tween levels a and b, while level c acts as a reservoir con-
nected by level decays and pumps. y, and yb are the
rates at which levels a and b decay to level c, and A, and
Ab are the puinping rates from level c to a and b Ide-.
scribes the decay from level a to b. The use of this level
scheme makes the equations substantially more algebrai-
cally complex than the usual two-level upper- to ground-
level model generally assumed for these problems. How-
ever, this level scheme allows us to treat transitions be-
tween two excited states as well the upper- to ground-level
model, all with a unified notation. As we show, this flexi-
bility has some interesting consequences when inhomo-
geneous broadening is considered. To obtain the upper- to
ground-level model from our three-level model, simply set

y, =yb ——0. Another special case of interest occurs when
levels a and b are both excited, but most of the atoms are
in the reservoir c. This limit is usually considered for
lasers, ' and for this I =0 and A„Ab «y„yb. Al-
though our averaged coefficients are valid for all values of
the pumping and decay constants, we confine our numeri-
cal illustrations to these special cases.

Section II summarizes the theoretical calculations
presented in Ref. 1. Section III carries out the average
over inhomogeneous broadening using a Lorentzian distri-
bution function. This allows us to study the transition
from homogeneous broadening to strong inhomogeneous
broadening with an analytic function. Section IV aver-
ages the coefficients over a standing wave, appropriate for
use in four-wave mixing and in standing-wave cavity
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G
FIG. 1. Three-level atomic energy-level'scheme that treats

both purely excited-state interactions as well as upper- to
ground-level interactions in a uniform way.

In this expression aj is the annihilation operator for the
jth field mode, UJ

——Uz(r) is the corresponding spatial
mode factor, o and o, are the atomic spin-flip and
probability-difference operators, co and vj are the atomic
and field frequencies, and g is the atom-field coupling
constant. As in the semiclassical theories, ' mode 2 can
be arbitrarily intense, and is treated classically. Modes 1

and 3 are quantum fields treated only to second order in
amplitude. As such they cannot by themselves saturate
the atomic response. The rotating-wave approximation
has been made and this Hamiltonian is in an interaction
picture rotating at the strong-field frequency v2. We de-
fine an atom-field density operator p, f and obtain its
time dependence from the standard density-operator equa-
tion of motion

problems. Section V averages the coefficients over a
Gaussian beam that approximates the transverse-field dis-
tribution often produced by lasers.

II. SUMMARY OP BASIC EQUATIONS

Our Hamiltonian (in radians/second) is

H=(co vz)o, +—g [(vz —v2)aJ aj+(gaJ. UJo +H c )] . . .

pa f= —
~—[H~pa f]+— (2)

where the ellipsis represents unspecified decay and pump-
ing terms. We calculate the reduced two-mode-field den-
sity operator p to describe the time dependence of the two
quantized fields by taking the trace of p, f over the
atomic states. As in semiclassical laser theory, ' we con-
sider all field amplitudes to vary little in atomic decay
times. This allows us to solve the atomic equations of
motion in steady state, and then to obtain a slowly
varying-field sidemode density-operator equation of
motion

P = I [—~1(P~1~1—a IP~ 1 )—(&1+»2Q1)(~ l~ IP —~ lP~1)+ Cl(~ 1~ 3P—u 3P~1)+3 1 (P~ 3~1 —~ 1P~ 3)]+[1~3]+H c ]

where v/Q„ is the cavity-loss rate for mode n and the coefficients 2 &, 8&, C&, and D, are given by
r

g2~
A) ——

1+I,W,

g2~
8) ——

1+I,W,

I2 [f,W& (+(N, Nb )&2(&—0 W/ib, )/—2T) ]

1+I2W+ (&)+&3 )
2

I2 ffbi&) (N, Nb)&2(&—, +—W/id. )/2T) ]

1+I,W—(&,+&*,)

g &(, 2 2T)P &3f,+(N, Nb)&2(&g ——W/Eb, )
y1+I,

1+Ized (&(+&3)

g W), 2 2T)&3Wfb —(N, Nb)&z(&b+P—'/ih)
U) U3 V21+I2 1+I2P (&(+M3 )

2

where, following the notation of Ref. 1, the complex Lorentzian denominators &„are given by

1

y+ i (co —v„)

the dimensionless Lorentzian W2 is

y'
2= 2 2y'+ (~—v~)'

and the unsaturated probabilities of being in the upper and lower levels are
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A.zb Aby, +(Aa+Ab)l
N~= Nb ——

Y yb+Y Ab+ybAo+~(yb+A +Ab) Y yb+Y Ab+ybA +~(yb+A +Ab)

The effective upper- and lower-level decay constants y,' and yb are

A, (yb —y, ) 1 (yb+A, +Ab)+Ab(y, —yb)
+A +A ~b b~ +A +A

The other quantities are then given by

1 1
T1 2 +

7a' Pb'
T2 ———,I2 ——4i V2 i TIT2,1 2

y

I2~2 I2~2 12~2 12~2f, = 1+ N, +, Nb, fb —— . N, + 1+ Nb,
2T$ j b 2T$ j g 2T\ Pb 2T'f fg

yb+A, +Ab+i 5
(y, +i&)(yb+i&)+(y, +i&)Ab+(yb+i~)A, +(yb+A, +Ah+i&)I

y, +Ag+Ab+iA
(y. +l~)(yb+lk)+(y +lk)Ab+(yb+lk)A +(Yb+A +Ah+la)r '

(W +&b)1

2Tf

A, yb Aby, —(A,—+Ah +i5)I
(yg+ih)(yb+t 6)+'(yg+ib)Ab+(yb+ib)Aa+ (yb+Ag+Ab+ih)l

where V2 ——gU2+n2+1, and b, =v2 —v1 is the beat fre-
quency between modes 1 and 2.

As shown in Refs. 1 and 2, A
& + c.c. yields the spec-

trum of resonance fluorescence, while A 1-81 is the semi-
classical complex gain and/or absorption coefficierit al
for a weak probe field in the presence of a saturating field,
and CI DI is -the semiclassical complex-coupling coeffi-
cient ilcl between the signal and conjugate fields in phase
conjugation. We calculate the three averages for A I, 81,
CI, and DI, and illustrate the resonance-fluorescence
spectrum A ) + c.c. numerica11y.

III. INHOMOGENEOUS BROADENING

In this section we include inhomogeneous broadening
for our theoretical model. We integrate each coefficient
over the inhomogeneous broadening function W(co ).
Specifically, the inhomogeneously broadened resonance-
fluorescence coefficient A I is given by

( A1) IHII ——I dCO W(CO)A, (CO), (8)

where W(co) is the inhomogeneous-broadening function.
For very large inhomogeneous broadening, i.e., a distribu-
tion with width many times that of the homogeneous
width y, W(co) may be evaluated at the peak of AI(co)

and pulled out of the integral in Eq. (8). This procedure is
similar to that discussed in the semiclassical theory of
Ref. 15. In order to study the transition from hornogene-
ous to inhomogeneous broadening analytically, we assume
W(co) is given by the Lorentzian

l8 1
W(cO) =—

~ II 2+(CO —V2)'

with full width at half maximum (FWHM) of 2111 as in
the work of Mandel. In the limit w —+0, W(co)
~5(co—v2), which reduces Eq. (8) to the centrally tuned
homogeneous broadening result. The limit w~ ac gives
large inhomogeneous broadening. To keep ( A I ) IHB from
vanishing in the inhomogeneously broadened limit while
reducing properly to the homogeneously broadened case,
we multiply by the normalization factor Z =(IB +y)/y.

Following the notation of Ref. 15, we define 5=co —v2,
y'=y+I+I2, and p =(y+ib, )(y+ib, +yl2W). Isolat-
ing the terms that depend upon the detuning 5, we find
that the integrals for AI and Bl can be broken into five
separate terms while those for CI and DI can be broken
in three separate terms. Each term in the integral. can
then be evaluated by the calculus of residues.

The results of these calculations yield

( ~1)IHB g ZtNa ~I+Mab ~II+Na( ~III)1+Mab( ~lv)1++b( ~v)AB1 i (10)

( ~1)IHB g tNb ~I+Mab ~II+Nb( ~III)1+Mab( ~IV)1+11'a( /l v)AB] ~
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( C1)IHB g ZU1U3 P (~III)3+M b(~IV) 3++b(~v)CDl

~ D1 )IHB g ZUI U3 fNb( ~III)3+~ah( ~IV)3++a ( ~v)CD] ~

where

(12)

(13)

W

y' y'(y'+ y+i6)
W

2 2

w(w +y+ih) (14)

w' y—' y'(y'+y+i&)
1

w (w +y+i b, )
(15)

yI2P w
( ~III)1=

2
(y' —y )(y' —y i b—, ) (p y)(p —y id—.)—

y' —p y'(y'+y+ib, )(w y' ) —p(p+y+ih)(w —p )

(w —y )(w y ib,—)—
w(w+y+ib, )(w y'—)(w p—)

(16)

( ~111)3——2TI V2Ww2 1 y' —y'
y' —p y'(w —y' )

p2 y2

p(w —p )

w —y
2 2

w (w2 yi2)(w2 p2)
(17)

y I2Pw
(~IV) I =—

2
1 y' —y —ih p y —ih-

y" p' y—'(y'+y+i~)(w' —y') p(p+y+i&)(w' p')—
W —y —Sh

w(w+y+ib, )(w y' )—(w p)—

(~IV)3 ——2TI V2y w w
1 1 1 1

p(w —p ) w(w —y' )(w —p )

yI2w
(~v)~a =—

2
1

yt2 p2

(y'+ y )(y' y i~)— —
yl(W2 yl2)

(p+y)(p y I~)——
p(w2 —p )

(w+y)(w —y —1~)
w(w —y' )(w —p )

( Mv)CD ——2T1 V2w
2 1

y
l2 p2

(y' —y)(y' —y —i&)
yt(W2 yt2)

(p —y)(p —y —I &)
p(w2 p2)

(w —y)(w y id—)—
w(w —y' )(w —p )

(21)

I2 N, Nb
M~g —— '+

2T1 yb' ya'

r

N, Nb-
and Kb ——

1

N, Nb—

We now compare these results to previous semiclassical calculations' by taking the differences (AI —BI )IHB and
(CI D1)IHB. In Ref. 15—, only large inhomogeneous broadening was considered, so we allow w~ ao in our expressions.
For the absorption coefficient, we have

( A I
—81 )IHB ——g 2(N, N)(b~ )+I( M— )111+I~(~ )gv)B

Letting w~ oo in the terms in Eq. (22) this expression becomes

(22)

y'2 y2 I2W(2y+i 6) (y'+. y )(y' y jg)
yy'(y'+y+I ~) 2(y' —p') y'(y'+y+1~)

(p+y)(p —y —i b )

p(p+ y+i b, )

Similarly, we subtract (DI)IHB from (CI )IHB and let
w —+ 00. Then

g UI U3(N, Nb)(2TI V2W—)(2y+ib)
1 1 IHB 'p( ' p)

(24)
Equations (23) and (24) agree with the semiclassical calcu-
lations of Ref. 15, Eqs. (74) and (76), as they should.

We now consider two limiting cases to analyze these re-

(23)
,I

suits. First consider upper- to ground-level decay. Figure
2 shows the resonance-fluorescence spectrum as a func-
tion of b, TI for the case of T2 ——2T1 ——2/I, and an inten-
sity I2 of 50 for w =0, 1/TI, and 10000/T, . The
overall height of the curve rises a little due to our normal-
ization factor (w+y)/y. Note, however, that even for
the small amount of inhomogeneous broadening,
w = 1/T1, the sidebands have moved further out and have
a higher sideband-to-central-peak height ratio than the
homogeneously broadened case. For inhomogeneous
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0. 008

0. 0 I

-8 0 S
hT)

FIG. 6. Spectra vs AT~ for w=0, 1/T~, and 10000/T~
when both levels are excited and there is pumping to only the
upper level. Note the wide wings due to the introduction of un-

saturated atoms as w increases.

resonance. Note, however, that all values of the detuning
have a residual peak at the center, thereby giving the in-
creased peak at line center in the inhomogeneously
broadened case just as for the lower-level excitation case.

The W/ib, term in Eq. (4) is primarily responsible for
two differences in scattering predicted by the upper- to
ground-level decay model and by the large-reservoir
excited-state model appropriate for typical laser media.
First, because of the presence of the Lorentzian factor
I2Wz lil f„ the term proportional to M2 becomes dom-
inant for sufficiently large detunings. For upper- to
ground-level decay, P'= —I /(I +iA) and is on the order
of unity, and hence gives an important contribution.
However, for the large-reservoir excited-state model, 2' is
given by

Aa Vb Ab Va

(y. +id, )(y + &)
'

and the pump-rate constants satisfy

0. 003

m.g (N, Nb) —IgW2
~EL 5(h) .

2Ti'Y ( I+Iq&2)
(25)

To include inhomogeneous broadening, we integrate this
over co times the Lorentzian distribution W(co). Again
using the calculus of residues, we find

~g Z(N, Nb) yI2—2y'+w(2+I2)
EL IHB 5(b, ).

y'(w +y')

(26)

This reduces to the well-known centrally tuned homogene-
ously broadened value

mg (N, —Nb) I2
~ ~EL ~HB 2yTi(1+I2)

(27)

when w =0, which saturates to zero for large pump inten-
sity I2. In contrast the inhomogeneously broadened limit
value

mg (N, Nb) yI2(2+—I~)~EL iHB 5(b, )
4y Ti 1+I2

(28)

does not saturate, because of the contributions of the off-
resonant dipoles. Equation (26) is plotted in Fig. 8 versus
w for the upper- to ground-level case with I2 =50. From
Fig. 8 we see that as w increases, the elastic contribution
to the spectrum rapidly rises, dominating the total emis-
sion. As mentioned above, this term in the expression for
Ai is negligible for the large-reservoir excited-state limit
appropriate for most lasers. Hence, Rayleigh scattering is
not significant for this case. An interesting laser case that
can exhibit substantial Rayleigh scattering is the ruby
laser, whose lower level is the ground state.

A, b && Ya, b

Hence this W gives a negligible contribution.
Second, the P'/ib, term also leads to the elastic, or

Rayleigh, peak not shown in these curves. This is because
the resonance-fluorescence scattering is proportional to
2 i + c.c., which due to the W/i b. term contains a contri-
bution proportional to i/b, +c.c.=2n5(b). This mono-
chromatic scattering constitutes the Rayleigh scattering.
Hence in contrast to the upper- to ground-level model, the
large-reservoir excited-state model has negligible Rayleigh
scattering.

To study the effects of inhomogeneous broadening on
Rayleigh scattering, we first evaluate the elastic peak for
the homogeneous case by letting 6=0 in the &lib, term
and then use the above relationship. This gives

0. 0- I I

—10 0 10
hT,

FIG. 7. Detuned spectra vs AT& for the parameters of Fig. 6
with detunings 6=0, 2/Tl, and 5/T&.

IV. SPATIAL HOLE BURNINCy

In the semiclassical theory of resonant phase conjuga-
tion, one considers either three- or four-wave mixing. In
three-wave mixing, a strong pump field interacts with a'

weak-signal probe field to generate another field. From
phase matching considerations, all three fields must be
nearly colinear. In four-wave mixing, two strong, oppo-
sitely directed pump fields interact with each other and
the signal field to generate the fourth field. In this case
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10. 0 one wavelength. These results are of interest because it al-
lows us to study resonant four-wave mixing from a
quantum-mechanical viewpoint. The results are also use-
ful in the theory of standing-wave cavity instabilities.

In this section we take the strong field E2 to be a stand-
ing wave instead of a running wave. A standing-wave
electric field is given by

Ep ——I —,
'

A 2exp[i (Kg.r —v2t) ]

+ —,
'

A2exp[ —i(Kz.r+v2t)] I+c.c. (29)

0. 0
0

W

FICx. 8. The intensity of the elastic I,'Rayleigh) part of the
spectrum vs the inhomogeneous width m and pump intensity
Ip ——.50.

one of the pump fields and the signal field create a grating
which scatters the other pump field into the opposite
direction of the signal field. This provides the source for
the conjugate wave and is phase matched for all wave vec-
tors in the degenerate case v& ——v2 ——v3. Because of the two
strong, saturating pump fields, however, a standing-wave
fringe pattern exists in the medium. This subjects atoms
at different locations in the fringe to different degrees of
saturation. This is called spatial hole burning because the
population difference follows the nodes and antinodes of
the standing-wave electric field. We account for this by
averaging the coefficients over the spatial hole burning for

We define the spatially dependent intensity as Jr2, where

4v'I A2 I'
J 2r 41 ~21 ~1~2 cos (K2 r)T&Tz

=4Izcos (Kz.r), (30)

where p is the dipole moment, and I2 is the dimension-
less, running-wave pump intensity. For simplicity we
take the wave vector K2 to be along the z axis, so
K2.r =Xzz =2nz/A2. We integrate each coefficient along
the z direction for one wavelength. For example,

&At &sHB= f dzA, .
0

(31)

In the expressions for the four coefficients, Eqs. (4)—(7),
we identify in each factor terms that depend upon the in-
tensity I2. We substitute Eq. (30) for Iz and make use of
the trigonometric identity cos (2E2z)=[1+cos(4E2z)]/2.
With some algebra, the resulting integrals can all be re-
duced to combinations of the integral

J= dO 1

a +b cos8

We find

g && N, W2 b&+c/W2-
Q 1 +4I3W3

N, d b&+cld-
+C+1+4I,d

(32)

2—
NbWz b2+c/ P2 —Nbd b~+c/d—

+1+4I,W, +1+4I,d
(33)

g U~ U3 & ) b3+C/Wz-
SHB =— +I+4I,W,

b3+c/d—
+C+1+4I,d

b4+c/d—
+C

Q 1 +4Izd

where

g U( U3 W) b4+c/Wz-
&Di &sHB=- Ql+4I, W,

(34)

2T]

b2 ——
2T$

1V, Xb+
7b' Va'

N~ +
Xb' Va'

N, M&3 — (&b —Wli b, )
(N, Nb )&2—

1

(N. —Nb)&z++ Nb&&*3+ (&.+&/ib, )
1

(36)

(37)

(N, —Nb)&2
b3 —— N~M&3+ (&b ~/t'b, )

2 2T$
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(N, N—b )&z
b4= ~ Nba &3— (W, ~P'/id )

2 2Tj

yWzw &3 N, NbC= +
4T) yb yg'

(39)

(40)

d=~~(&, +&*,) .
2

(41)

Just as for inhomogeneous broadening, we calculate A i —Bi and Ci Di —and compare to previous semiclassical calcu-
lations. Considerable simplification occurs for each case and we find

& Ai —&i &sHa=

«i —Di &sHs=—

g &i(N, —Nb) 2IzP y(W i+Wz )

V'1+4IzWz 1+4Izd+[(1+4IzWz)(1+4Izd) j'

g Ul U3 &l(N Nb )2A—zWy(~2+&3)

Ql +4Iz Yz 1+4Izd+ [(1+4IzWz)(1+4Izd)]'

(42)

These agree with the results of Ref. 8.
Equation (32) is the formula for resonance-fiuorescence

coefficient Ai for a standing-wave pump field. Figure 9
plots the resonance-fluorescence spectrum (A i &sHB+c.c.
of Eq. (32) for the upper- to ground-level case for
Tz ——2Ti and intensities Iz of 8, 18, and 50 for each
pump field. Note that the central peaks for all three in-
tensities are approximately the same and are much
sharper and higher than the sidebands. Because the
fluorescence is emitted by atoms in different locations in
the standing-wave fringe, a distribution of Rabi sidebands
contribute, tending to wash out the sidemode Lorentzians
characteristic of the unidirectional case. However, all
parts of the fringe contribute to the central frequency,
reinforcing the central peak.

The elastic peak may also be evaluated in the same
manner as for inhomogeneous broadening. Substituting
Eq. (25) into Eq. (31) and integrating over one wavelength,
we obtain

A

g (Xg Nb) nI—zWz
5(6) .

yT, (1+4I,W, )'~z (44)

V. GAUSSIAN BEAMS

Actual lasers have transverse-field variations that can
be closely approximated by a Gaussian beam. ' This
sometimes leads to the emergence of new phenomena not
present for plane waves, such as self-focusing. In this sec-
tion we assume the same Gaussian transverse profile for
the strong-field intensity Iz and the weak probe waves.
We average the four coefficients A i, Bi, Ci, and D& over
this Gaussian dependence. Diffraction effects are not
considered. The model includes an aperture of radius a.
The limit a~O reproduces the plane-wave result, since
the medium is then everywhere saturated by the same
value. The limit a~Do gives the Gaussian-averaged re-
sult.

The total electric field is

Because of the Lorentzians in the numerator and denomi-
nator of Eq. (44), the dependence of this expression on the
detuning co —vz is almost the same as for the plane-wave
case of Eq. (25). The dependence on the intensity shows
that this average elastic peak also bleaches to zero for
large fields, only now at a rate going like the inverse
square root of the intensity, instead of the inverse of the
intensity.

E(r,z, r) = —, &U(r) g ~„(i)e " " +H. c. , (45)

where 8' is the "electric field per photon, " and we take
the transverse spatial factor to be

Q. 0
—15

I I

0 15
h, T,

FIG. 9. Resonance-fluorescence spectra in a standing wave vs
ETj for intensities I2 of 8, 18, and 50 for each running wave.
The ground state is the lower level and. T2 ——2T~.

/N p
2 2

Iz„Ize =Izu (r) . —— (47)

(46)

Here r =(x +y )'~ is the radial coordinate and wo is the
beam waist. This gives the radially dependent pump in-
tensity
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The average of the A1 coefficient is then given by

1 —/' /wo
(A1)GB—— f dr re A1(r),

0

where N1 is the normalization factor

a —r /WO WO
N1 —— dr re = (1—u, ),0 2

(48)

—a /wo2 2

with u, =—u(a)=e . This is similar to the average
over spatial hole burning of Sec. IV because we are again
considering variations of the intensity. Unlike the spatial
hole burning problem we now consider the variation to be
in the transverse direction instead of the longitudinal
direction. The dependence upon the intensity can again be
separated and the same notation can be used. By using
u (r) as the variable of integration the resulting integrals
can be readily integrated. The results are

g 2~
( A1 )GB

Iz( 1 —u, )

I+Iz~z
2 ln

Wz —d ~22 1+Iz&zu,
1+Izd

ln
1+I2dua

cI2
(1—u, ) . ,

2
(50)

g &1 Nbmz bzm—z+c
(&1)GB=

Iz(1 —u, ) Wz —d
1+I2Wz

2 ln
1+I2Wzu,

1+Izd
ln

1+I2dQa

cI2
(1—u, ) (51)

g U1U3&1 —b&Wz+c
(C1 &GB=-

Iz(l —u, ) Wz —d
1+IzW2

2 ln
1+I2Wzu,

1+I2d
ln

1+I2dua
cI2+ (1—u, ) -,

2
(52)

g U1Uz&1 b~W2—+c
( Dl )GB Iz(1 —u, ) Wz —d

1 1+Iz~2
21n I+Iz~zu.

1+I2d
ln

1+Izdu,
cI2

(1—u, )
2

where b1, bz, b3, b4, c, and d are given by Eqs. (36)—(41), respectively. We can again take the differences (A1 —81)GB
and ( C1 D1 )GB to—compare to previously derived semiclassical results. The results are

g &1(N, —N1, )
A1 +1 GB Iz(1 —u, )

1+I2W2
(W3 —&2 ) ln

2 2 1+Iz zu,
~y &1+&2 1+Izd

In
2 1+I2dua

(54)

(C, —D, ),=
g U1U3&1(Ng Nb)w (&—2+&3)

Iz(1 —u, )

1+I2W2
ln

1+I2Wzug
1 i 1+I2d——ln
d 1+I2du,

These agree with the results of Ref. 9, Eqs. (30), and (31).
Figure 10 shows the resonance-fluorescence spectrum for the case of upper- to ground-level decay for the case of

T1 —Tz and an Iz of 20 for the aperture values of 0.1, 1.0, and 20. For a =0.1, this corresponds to closing down the
aperture in the center of the Gaussian beam until only of a smail portion of the center is passed, which approximates a
plane wave. We see this yields the familiar Mollow three-peaked spectrum. " As the aperture increases, more of the at-
tenuated beam is passed, which has an effect similar to the spatial hole burning case of smoothing out the sidebands and
increasing the central peak. The a =20 curve corresponds to a full Gaussian beam and it can be seen that the sidebands
are washed out. For this case, u, =O in the above formulas. Note that unlike some kinds of Gaussian beam averages, '

an effective plane-wave intensity cannot be used to approximate this case.
We evaluate the effects of a Gaussian beam on the elastic (Rayleigh) peak by inserting Eq. (25) into the integral of Eq.

(48). The result is

g(N, Nb ) . I +I2 ~—
(AEL)GB=

'
ln

2yT1I2W2(1 —u, ) I+I2Wzu,
I2Wz(1 —u, )

5(b, ) .
(1+I2W2)(1+I2Wzu, )

(56)

In the limit a ~0, this reduces to the plane wave Eq. (25).
Figure 11 plots the Rayleigh peak versus the detuning
co —v2 for I2 ——20, and a =0.1 and 20. In spite of the
seeming complicated nature of Eq. (56) the curves of the

I

figure show approximately the same behavior as for the
plane-wave case. For each value of the aperture there is a
sharp dip at zero detuning and then a gradual fall off for
large detunings, just as for the plane-wave solution. As
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FIG. 10. Effects of different aperture sizes of Gaussian

beams on the resonance fluorescence spectrum vs AT~. The
aperture sizes are O. lwo, wo, and 20wo. The pump intensity

Ig ——20, and T( ——T2.

0. 0
—30 0 30

h, qT,
FIG. 11. The intensity of the elastic {Rayleigh) contribution

ys the detuning A2 ——5=(co—v&) for the aperture sizes of 0. 1wo
and 20coo. Same parameters as Fig. 10.

the aperture a increases the drop at line center decreases,
but there is a lower maximum elastic intensity and a fas-
ter fall off for larger detunings. These results are expect-
ed since a Gaussian beam has a lower overall intensity
than a plane wave.

VI. CONCLUSION

This paper extends the results of Refs. 1 and 2 to in-
clude inhomogeneous broadening, spatial hole burning,
and Gaussian beams. We illustrate the results by consid-
ering the effects on resonance fluorescence. We find that
the detuned resonance-fluorescence spectrum is markedly
different for the two kinds of two level me-dia we have
considered. We also find that Rayleigh scattering in the
purely excited-state two-level model is negligible. Both of
these results stem from the &lib, term in the expression
for A &. In Ref. 1 this term is shown to be related to the
off-diagonal matrix element of the field density operator
p. In all cases we find that even for small amounts of in-

homogeneous broadening there is a noticeable alteration
of the shape of the spectrum.

The averages over spatial hole burning reveal a washout
of the resonance-fluorescence side Lorentzians. In addi-
tion, they will be used in subsequent papers dealing with
effects of noise in four-wave mixing and standing-wave
cavity effects occurring in saturation spectroscopy. '

These results are particularly important since they will be
used to study new, quantum-mechanical phenomena. The
Gaussian beam results may give clues to how real experi-
mental data may be affected.
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