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The time-evolution operator is in general gauge dependent. Its gauge transformation property fol-
lows from the gauge transformation of the wave function and ensures gauge-invariant matrix ele-
ments. The same transformation property is shown here to follow from the formal solution of the
Schrodinger equation for the time-evolution operator, which is a time-ordered exponential of the
time integral of the Hamiltonian. The gauge transformation property of the time-evolution operator
in the interaction picture is also obtained. The perturbation expansion of the time-evolution opera-
tor in one gauge can be transformed to give the perturbation expansion for the time-evolution opera-
tor in another gauge. The A.p versus E.r controversy in the electric dipole approximation is
resolved by specifying the correct initial and final states.

I. INTRODUCTION

The Schrodinger equation for a particle in a time-
dependent external electromagnetic field can be solved
formally by using the time-evolution operator which is a
time-ordered exponential of the time integral of the Ham-
iltonian. This expression can be written in the interac-
tion picture and a perturbation expansion developed.
When only the states in the remote past and distant future
are of interest, the S matrix is obtained from the time-
evolution operator by taking the asymptotic time limits.
Feynman diagrams are helpful in keeping track of the
various terms in the perturbation expansion of the 5 ma-
trix.

The transformation property of the S matrix or more
generally the time-evolution operator under a change of
gauge has been of interest recently. When it is stated
that the S matrix is gauge invariant, it is assumed that the
potentials are adiabatically turned on and off, so that the
potentials are zero in the remote past and distant future. '

This choice for the potentials is, however, a specific
choice of gauge. Turning the potentials on and off adia-
batically, although commonly used, is not necessary. In
the laboratory it is only the electric and magnetic fields
that are turned on and off. In general the time-evolution
operator and the S matrix are gauge dependent. The
gauge dependence is such that the matrix elements be-
tween the appropriate initial and final states are gauge in-
variant. The matrix elements are therefore interpretable
as probability amplitudes. ' '"

In this paper the properties of the time-evolution opera-
tor under gauge transformation are investigated. It is not
necessary to assume that the potentials are turned on and
off adiabatically. The transformation property of the
time-evolution operator under a change of gauge can be
immediately obtained from the gauge transformation of
the wave function. On the other hand, the same gauge
transformation property can also be derived directly from

The form invariance of the Schrodinger equation'
under gauge transformations is reviewed in order to estab-
lish the notation. The gauge transformation property of
the Hamiltonian is also obtained. ' '"

The Hamiltonian for a single particle of mass m and
charge q in an external classical time-dependent elec-
tromagnetic field characterized by the vector potential
A(r, t) and the scalar potential P(r, t) is

H =H(A, P) =(1/2m)(p qA/c)2+ V(r)+qP—. (2.1)

the formal solution for the time-evolution operator as a
time-ordered exponential of the time integral of the Ham-
iltonian. The direct proof shows the consistency of the
formal solution. The gauge transformation property of
the time-evolution operator in the interaction picture is
also obtained. The time-evolution operator in the interac-
tion picture is also gauge dependent. When a perturbation
expansion of the time-evolution operators in different
gauges is made, and the transformation property is ap-
plied, the same perturbation expansion is obtained. A
direct calculation through second order in perturbation
theory illustrates this statement.

In Sec. II gauge transformations in quantum mechanics
are reviewed. The time-evolution operator is defined in
Sec. III and its transformation property under a gauge
transformation is obtained. A factorization theorem for
time-ordered exponentials is proved in Sec. IV. In Sec. V
the theorem is applied to the formal solution for the
time-evolution operator to obtain the gauge transforma-
tion property. The gauge transformation property for the
time-evolution operator in the interaction picture is ob-
tained in Sec. VI, and illustrated through second order of
perturbation theory in Sec. VII. The A p versus E.r in-
teraction controversy in the electric dipole approximation
is discussed and resolved in Sec. VIII. Finally, the con-
clusion is given in Sec. IX.

II. GAUGE TRANSFORMATIONS
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The potential energy V(r) of the particle is defined such
that its negative gradient is a conservative force. Electro-
static fields, if present, are thus included in V(r). The
Schrodinger equation corresponding to the Hamiltonian
in Eq. (2.1) is

where the spatial coordinates in A are suppressed. The
time-evolution operator is thus gauge dependent, but has a
definite transformation law under gauge transformations.

The S matrix is defined as S=U(+ oo, —oo), so its
transformation law is

H( A, P)/=i' dQ/Bt . (2.2) S'=exp[iqA( oo )/Pic]S exp[ iq—A( —oo )/A'c] . (3.4)

The time-dependent electric field E and the magnetic
induction field B are obtained from the potentials by

E= —VP —c 'BA/Bt, B=V&& A . (2.3)

A gauge transformation can be made on the potential to
obtain the new potentials

A'= A+ VA, P'=P c' B—A/Bt, (2.4)

where A=A(r, r) is an arbitrary differentiable function of
space and time. The electric and magnetic fields are of
course unchanged if the new potentials are used in Eq.
(2.3). A gauge transformation on the wave function is

If we restrict ourselves to gauges for which the potentials
are zero at t =+ oo, then A(+ oo ) =A( —oo ) =0 and
S'=S, which is the basis for a commonly made statement
that the S matrix is gauge invariant. The general gauge
transformation property is given in Eq. (3.4), where it is
not necessary to put any restrictions on A(+oo). Kazes
et al. assume that A(+oo)=A( —oo), and Aharonov
and Au consider time-independent gauge functions.

The transformation property in Eq. (3.3) ensures that
the matrix elements of the time-evolution operator are
gauge invariant. If the initial state is p(tQ) and the final
state is g(t) then the probability amplitude of finding the
system in the state g(t) at time t is

f'=exp(iqA/Pic)g . (2.5) (p(t)
~

U(t tQ)g(~Q) ) = (g'(r) U'(t tQ)0'(rQ) ~

If Eqs. (2.4) and (2.5) are used, the Schrodinger equation
in the new gauge is

H ( A', P') g' =i A Bg'/d t . (2.6)

This form invariance of the Schrodinger equation under
gauge transformations is called the gauge covariance of
the equation.

The new Hamiltonian H(A', P') in Eq. (2.6) is ex-
pressed in terms of the original Hamiltonian in Eq. (2.1)
as

III. TIME-EUOLUTION OPERATOR

The operator U(t, tQ) which describes the time evolu-
tion of the wave function from an initial time tQ to a final
time t is defined as'

y(&)= U(t, &Q)q(tQ) ~

Under a gauge transformation, Eq. (3.1) becomes

y'(t) = U'(r, tQ)q'(rQ ) ~

(3.1)

(3.2)

If Eq. (2.5) is used for the gauge transformation of the
wave function, the time-evolution operator transforms as

U'(t, t )=Qexp[iqA(t)/kc] U(t, tQ)

X exp[ iq A(tQ )/Ac ]—, (3.3)

H'=H ( A', P')

=exp(iqA/Pic )H ( A, P)exp( iq A/Ac—) (q/c)BA—/Bt .

(2.7)
I

Because of the last term, the Hamiltonian is a gauge-
dependent operator, i.e., it has a gauge-dependent expecta-
tion value. This transformation property of the Hamil-
tonian is used in Sec. V to obtain the transformation prop-
erty of the time-evolution operator.

which is gauge invariant.
If Eq. (3.1) is substituted into the Schrodinger equation

in Eq. (2.2), the operator U( t, t Q ) also satisfies the
Schrodinger equation

H(t) U(r, rQ) =i A d U(t, tQ)/dt, (3.6)

where H(t) =H ( A, P) is the time-dependent Hamiltonian.
A formal solution to the Schrodinger equation for U(t, tQ)

j.s
t

U(t, rQ) = T exp —(i/A') J dt'H (r')
0

(3.7)

where T is the time-ordering operator. A similar equa-
tions holds for U'(t, tQ) except that H is replaced by H'
on the right-hand side. It is clear from Eq. (3.7) that the
time-evolution operator is gauge dependent because the
Hamiltonian is gauge dependent.

IU. FACTORIZATION THEOREM
FOR TIME-ORDERED EXPONENTIALS

The formal solution to the Schrodinger equation for the
time-evolution operator is the time-ordered exponential in

Eq. (3.7). If the operator H is the sum of two time-
dependent terms, the time-ordered exponential can'be fac-
torized into the product of two time-ordered exponentials.
The factorization theorem proved here is a generalization
of the well-known transformation to the interaction pic-
ture, in which both parts of the Hamiltonian are time
dependent.

The Hamiltonian H(t) in Eq; (3.7) is taken to be the
sum of two time-dependent terms

H(t)=H)(t)+H2(t) . (4.1)

U(r iQ)= U](t tQ)U ]( 2rQr) (4.2)

The time-evolution operator U(t, tQ) in Eq. (3.7) can then
be written as the product of two operators
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The operator U](t, tp) is the time-ordered exponential
r t

U](t, tp) = T exp —(i/]]1) dt'H](t')
to

The operator Uz] ( t, tp ) is

(4.3)
U'] (r ip ) =exp I

]' (q /Ac)[A( i) —A( rp )] I

The operator Uz](t, tp) is

(5.6)

from Eq. (4.3). If the operator ])A/Bt commutes with it-
self at different times, then Eq. (5.5) becomes

Uz](t, tp) = T exp —(i/]]]) dt'Hz](&')
to

(4.4)
Uz](t, tp) =T exp —(i/]]]) dt'Hz] (i')

0
(5.7)

where the operator H2] is the operator H2 in the interac-
tion picture of H „ from Eq. (4.4), where from Eq. (4.5)

Hp](i)= U] (r rp)Hz(i)U](r rp) (4.5) Hz] (t) =exp[iqA(tp) I]]]c]H(t)exp[ —iqA(tp)/]]lc],

In order to prove this factorization theorem, Eqs. (4.1)
and (4.2) can be substituted into Eq. (3.6) which gives

(5.8)
if the operator A(t) commutes with itself at different
times. Equation (5.7) then becomes

The operator U& is chosen to satisfy

H](i)U](r rp)=ifiBU](i rp)/Bi (4 7)

[H](t)+Hz(t)]U] Uz]

=( i]]1])U] lat) Uz]+ U](i]]1a Uz] /&&) . (4.6)
Uz] (t, tp) =exp[iqA(tp)/]]]c]

t
XT exp —(i/]]1) f, dt'H(t')

Xexp[ iqA(tp—)/Pic], (5.9)

the formal solution of which is Eq. (4.3). When Eq. (4.7)
is substituted into Eq. (4.6), the result is

Hz] (i)Uz] (i, ip ) =i fi]) Uz] (r, ip ) Idr (4.8)

where Hz] is given in Eq. (4.5). The formal solution to
Eq. (4.8) is given in Eq. (4.4), which proves the factoriza-
tion theorem.

which can be seen by expanding the exponential in Eq.
(5.7), applying the time-ordering operator T, and substi-
tuting Eq. (5.8) into it. The exponential involving A(tp)
can be factored out because it depends only on the fixed
time to. The expansion can then be resummed to give Eq.
(5.9).

When Eq. (5.9) is operated upon by Eq. (5.6), the result
for the time-evolution operator U' in the new gauge is

V. GAUGE TRANSFORMATION PROPERTY
OF THE TIME-EVOLUTION OPERATOR

FROM THE FORMAL SOLUTION

U'(t, tp) =exp[iqA(t)/]]ic] U(t, tp)

X exp[ iqA(tp)/f—ic], (5.10)

U'(t, tp) =T exp —(i/]]]) f dt'H'(t') (5.2)

The gauge-transformation property of the time-
evolution operator in Eq. (3.3) can be proved directly from
the formal solution for the time-evolution operator in Eq.
(3.7). The direct proof shows the consistency of the for-
mal solution.

The time-evolution operator U'(t, tp) in the new gauge
characterized by the vector potential A' and scalar poten-
tial P satisfies the Schrodinger equation in Eq. (3.6),

(5.1)

where the new Hamiltonian is H'(t) =H(A', P'). The for-
mal solution to this equation is

when Eq. (3.7) is used. Equation (5.10) is the same
transformation property as obtained in Eq. (3.3) from the
transformation of the wave function. The consistency of
the formal solution has therefore been established.

VI. INTERACTION PICTURE

The formal solution for the time-evolution operator in
Eq. (3.7) is generally evaluated by going to the interaction
picture and then using perturbation theory. In this sec-
tion, the gauge transformation property of the time-
evolution operator in the interaction picture is obtained.

In the interaction picture, the Hamiltonian in Eq. (2.1)
is divided into two parts

The new Hamiltonian can be written as H'=H I +H2.
The factorization theorem can be applied to give

U'= U'] Uz& with

H =Ho+ P

where the unperturbed Hamiltonian Ho is

Hp p /2m+ V(r) . ——

(6.1)

(6.2)
H, (i)= (q/c)aA(r) Iar

H z (r) =exp[iq A(i)/]]ic]H (t)exp[ iq A( t) IAc] . —

(5.3)

(5.4)

The perturbation 7 can be written as

where the term first order in q is

(6.3)

The new Hamiltonian H is. related to the old Hamiltoni-
an H by Eq. (2.7). The operator U] is

U] (t, tp) = T exp i (qlfic) f dt' dA(t')Idt', (5.5)

~]———(q/2mc)(A. p+ p.A)+qP,
and the term second order in q is

Wz ——(q /2mc )A

(6.4)

(6.5)
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U(t, tp) =exp[ —(i/A')Hp(t —tp)]UI(t, tp) . (6.6)

If the factorization theorem in Eq. (4.2) for the time-
evolution operator is applied to the Hamiltonian in Eq.
(6.1), with Hi H——p and H2 ——F, the result is

P z
—(q /2mc )(A') (6.12)

From the transformation property of the time-evolution
operator in Eq. (3.3), the transformation property of the
time-evolution operator in the interaction picture is

The time-evolution operator in the interaction picture
Ur(t, tp) is

U', (t, to) =exp[iqAI(t)/Pic]UI(t, tp)

Xexp[ iq—AI(tp)/Ac) . (6.13)
Ur(t, tp) =T exp —(i /fi) dt' P I(t')

tp
(6.7)

from Eq. (4.4). The perturbation 1 in the interaction
picture is

The gauge function Al in the interaction picture is de-
fined as in Eq. (6.8),

Ar (t) =exp[(i /R)Hp(t —tp ) ]A( t)
7 r(t) =exp[(i/iri)Hp(t tp)] F—(t)

Xexp[ (i /—fi)Ho( t —to ) ] (6.8)
X exp[ (i /fi)H—p(t —tp)], (6.14)

from Eq.. (4.5).
In the new gauge the potentials (A', P') in Eq. (2.4) re-

place (A, p). The new time-evolution operator Ur (t, tp) in
the interaction picture is

Ur (t tp) = T exp —( i /A) f'dt' P r(t') (6.9)

so that Ar(tp) =A(tp). The time-evolution operator in the
interaction picture can be expanded to give a perturbation
series in the interaction. The perturbation series in two
different gauges are related by Eq. (6.13).

A form more convenient for comparing the two pertur-
bation series may be obtained by rewriting Eq. (6.13) as

where the interaction in the new gauge P ' is the same
form as Eq. (6.3) except that the potentials are in the new
gauge (A', P'). Explicitly, F ' is

(6.10)

where the term first order in q is

t
Ur(t, to) =exp i (q/—Ac) f dt' Ar(t')

—i (q/Pic)AI(to)

X Ur (t to)exp[iqAr(to)/&c] (6.15)

W'i ———(q/2mc)(A' p+p A')+qP',

and the term second order in q is

(6.11) where Ar dArldt is——the total time derivation of Ar.
The Baker-Campbell-Hausdorff theorem' can be used in
Eq. (6.15) to give

t
UI(t, to) =exp i (q/A'—c) f dt'Ar(t') exp ,'(iq/Rc—) f dt'[A(tp), Ar(t')]

X T exp (i /fi) f dt'exp—[—iqA(t )/pA'c]W (tI')e p[xiqA(t )/pic]
tp

(6.16)

Equation (6.16) is an exact expression relating Ur to P r.
A perturbation expansion can be obtained by expanding
all the exponentials and grouping terms of a given order.
The result of course must be the same as the expansion of
Eq. (6.7).

VII. PERTURBATION THEORY

In this section a perturbation expansion of the time-
evolution operator in the interaction picture Ur(t, to) in
Eq. (6.16) is made in terms of the interaction P '. The re-
sult is compared with the expansion of Ur(t, to) obtained
from Eq. (6.7) in terms of the interaction P". The two ex-
pansions must of course agree with each other in all or-
ders of perturbation theory. An explicit calculation shows
that equality does hold through second order in perturba-
tion theory.

In order to compare the two expansions it is necessary
to relate the new interaction 1 ' in Eqs. (6.10)—(6.12) with
the old interaction 7 in Eqs. (6.3)—(6.5). If the gauge
transformations in Eq. (2.4) are used in Eq. (6.10), the new

P '& ——7 i (qlc) I BA/Bt+—(iA) '[A,Hp] I,
and the part second order in q can be written as

(7.2)

+(' q/tire)[ AP, ] +, ('q/Pic) [A, [A,H ]]—
(7.3)

In the interaction picture Eq. (7.2) becomes

WI I =W lr —(q /C )AI (7.4)

where the total time derivative of Ar is

Ar dArldt=(dA/dt)r+(iA') ——'[AI~Ho] .

In the interaction picture Eq. (7.3) becomes

(7.5)

interaction 7 ' is related to the old interaction by

P '=1 —(q/2mc)(p VA+VA p) (q/CQA—/Bt

+ (q /2mc )[A.VA+ VA A+ (VA) ] . (7.1)

The part of this interaction first order in q can be written
as
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P 2r
—P 2r+(iq/Pic)[AI Wir]

+ —,
' (ih')(iq/Ac) [Ar, AI], (7.6)

(7.7)

t t
Ur"(t, tp)= —i (q/Ac) f dt'Ar(t') (—i/A) f, dt'W'ir(t')

= —(i/iil) f, dt'P"ir(t'),
if we assume that [A, dA/'dt] =0.

A perturbation expansion through second order can be
made in Eq. (6.16). In zeroth order the expansion gives
the unit operator. In first order we obtain

when Eq. (7.4) is used. This result was shown in the elec-
tric dipole approximation by Schlicher et al. '

In second order of perturbation theory Eq. (6.16) gives

t
U,"'(t, t, )= —(i/X) f dtiI &zr(t, ) (iq/—Rc)[A(tp) ~'ir(ti)]I

0
t

+ ,'( -i/—~)'T f J «, «2~if(ti)~ir(t2)+ 2(iq/—~)' f «i f dt2AI(ti)AI(t2)
t

+(i/iit')'(q/c) f, dt, J, dt, Ar(t, )P '„(t,)+ 2 (iq/Pic)' J, dt, [A(tp), AI(t, )] . (7.8)

When Eq. (7.8) is simplified by substituting Eqs. (7.4) and (7.6) into it, the result is

Ur '(t, tp)= (i/fi—) f dti W2r(ti)+ —,'( —i/A') T f f dti dtpP ir(ti)Wir(tp)+~i+Wit .

The expression W& involves terms with one A and one F ~, and is

Wi —— (i/fi) —(q/c) f dti[AI(ti) —A(tp), F ir(ti)]

,' (i /A) —(q/c)Tf f dti dt2[Wir(ti )Ar(t2)+ Ar(ti )~ir(tz)]
t

+(i/A') (q/c) f dt, f dt2AI(ti)Wir(t2)=0,

which is proved in the Appendix. The expression ~» involves terms with two A s and is

W„= 2 (iq/Ac)' f dt, [AI(t, ) —A(tp), Ar(ti)]
0

+ 2(iqlfic) T—f f dt, dt2 Ar(t, )AI(t2) —2(iq/hc) f—dt, f dt2AI(t, )AI(t2)=0,
0 0

(7.9)

(7.10)

(7.11)

which is also proved in the Appendix. The second-order
terms in Eq. (7.9) are therefore the same as obtained by
expanding Eq. (6.7). The expansion could be continued to
higher-order perturbation theory, but second order should
suffice to illustrate that the same result is obtained from
using Eq. (6.16) as from using Eq. (6.7) for Ur(t, tp)

A'=0, P'= —E(t) r, (8.1)

where E(t)= —c 'BA(t)/dt is the electric field at the
atom.

The time-evolution operator in the interaction picture
in the radiation gauge is

VIII. THE A-p VERSUS 8-r CONTROVERSY

In the electric dipole approximation (EDA) there has
been a controversy regarding the interactions A.p and
E r. The preceding discussion of the gauge transfor-
mation property of the time-evolution operator helps to
put this controversy in perspective and gives its resolu-
tion. '

When the wavelength of the radiation is much greater
than the dimensions of the atomic system, the EDA can
be made. The spatial dependence of the vector potential
in the radiation gauge can be neglected so that A=A(t),
P =0. The gauge transformation in Eq. (2.4) with
A= —A(t).r can be made to a new gauge, called the elec-
tric field gauge, in which'

Ur(t, tp) = T exp —(i/A') f dt, ( —q/mc)
to

X A(ti ) pr(t, )

X exp[iq A(tp). rr(tp)/~] . (8.4)

In the case that A(t)=0, A(tp)=0 then Ur ——Ur in Eq.
(8.4). If the potentials are turned on and off adiabatically,
then in the limit that t~+ oo, tp~ —OQ we have
Ur (+ oo, —oo ) = Ur(+ oo, —oo ), since A(+ oo )= A( —oo )=0. The same S matrix in the two gauges is
obtained in this case.

Xexp —(i/iit')(q /2mc )f dt, A(t, ) . (8.2)
o

The exponential involving the A term is a time-
dependent phase factor, which does not change probabili-
ties. The time-evolution operator in the interaction pic-
ture in the electric field gauge is

Ur(t, tp)=T exp (i/fi) f dt, ( ——q)E(t, ) rr(t, ) . (8.3)
0

Obviously, Eqs. (8.2) and (8.3) are not generally equal to
each other, so the time-evolution operator is generally
gauge dependent. The two operators are related to each
other by Eq. (6.13), which is

UI (t tp)=exp[ —lqA(t)'rr(t)/Ac']UI(t tp)
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In order to calculate the probability amplitude that the
particle is in a given state, the states must be specified in
the two gauges. If the initial state g;(to) and final state
g&(t) are specified in the radiation gauge, then the initial
state in the electric field gauge is

g'; (tp) =exp[ iq A—(tp) r/Pic]g;(to),

and the final state in the electric field gauge is

Qf (t) =exp[ iq A—(t) r/Pic]gf (t)

From Eqs. (3.5) and (6.6) the probability amplitudes

(8.5)

(8.6)

8'=(1/2m)(p —qA/c) + V(r) . (8.8)

In the radiation gauge (/=0) the energy operator coin-
cides with the Hamiltonian. The energy eigenvalue equa-
tion is

&0n =&nP. .

The energy eigenstate n is an equivalence class of wave
functions [g„J= [g„'

~
P'„=exp(iqA/Pic)g„J. The initial

state i and final state f are such equivalence classes.
Which phase factor to use depends on the gauge chosen.

In the electric field gauge in the EDA the energy opera-
tor 8" reduces to the unperturbed Hamiltonian Ho, since
in this gauge the vector potential A'=0. The energy
eigenvalue equation in Eq. (8.9) in this gauge becomes the
eigenvalue problem for the unperturbed Hamiltonian

H, C „=E„4„, (8.10)

so that e„=E„adna'„=4„ in the EDA.
In the Coulomb gauge in the EDA where A= A(t), the

solution to the energy eigenvalue problem in Eq. (8.9) is

g„=exp[iq A( t).r/Pic]&b„.

In this gauge the initial state i' is

P'(to) =exp[iq A(to)'r/Pic]@

(8.11)

(8.12)

where the initial state in the electric field gauge is

f,'(to) =N;. The final state f in this gauge is likewise

lPf(t) —exp[iqA(t) r/Pic]4 f (8.13)

where the final state in the electric field gauge is
P~(t) =@/ From Eq.. (8.7) the probability amplitude cal-
culated in this. gauge is equal to the one calculated from
the electric field gauge.

When an energy measurement is made and eigenstates
of Ho are used to specify the initial and final states, the
time-evolution operator calculated using the E.r interac-

( I/ff ( t)
I
exp[ —( i /fi)Ho ( t —to )]Ut ( t to )@;( to ) ~

—(ff(t)
~
exp[ (i /f—t)Hp(t —to)]Ut (t tp)f' (tp) )

(8.7)

are equal.
The initial state i is determined by the preparation of

the system and the final state f is determined by the type
of measurement performed. If the system is prepared in
an energy eigenstate and an energy measurement is made,
then i and f must be energy eigenstates. The energy
operator is

tion should be used to calculate the probability amplitude
in Eq. (8.7). On the other hand, the Coulomb gauge with
the vector potential A(t) and the interaction A.p can also
be used to calculate the time-evolution operator. The ap-
propriate initial and final states in this case are Eqs. (8.12)
and (8.13) which are the eigenstates of the energy operator
in this gauge. Equation (8.7) then guarantees that the am-
plitude calculated in this gauge agrees with the one calcu-
lated in the electric field gauge. If A(t)&0 or A(to)&0,
then an incorrect amplitude would be, obtained using the
A p interaction with eigenstates of Ho. Thus the rela-
tionship between the two interactions A p and E r is
clearly seen by using the time-evolution operator in the in-
teraction picture.

IX. CONCLUSION

The gauge transformation on the wave function implies
the gauge transformation property of the time-evolution
operator U(t, tp ). A formal solution of the Schrodinger
equation for the time-evolution operator can be given in
terms of a time-ordered exponential of the time integral of
the Hamiltonian. The gauge transformation property of
the time-evolution operator can also be obtained directly
from the formal solution. The consistency of the formal
solution is thereby established.

The S matrix is S=U(+no, —ao) and also satisfies a
gauge-transformation property. The S matrix in two dif-
ferent gauges need not be the same because the gauge
function A(+ oo ) and A( —oo ) at times t =+ ao and
t = —oo, respectively, need not be zero or equal to each
other. The matrix elements of the S matrix between the
appropriate initial and final states are gauge invariant,
and are hence interpretable as probability amplitudes. If
the potentials are turned on and off adiabatically, then
A(+ oo ) and A( —ao ) are indeed zero which is a specific
choice of gauge. Only the electromagnetic field can be
turned on and off in the laboratory, so the adiabatic turn-
ing on and off the potentials is artificial. As shown here
a specific choice of gauge is not necessary. The manifest-
ly gauge-invariant formulation of quantum mechanics'o "
allows an arbitrary gauge for the potentials at all times,
including the asymptotic tiines ( t = + &x& ).

The gauge transformation property of the time-
evolution operator can be transformed to the interaction
picture. In the interaction picture perturbation expan-
sions are easily made. It is shown explicitly through
second order of perturbation theory that the perturbation
expansion of Ut(t, tp) in terms of the perturbation P ' is
the same as for P . Indeed, the equality must hold in all
orders of perturbation theory.

The A p versus E r controversy in the electric dipole
approximation is reviewed here. ' ' ' Either interac-
tion may be used to calculate the time-evolution operator.
Nevertheless, when an energy measurement is made, the
probability amplitude must be calculated with the correct
energy eigenstates. The energy operator reduces to the
unperturbed Hamiltonian when the interaction E.r is
used. If the unperturbed eigenstates are used to calculate
the probability amplitude at an arbitrary time, the time-
evolution operator calculated from the interaction E.r
should be used. ' If the asymptotic time limits t~+ oo,
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to~ —00 are taken and the potentials are turned on and
off adiabatically, then the unperturbed states may be used
with the S matrix calculated. from either interaction. This
result has previously been shown in first and second or-
ders of perturbation theory for the general case. '

APPENDIX: VANISHING OF EQS. (7.10) AND (7.11)

The expressions W& and W„given in Eqs. (7.10) and
(7.11), respectively, are shown in this appendix to vanish.
The expression Jr

&
in Eq. (7.10) can be rewritten as

t)
Wi —— (i/A—) (q/c) f, dti f, dt2[At(t2), ~it(ti)]

(i/fi) (—q/c) f dt's f dt2 Wit(ti)At(t2)
t

+(t/&)'(q/c) f «, f «, A, (t, )~„(t,), (Al)

when the time-ordering operator is allowed to act. Two of
the integrals cancel, and the remaining two may be rewrit-
ten in terms of the unit step function 6(x)=0, x & 0 and
6(x)=1, x ~0, as

~z=(i lfi) (q/c)
t

x f, f, dt's dt2[ At(t2)P il—(tt)6(tt —t2)

+AI(ti ) P"it(t2)6(t2 ti )]=0 .—

Equation (A2) is zero because the dummy variables of in-
tegration t& and t2 in the second term can be inter-
changed, so that it cancels with the first term

The expression Wn in Eq. (7.11) can be rewritten as

J II (iq/Ac)' f dt, f dt2[AI(t2) At(ti )l

+ , (iq—/Pic) f dt, f dt2 At(ti )At(t2)

——,'(tq/Pic)' f dt's f dt2AI(tl)AI(t2) (A3)

Wt ——, (i q
/—hc)

t
X f, f, dt, dt, [A (t, )A (t, )6(t, t, )—

At(ti —)AI(t2)6(t2 ti )]=0 . —

(A4)

Equation (A4) is zero because the dummy variables of in-
tegration t] and t2 in the second term can be inter-
changed, so that it cancels the first term.

when the time-ordering operator is allowed to act. Two
integrals cancel, and the remaining two integrals can be
written in terms of the unit step function to give
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