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Velocity- and length-form relations in two-electron single-photon transitions
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It is shown that the usual length-form approximation to the momentum matrix element
(m /iA)(E; Ef )(—f ~

R
~

i ), although correct for the usual single-electron single-photon transitions,
is off by about a factor of 2 for two-electron single-photon transitions in the x-ray region. A much
more accurate result is obtained if the total atomic-energy difference E; —Ef is replaced by the
single-particle-energy difference of the electrons involved in the transition (e.g., Ez~ —E~,).

INTRODUCTION N
R= g r(i) (4)

Atomic transitions in which two electrons change states
while emitting only a single photon were first discussed
many years ago. ' Recently, there has been renewed in-
terest in this phenomenon because of the discovery of
such transitions in the x-ray region. There have also been
several theoretical papers which calculate relative transi-
tion rates yielding results in rough agreement with the ex-
perimental results of Wolfli et al. , but at great variance
with those of Salem et al.

With the possible exception of Kelly, these calculations
all make use of the length form ' of the interaction ma-
trix element. The relative accuracy of the length, velocity,
and acceleration forms has been discussed before in the
literature, but never in the context of two-electron
single-photon transitions.

The purpose of this paper is to point out that the usual
calculations using the length approximation and experi-
mentally determined transition energies yield a result (for
relative transition probabilities) too large by about a factor
of 4 for two-electron single-photon transitions and that a
simple remedy is available.

CALCULATION

The theory of radiation requires the calculation of the
matrix element T

T=(f ~Pq ~i ), .

where
~

i ) and
~
f) are completely antisymmetric state

vectors for the initial and final states, respectively, and Pq
is defined by Eq. (2) as

N

Pq
——g pq(i) .

pq(i) is the qth component of the momentum operator
of particle i'. By noting that

P=[R,Hj,
m

where H is the Hamiltonian of the system (excluding the
interaction with the radiation field), and

with r(i) being the position operator of the ith particle,
one can easily show that

(f I
P

I

i & =(&s Ef)(f —
I
R

I
i )

m

where

d H lf&=Ef lf

(5)

The relation shown in Eq. (5) is exact if exact eigenfunc-
tions are used. In practice, however, approximate eigen-
functions are nearly always used so that different results
are obtained depending upon whether the left-hand side
(velocity form) or the right-hand side (length form) of Eq.
(5) is used. The length form is usually chosen because it is
easier to calculate.

We restrict our considerations to calculations of the
Hartree-Fock type in which the state vectors are
represented by single-configuration angular-momentum-
coupled uncorrelated state vectors; In this approximation,
the two-electron single-photon transitions can only occur
if the final-state vectors are computed from a different
approximate Hamiltonian than was used to compute the
initial-state vector. We separate the exact Hamiltonian
into an uncorrelated part Hp and the remainder V.
Primes will be used to denote final-state quantities,

H =Hp+ V=Hp+ V',
N . N

Hp ——g H(j); Hp ——g H'j() .

The notation we shall follow is as follows: primed
quantities refer to the Hamiltonian H p appropriate to the
final state of the system, whereas unprimed quantities
refer to eigenfunctions of Hp (the initial state). H(j) can
be considered to be an effective'single-particle Hamiltoni-
an which contains in addition to the kinetic energy and
the nuclear Coulomb potential, a self-consistent
configuration-dependent potential function which
represents the interaction with the other electrons. Such a
potential is the basis of the Hartree-Fock-Slater method.
Distinct letters refer to distinct sets of quantum numbers,
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e.g., a, b, etc. , but
I
a) and

I

a') refer to the eigenfunc-
tions of Ho and Ho, respectively, having identica/ quan-
tum numbers a and somewhat different energies E, and
E,'.

Upon noting that R commutes with V and V', Eq. (3)
can be rewritten

iA P=RHo H—oR+(V —V')R .
P7l

We now identify
I
i ) and

I
f') as solutions of the

Hartree-Fock-Slater Hamiltonians of Eq. (8) with energy
eigenvalues E; and Ef, and Eq. (9) becomes

(f'I Pli)=(E; Ef)(f'—IR li)+(f'I (V —V')Rli) . HpR=RHp+ g [H(j),r(j)], (15)

In order to compare this expression with Eq. (10), we
first express Eq (.10) in terms of single-particle matrix ele-
ments. Since R is a symmetric sum of single-particle vec-
tor operators, as is P, Eq. (11)holds with P replaced by R
and p by r. From Eq. (10) one can also see that the same
must be true for the last term. We wish to cast this term
into a form whose magnitude can be estimated:

f'
I

( V —V')R
I

t ) = (f'
I
(Hp —Ho)R Ii )

=Ej' &f
'

I
R

I
i &

—&f
'

I
HoR

I
i & . (14)

The last term in Eq. (14) can be transformed by noting
that

(10)
so that Eq. (14) becomes

This is the relation ordinarily used when the last term is
neglected. Although this term is small for single-electron
single-photon transitions, it is not small for the two-
electron single-photon transitions under consideration
here. Equation (10) may be reduced to a single-particle
matrix element using the usual methods of Racah algebra.
We note that the initial and final states differ only in two
sets of single-particle quantum numbers and we assume (a
good approximation) that the initial- and final-particle
states having identical quantum numbers have overlap in-
tegrals of one. A useful model to keep in mind might be
2p 2s ~2p'2s'ls' where (2p'I2p)=1, (2s'I2s)=1,
and ( ls

I
2s )&0 because the initial and final Hamiltoni-

ans are different. I-et us assume that the initial and final
states differ by the single-particle quantum numbers
a~a and b~P, where

I
a) is orthogonal to IP) and

I
b) to la). In our model, a =2s, a=is, b =2p, and

P= ls, so that a ~a corresponds to the 2s ~ ls transition
and b~P to the 2p~ls,

(f'I P Ii ) =A(a'la)(P'I p(1)
I
b),

where the factor A contains the details of the configura-
tion and angular-momentum coupling, (a'

I
a ) is the

overlap integral for one of the electrons (e.g., ( ls'
I
2s ) in

our example), and (P'lp(1)lb) is the single-particle
momentum matrix element evaluated using the (arbitrari-
ly chosen) coordinates of particle one. This matrix ele-
ment can also be written in length form using

p(1) = [r(1),H] = [r(1),Hp]

(f'I (V —V')Rli &=(Ef' E;)&f'I R—li)
1V—g &f'

I
H (j )r(j )

I
i )

j= 1

+ g (f'
I
rj()H (j )

I
~ ) . (16)

(approximation A), where

& ( = (Ef E; ) &13'
I
r(1—) I

b & + &
O'

I
r(1)H (1)

I
b )

—(P'
I
H(1)r(1)

I
b)

=(Ej E;+Eb)(I3'
I
r(—1)

I
b)

—g (P'
I
H(1)

I
c )(c

I
r(1)

I
b ), (18)

The operators on the right-hand side of Eq. (16) are all
symmetric sums of single-particle vector operators and,
thus, may be reduced to the form of Eq. (11). Equation
(16) then becomes

(f'
I

( V —V')R
I
i ) =2 (a'

I
a )[(Ej E; )(P'

I
r(—1)

I
b )

+ &0'1«1)H(1)
I
b &

—(P'
I
H(l)r(1)

I
b ) ] .

(16')

If we then use Eq. (11) and the above expression, Eq. (10)
may be written in single-particle form,

(P'I p(1)
I
b) =(E; Ef, )(P'I r(1)—

I
b)+8& (17)

=r(1)H (1)—H'(1)r(1)

—[H (1)—H'(1) ]r(1), (12)

where
I
c) is a member of the complete set of eigenfunc-

tions of H(1). Using this, one can rewrite Eq. (18) as fol-
lows:

where we have used the fact that [r(1),V]=0 and
[r(l),H(i)]=0 for i&1. We can now insert the operator
appearing in Eq. (12) between single-particle states:

&&'
I
p(1)

I
b & =«b Ej )&&'

I
«1)

I
b &—

+ (P'
I
[H'(1)—H(1)]r(1)

I
b ) . (13)

(Ef E+Eb ) &&'
I
«1)

I
b &-

—yE. &P'I c&&c lr(1) Ib & . (19)

The overlap integrals (P'
I
c ) will be nearly zero unless

the sets of quantum numbers P and c are the same; thus,
only the single term need be kept, and R

&
is accurately

given by
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R, =(Ej E—, +E, E—p) &P I
r(1)

I
b &, (20)

where we have also assumed that &P'
i
r(1)

i
b )

For our example 2p 2s ~2p' 2s'1s Eb —Epp,
2

that R I-(E»—Ez, ) & ls
i
r(1)

i 2p ). In the usual approxi-
mation, this term, R I, is neglected in Eq. (17) which cor-
responds to neglecting the second term on the right-hand
side of Eq. (10).

We shall now show that a much more accurate approxi-
mation can be made by calculating the momentum matrix
element in a somewhat different fashion. Rather than
starting with the many-body formalism and relating the
velocity form to the length form using the entire Hamil-
tonian, as was done in obtaining Eq. (10), one can relate
the two on the single-particle level and then work back up
to the many-body expression,

p(1)= [r(1),H] = [r(1),H (1)]

=r(1)H'(1) —H'(1)r(1)

+[H'(1) —H (1)]r(1) . (21)

From this, one easily obtains

&P'
i
p(1) i

b ) =(Eb Ep) &I3'
i
r—( 1)

i
b ) +Rp (22)

Using similar arguments as were used in deriving Eq. (20},
we have

R, =(Ep Ep) &P'
i
r(1)—

~

b & . (24)

For our example Ep ——E I, and E~ ——EI, so that
Ep —EI3——E'&, —E~, which is ordinarily very small espe-
cially when compared with the remainder term RI of Eq.
(20).

Thus we see quite clearly that for two-electron single-
photon transitions, approximation 8 [Eq. (22)] is a much
better estimate of the momentum matrix element than is
approximation A [Eq. (17)]. The complete atomic-energy

(approximation 8) where

R = & P'
i
[H'(1)—H(1)]r(1)

i
b )

=Ep&P'
i
r(1)

i
b )—g &P'

i
H(1)

i
c ) &c

i
r(1)

i
b ) .

(23)

differences (E; E—j) are much larger than the energy
change of the electron involved in the dipole matrix ele-
ment (Eb Ep—) because of the concomitant energy change
of the second electron, so the two approximations differ
greatly, with approximation B being much more accurate.
In the usual single-electron single-photon transition, the
two energy changes are the same and the two approxima-
tions become identical. If we consider the example
2p 2s ~2p' 2s'1s', then

E —Ef ——Eg&+E2s —2EIs ~

(25)
Eb Ep =E—2 E'I —(E —Ef' ),

where in the final step we have assumed E2p E2 Thus
we see that approximation A overestimates the matrix ele-
ment by a factor of 2 which leads to transition rates too
large by a factor of 4. This factor of 4 persists when the
branching ratio of two-electron to single-electron transi-
tions is being computed.

We have chosen here to view the two-electron single-
photon transition from the "shake-down" model point of
view. That is, a nonzero transition rate arises due to the
nonvanishing of the overlap integral of the nonradiating
transition electron because a different Hamiltonian is used
for the final states than for the initial states. In a sense,
this introduces some electron correlations into the prob-
lem. There is another way to proceed, however, by using
a multiconfigurational Hartree-Fock-Slater calculation.
In this method, the transition would be allowed as a
single-particle transition between small admixtures into
the primary configuration. For example, one might have
a mixture of 2p 2s and 2p 2s Is, the second component
then being capable of making a single-particle transition
to the final state, 2p 2s ls . From this point of view, it is
still imperative that Eq. (17) (approximation A} not be
used, at least until the calculation has been reduced to that
of a single-particle transition (2p 2s is~2p 2s ls ) at
which point both approximations would give the same re-
sult.

The results obtained above were based on Eqs. (7) and
(8) which require that the Hamiltonian of the system be
expandable into a sum of single-particle Hamiltonians
with appropriate commutation properties. Hamiltonians
of the Hartree-Fock-Slater type have this property and
our results clearly apply to such problems. Although
Hartree-Fock calculations are more complicated, ap-
propriate single-particle Hamiltonians can be defined, at
least for single-configuration average energy calculations.

TABLE I. Single-particle reduced-momentum matrix element (i'/m}(1s'f ip"'f i2p ) calculated us-

ing Hartree-Fock wave functions. Approximation A is from the right-hand side of Eq. (17) (neglecting

RI ), while approximation 8 is from the right-hand side of Eq. (22) (neglecting Rz). All quantities are
in atomic units.

Neon
Calcium
Iron
Copper

Velocity form

3.66
8.39

11.2
12.6

Approximation 8
3.38
7.98

10.8
12.2

Length form
Approximation 3

6.97
16.2
21.9
24.7
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(The resulting potentials would have infinite singularities
at each of the zeros of the corresponding radial wave
functions and would have little practical use. )

To illustrate the applicability of these results to single-
configuration Hartree-Fock calculations, we have calculat-
ed' the velocity form of the single-particle reduced ma-
trix element (ihlm)( ls'~ ~p'"~ ~2p) for several elements.
The results are displayed in Table I along with the
length-form results using approximations A and 8.
Clearly, the velocity form must be used for accurate re-
sults. However, if the length form is desired, then one
should use approximation 8.

field calculations is given by Eq. (17) (approximation A).
Although this is correct for the usual single-electron
single-photon transitions, it is in error by about a factor of
2 for recently observed two-electron single-photon x-ray
transitions and produces an error by a factor of 4 in the
transition rates. A better estimate [approximation B of
Eq. (22)] is easily obtained by using the single-particle en-
ergy change corresponding to the transition matrix ele-
ment rather than the full atomic-energy changes.
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