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Electron correlations in atomic valence shells: Magnesium and aluminum
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We use a combination of R-matrix and hyperspherical coordinate techniques to study the effects
of electron correlations in atomic valence shells. The 3snd-3p mixing in Mg 'D' is analyzed in de-
tail and its relevance to the s p "d-sp" + interactions throughout the row is indicated by a study of
the 3s nd-3s 3p D' mixing in Al. Multichannel quantum-defect theory parameters for Mg 'D' and
Al D' are calculated ab initio. We obtain excellent agreement with experiment for the quantum de-
fects of the 3snd series in Mg and a significant improvement over previous theoretical studies for
the quantum defects of the 3s nd series in Al. Two-electron correlations are illustrated by mapping
their joint probability density for alternative eigenmodes.

INTRODUCTION

The simultaneous excitation of two electrons from an
atomic valence shell can have a major effect on the spec-
trum of that atom. This is particularly true for open-shell
atoms where the energy required for double excitation is
often smaller than the ionization energy. Open-shell
atoms may therefore have doubly excited states quaside-
generate with a Rydberg series of the same symmetry. As
a result, in the language of configuration mixing, the
eigenfunctions of a whole Rydberg series of levels and its
adjoining continuum contain major and varying admix-
tures of one or more doubly excited configurations. A
well-known example of this type is the D' principal series
of aluminum. '

Photoexcitation of Alt from its ground state 3s 3p P'
leads to either 3s nd D' or 3s ns2S' by dipole selection
rules. It has been observed experimentally, and illustrated
by Lin' through a semiempirical quantum-defect analysis,
that the oscillator strength of the 3s 3p D' configuration
is distributed throughout the 3s nd Rydberg series and
into the 3s ed continuum. No particular energy level can
be associated with the 3s3p configuration. An initial
calculation by configuration interaction (CI) including the
lowest members of the 3s nd series and the 3s 3p config-
uration raised the 3s 3p level, located in the Hartree-Pock
approximation between the 3s Sd and 3s 6d levels, a11 the
way into the 3s ed continuum. Such CI-type calcula-
tions have since been modified to include effects due to
the continuum, although in a somewhat artificial manner
by including pseudoorbitals which oscillate like continu-
um orbitals within the valence-shell radius but are bound
orbitals nonetheless.

The 3s3p S', on the other hand, fails to perturb the
3s ns S' levels to any great extent, it being a well-defined
autoionizing state located just above the Al+ 'S' thresh-
old. This difference between the S' and the D', com-
pletely governed by the short-range dynamics, brings out
the need to view the interactions of a series of doubly ex-
cited states and a Rydberg series of levels as the interac-
tion between different channels as opposed to a level-by-
level analysis. (A channel is defined as consisting of all

the configurations that differ only by an n quantum num-
ber, e.g., 3s ns and 3s es.)

Channel mixing has been seen to proceed through local-
ized avoided crossings between adiabatic potential curves
in hyperspherical coordinates —a concept familiar in
atom-atom collisions at low energy where excitation
occurs through nonadiabatic transitions between Born-
Qppenheimer potential curves. A recent analysis has
shown that crossings of adiabatic potential curves will
occur systematically due to the fact that angular excita-
tion is energetically favored over radial excitation in the
"condensation region, "where all the electrons are close to
the nucleus. The reverse, however, occurs when one elec-
tron escapes to a large radius, thus leading to curve cross-
ings at some intermediate radius. The detailed cir-
cumstances which govern these crossings remain to be in-
vestigated.

This paper extends the main techniques of theoretical
spectroscopy, i.e., CI, multiconfiguration Hartree-Fock by
demonstrating that the mechanics of a many-electron
atom can be understood by analyzing its eigenfunctions in
their configuration space. This analysis may in fact be
essential in order to classify spectroscopically a Rydberg
series of levels, the independent-particle quantum num-
bers proving wholly inadequate in many cases.

The analysis of the spectrum of the doubly excited
states of helium has already demonstrated this to be the
case for a two-electron atom An earl.y study by Cooper,
Fano, and Prats showed that the 'P' spectrum of the
doubly excited states of helium converging to the
He+(N =2) threshold can be approximately represented
by the superpositions 2snp+2pns, the so-called plus or
minus states. More recently I.in, in a hyperspherical
treatment of the doubly excited states of helium converg-
ing to the He+(N =3) threshold, has introduced a set of
approximate quantum numbers to replace the convention-
al set (nili)(n2lq) +'L, namely, I n, N, (K, T)",L,S,tr),
which describe both radial and angular correlations. The
E and T qua~turn numbers were first introduced by Her-
rick and Sinanoglu to describe intrashell correlations in
helium. ' Lin has reinterpreted them, E and T now being
used to describe angular correlations only, while
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3=+1, —1, or 0 label the radial correlations, A =+1
corresponding to the + designation of Cooper et al. and
A =0 describing correlation patterns characteristic of
singly excited states. This scheme enables one to group
energy levels having identical (K, T)" but different L,S,m

into a supermultiplet structure, " a classification scheme
totally foreign to traditional spectroscopy.

The relevance of these studies of helium to the more ac-
cessible spectra of the alkaline earths was made clear by
Greene in his hyperspherical study of the 'P' states of
beryllium' (see also O'Mahony and Greene' ). He
showed that eigenmodes of the 'P' states exhibit the same
plus-and-minus-type character as in helium despite the
fact that the Be+ 2s and 2p levels are not degenerate as
they are in helium. Further investigations on the Mg I '8'
states have reinforced his conclusions, ' but much work
remains to be done on the heavier alkaline earths and on
different f L,S,n ] states to understand the effects of elec-
tron correlations in these atoms.

The above progress hinged on the analysis of wave
functions in configuration space. In this paper we extend
these studies to the type of gross perturbation of a Ryd-
berg series mentioned earlier with respect to aluminum.
As an initial step we examine channel interaction in the
'D' states of magnesium where the "sd" and "p " chan-
nels will be seen to mix strongly. This is the prototype for
the s p"d —sp" + interaction along whole rows of the
Periodic Table. For example, in Al I one of the s electrons
can be thought of as a "spectator, " i.e., by recoupling the
matrix element

(3s nd D'~ +1/r;z
~
3s3p D')

into the form

([(3s) S'(3snd)'D'] D'
~

+1/r,
1+J

X
~
[(3s) S'(3p )'D'] D') .

This interaction dominates the principal series of all the
elements in the same row. In fact, a semiempirical
quantum-defect analysis of the 3s3p P' mixing in the
3s 3pnd P' series of silicon was the motivating force
behind the present study.

We shall use a combination of hyperspherical and R-
matrix techniques, already illustrated in a previous pa-
per, ' to analyze the dynamics of channel interactions and
to provide reliable spectroscopic data. The ab initio cal-
culation of multichannel quantum-defect theory (MQDT)
parameters is an integral part of this analysis. ' Quantum
defects of discrete levels and phase shifts in the autoioni-
zation region are calculated from a small set of MQDT
parameters. ' A full description of electron correlations
in the 'D' spectrum of magnesium is provided through
plots of the probability density in configuration space.
Quantum defects for Al I are calculated and an outline of
the dynamics of three electrons outside a closed shell is
given. Eludication of the mechanics of a three-electron
system is in its infancy due to the large number of vari-
ables involved. However reconstruction of the dynamics
should be possible by plotting different sections of the
probability density in configuration space. Preliminary

A. Outline of the hyperspherica1 method

The Schrodinger equation for two electrons outside a
closed-shell core can be written, in atomic units, as fol-
lows:

Hg= ——,
' V', ——,

' V', + V(r, )+ V(r, )+ /=ED,
r&2

where the interaction of each valence electron with the
closed-shell core is represented by a local potential V(r).
[We use Hartree-Slater potentials for V(r) throughout
this paper. ' ] There have been many approaches to the
solution of Eq. (1) over a limited energy range. We
present initially the hyperspherical coordinate approach.

One replaces the independent electron coordinates r&

and r2 by
T

r2
R =(r &+rz)', a=tan

r
(2)

R being a measure of the "size" of the system and a serv-
ing as a radial correlation coordinate. Equation (1) then
becomes, in terms of R and a, on substituting,

r&
——R cosa, r2 ——R sina, (3)

8 1

M 4R
+(E—U) /=0, (4)

where

lf lzU(R;0) =
R 2 Ba 2cos a 2sin a

+ V(R cosa)+ V(R sina)+ 1

r&2

1~ and 12 are the orbital angular momenta of the two elec-

investigations in this direction have been carried out'7's
but much remains for future study, together with exten-
sions to groups IV—VII.

The division of space into distinct regions where dif-
ferent forces dominate and the subsequent analysis of the
solutions in each of these regions plays a central role in
this paper both in implementing a calculational scheme
and in understanding the solutions. In particular, we
separate the volume in space where all the electrons in-
teract strongly from that region where one electron es-
capes this volume to large distances, moving in a
Coulomb or some other appropriate long-range field. The
electron's motion in a long-range field can be treated in
general analytically of semianalytically as for single-
electron excitations.

Section II describes the results obtained for Mg I 'D',
Sec. III presents the results for A1I, and Sec. IV gives a
discussion of the results and an analysis of future direc-
tions.

II. MAGNESIUM 'D'
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trons, and Q= {a,8&,P&, 8z, gzI represents the angular
variables. We solve Eq. (4) in the adiabatic approximation
at each value of R, which is equivalent to finding the
eigenvalues of the operator U,

(b)

U(R;Q)@q(R;Q) = U~(R)@p(R;Q) . (6)

The adiabatic eigenfunctions 4z(R;Q) contain informa-
tion on both radial and angular correlations as functions
of R whereas the U„(R) serve as effective potentials for
the motion in R. Nonadiabatic effects due to the deriva-
tives in R in Eq. (4) can be taken into account if necessary
in the complete solution, by expanding the total wave
function in terms of the adiabatic solutions,
g=g„F&(R)@z(R;Q). A set of coupled equations for
I'„(R) is obtained on substitution in (4). For a pair of
electrons, Eq. (6) is solved by expanding 4(R;Q) in a
basis set of antisymmetric wave functions coupled to a
given total orbital angular momentum L and spin S,

4(R;Q)=A g C„',„'G„((r))F„((r2)
n )1)n212

+ +I I LM(81 (t'2 82 (t'2)

(7)

where A denotes antisymmetrization. Using suitably
chosen Slater orbitals for G„ I (r&) and F„~ (r, ) and sub-

stituting for r~ and r2 in terms of R and a as in Eq. (3),
we can write (7) explicitly in terms of the set of variables
R and a. ' Subsequent substitution of (7) in (6) and diag-
onalization at each fixed value of R yields the eigenvalues

Uz(R) and the adiabatic functions 4&&(R;Q).
a ~2

e, ".o

—l.2—

l.6
2 4 6 8 l2 l4

R (a.u. )

FIG. 1. Two lowest Mg 'D' adiabatic potential curves U„(R)
plotted as functions of the radius R.

lo

B. 'D' potential curves and adiabatic functions

The 3sed and 3pEp are the channels of interest for the
magnesium 'D'. 3pnf 'D' channel interacts weakly with
these channels, the large angular momentum of the f elec-
tron keeping it out of the interaction region. Therefore
the sum in Eq. (7) contains only the (I»l2) pairs (0,2) and

(1,1). The potential curves are calculated as described in

Sec. II A and are shown in Fig. l. U~(R) converges to the
Mg+(3s) threshold and U2(R) goes to the Mg+(3p) level

at large R. The two curves U& and Uz have a strongly
avoided crossing at R =6.5 a.u. The effects of this cross-
ing will be discussed later.

FIG. 2. Probability densities o.„(R;n,0~2) shown for different
values of R: (a) the p = 1 and (b) the p =2 adiabatic channels.

Figures 2(a) and 2(b) show the rotation-averaged proba-
bility density at several values of R, o&(R;a, 8~2) obtained
by integrating over a', 8&,P&,8z, gz as follows:

o'„(R;a,8i2)= J dQ'@p(R;Q')5(a' —a)

Q 6(cos8~p —cos8]2)C&„(R;Q)

The radial and angular correlations of the two electrons
can be visualized through these plots. At R =4, where
U~(R) has its minimum, a high degree of radial and an-
gular correlation between the two electrons is apparent as
0 ~ peaks at 8~2 ——180 and a=m/4, i.e., at opposite sides
of the nucleus and with r& ——r2. As we go through the
crossing region, the radial and angular correlations begin
to decrease and eventually at R =11 no evidence of radial
or angular correlation is observed as one of the electrons
remains bound in the 3s state of Mg+ at a.-0 or n/2.
The other channel function, plotted in Fig. 2(b), shows the
opposite behavior at low R, peaking at 8&2 ——0' and
a=n/4. An interesting phenomenon occurs at larger R
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FIG. 3. Nonadiabatic coupling matrix element P»{R) be-

tween the two lowest adiabatic curves of Mg 'D'.

in the vicinity of the crossing. At R =7, o.2 has a peak at
a=m/4 and 8&z

——180' showing the character present in
the p= 1 channel at low R. This demonstrates that, were
the curves to cross, U~(R) would in fact converge to the
3p limit and U2(R) to the 3s limit.

The quantity P&2(R)=(@~(R;0)
~

BIRR
~
@z(R;0)), a

measure of the breakdown of adiabaticity, is large when
N&(R;0) changes rapidly with R. If, for example, P&z(R)
was zero for all R, the two adiabatic channels would be
decoupled. Figure 3 shows a plot of this quantity as a
function of R. It peaks at R=6.5 where the crossing
occurs and decays slowly at large R. This slow decay has
caused numerical problems in evaluating scattering pa-
rameters. It is clear from the magnitude and width of
P~z(R) that nonadiabatic effects are important in this
case. In Sec. II C we use an R-matrix procedure to evalu-
ate these effects.

C. MQDT parameters and quantum defects

We consider a finite volume V outside of which the
field is Coulombic and the solutions are known. We aim
then at calculating the logarithmic derivative of the out-
going electron's wave function on the surface S of the
volume V. These solutions are then joined to Coulomb
functions and the MQDT parameters are evaluated. This
method is outlined in the following paragraphs.

Integrating by parts, Eq. (1) transforms into a varia-
tional expression for b, defined by

+b$=0
n

on the surface S of the volume V, as follows:

f [ (Vf'). (Vf)+—2$*(E—U)g]d V
V (10)f g*gdS

[For brevity V =g, ,V;, U=V(r, )+V(r2)+1/r~2. ]
(For details on the following procedure see Refs. 13 and
22.) On using a basis expansion of the form of Eq. (7) for

g(r~, rz) and extremizing (i.e., setting Bb/BC„', „' =0), we

obtain an eigenvalue problem for b,

I C=bAC,

where

(yk and yi represent the appropriate basis functions). The
eigenvalues by and their eigenvectors fp(r~, r2) provide us
with the initial conditions for the outer electron's motion
outside the ion's volume V. The electron moves in a
Coulomb field outside V where MQDT exploits the
analytical properties of Coulomb functions and the usual-
ly slow energy dependence of their parameters. '5'
Knowledge of eigenvalues b~ and eigenvectors Pp enables
one to evaluate a IC matrix or an S matrix. (The language
of scattering theory is used throughout MQDT which
rests on the concept of excitation channels. )

One goes over to the eigenchannel representation' in
MQDT by transforming the K matrix to its diagonal
form, i.e., by constructing superpositions of the dissocia-
tion channels which diagonalize the reaction matrix. Di-
agonalizing E by a transformation U,

UTE U= tan(mp, ), (13)

—sin8 cos8 (14)

the angle 8 measuring the mixing between the 3sed and
3pep channels. p &

and p2 are the eigenquantum defects in
each of the eigenchannels.

Figure 4(a) shows a plot of 0/m' as a function of energy
from an energy below the "3s3d" level to just above the
Mg+(3p) threshold. p, ~ and p2 are plotted in the same en-
ergy range in Fig. 4(b). The first point of interest is the
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FIG. 4. MQDT parameters for Mg 'D' plotted as functions
of the energy e& relative to the Mg+ 3s threshold: {a) the mixing
angle 0/m and {b) eigenquantum defects p~ and p2.

we obtain its eigenvalues tanm. p . An orthogonal transfor-
mation U for a two-channel system takes the form

r

cos8 sinO
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strong energy variation of the parameters in the energy
range —0.2 & e& &0.1. The mixing angle rises from 0 to a
values of about 8/m =0.16 at e~ ———0. 1 and then dips as
p~ increases rapidly. The rise in p~ reflects the penetra-
tion of the d wave in the 3sed channel into the reaction
region, its amplitude therefore changing rapidly on the
boundary. There is then an associated dip in 8/n. . A
comprehensive measure of the channel interactions in this
region is given by the scattering matrix element S~z
squared,

~
S~z I

=sin m(pz —p, &)sin (28) . (15)

At higher energies e&0. 1, ~pz —p~ I
is =0.5, 8/n ap-

proaches 0.25, and therefore
I S~2

I
~1.0. The eigen-

channels contain then roughly equal mixtures of the 3sed
and 3pep channels. This circumstance has more general
implications for the equipartition rule observed by
Greeny' in Be 'P' in that both radial and angular correla-
tions are involved in this case. This is also the case for
the heavier alkaline earths, Ca to Ra, where strong mixing
is observed between the "sp" and "pd" channels. We
can study this mixing in more detail by examining the as-
sociated behavior of the helium doubly excited 'D' states
converging to the He+(N =3) limit. Lin has recently ex-

amined these states. He plots cr~(R;a, 8~2) for the lowest
adiabatic curve, labeled (2,0)+ in the (K, T)" notation.
His plot is identical to Fig. 2(a) at low R, however, at
larger R when the wave function begins to break into the
He+ 3s and 3p valleys, due to the rising potential barrier
for double escape, the two electrons are no longer correlat-
ed radially but they maintain their angular correlation
o~(R;a, 8&2) still peaking at 8~2 ——180. The degeneracy of
the 3s and 3p levels in He+ allows the angular correlation
to persist to large distances. The Mg+ 3s and 3p thresh-
olds, on the other hand, are split by an energy DE=0.3
Ry and no angular correlation is apparent at R =11 in
Fig. 2. However, we know from earlier studies of the 'P'
states of Be and Mg that the partion of amplitude into the
two dissociation channels occurs at a relatively low-value
R (at the avoided crossing at R =6.5) where the splitting
hE between the thresholds at large R plays no role.
Therefore for e~ & 0. 1 the only difference between the an-
gular correlations in Mg and He at large R will be due to
the different amplitudes F~(R) and E2(R) of the radial
wave functions for Mg in each of the adiabatic channels.

The quantum defects 5/m of the discrete levels and the
phase shift 5 in the continuum of each ionization channel
can be calculated from the parameters p, ~, p, z, and 8/m,
plotted in Fig. 4, as follows

sin(np))sin[m'(vz+p2)]+tan 8sin(np2)sin[m(v2+p, , )]tan5=
2 ~cos(np))sin[n(v2+p2)]+tan 8cos(m@2)sin[ad'(vs+pi)]

l.2—

0.8—

0 I

-0.2
I

-O. I

I (
'

l

Mg (3p)

I

l

I

p5p I

I

I

I I

I ~ I

0 O.I 0.2 0.~
et (R))

where vz is given by E Iq~ —1/v—2. F——igure 5 shows
5/n as a function of energy. The "3p " cannot be identi-
fied in the spectrum, being distributed over the whole
3snd Rydberg series and the adjoining continuum. [There
has been some controversy over the possible existence of
the 3p level just below the Mg+(3s) threshold. ' For
completeness we have searched over a very fine energy
mesh using the parameters shown in Fig. 4 and have
found no evidence for such a level. ] We obtain remark-
ably good agreement with experiment and with another

more sophisticated calculation, evidenced by Table I,
even though we used Hartree-Slater potentials to represent
the electron —closed-shell core interaction.

It is clear from the above analysis that the sd and p
channels interact strongly. It should come as no surprise
therefore, as pointed out in the Introduction, that the"s d"-"sp " interaction in Al i is also strong.

III. ALUMINUM

As mentioned in the Introduction, there has been much
interest in the Al D' spectrum because of the strong in-
teraction between its 3s ed and 3s3pnp channels. Our
work, in part, complements an earlier R-matrix study of
the autoionizing levels above the Al+ 'S' threshold car-
ried out by Le Dourneuf. et al.

%'e used the R-matrix method outlined in Sec. II to cal-
culate the MQDT parameters for the principal series in
aluminum. This calculation is a step up in complexity
compared to the calculations already performed in the al-

TABLE I. Magnesium 'D' quantum defects.

FIG. 5. 5/~ vs e~, the energy relative to the Mg+3s thresh-
old. 5/m is equivalent to the quantum defect of the 3snd series
for e~ ~0.0 and it is shown here as a continuous function of en-
ergy. The quantum defects of the discrete levels shown in Table
I are obtained by finding the intersection between this curve
with 6/n. =n —v~ where e~ ———1/vj. The positions of the 3@4p
and 3p Sp autoionizing levels are indicated in the graph.

Level

3S 3d
3s 4d
3s 5d
3s threshold

Experiment
(Ref. 26)

0.3191
0.4146
0.4764

Mend oza
(Ref. 25)

0.3111
0.4042
0.4639

This calculation

0.3208
0.4231
0.4916
0.5487
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kaline earths. One reason for this is that Al+ has two
electrons outside a closed-shell core making it necessary to
include electron correlation effects in evaluating the ener-

gy differences between its different thresholds. The Mg+
and Be+ ions, on the other hand, have a simple one-
electron structure. Secondly, we are now dealing with a
system of three interacting electrons and although the
dominant interaction, as pointed out in Mg, is of the sd-

p type, other configurations must be included to obtain
satisfactory agreement with experiment.

The Hamiltonian for three electrons outside a closed-

shell core, in a.u. , is

(17)
3

H = $ [——,
'

V g'+ V(r, )]+$i=l p&j EJ

where, as in the two-electron case, V(r) represents the in-
teraction between each of the electrons and the closed-
shell core. The wave function g(ri, r2, r3) is expanded in
terms of antisymmetric basis functions within the reaction
volume V as before. This wave function, coupled to form
a given total orbital angular momentum I, and spin S, is
indicated symbolically as follows:

l i l213
nIn&n3 nil&(~1)+n&l2(~2)+n3l3(~3)I [Il&m&(61~4'l)I /2m&(62~6)] Il&m3(()3~43) Ill ] $ /f2 2lj3

X I[X.. .(i)X.. .(2)] "X.. .(3)I'. (18)

TABLE II. The energy differences between the Al+ thresh-
olds in a.u.

g(3Po 1Se)
g(1po lSe)

Experiment

(Ref. 26)

0.1709
0.2727

Le Dourneuf
et al.

(Ref. S)

0.162
0.2709

This calculation

0.1646
0.2741

We then construct (11) from (18). The coefficients C and
the eigenvalues b~ are obtained by solving Eq. (11) at a
chosen total energy E. Matching to a product of Al+ and
Coulomb wave functions on the surface S gives us the K
matrix as before.

Initially we only included configurations of the type
3s nd and 3s 3pnp D' in the expansion (18). This calcu-
lation demonstrated the basic effect, in that the 3s3pnp
channel mixes strongly with 3s ed channel over a wide
energy range. However, to obtain closer agreement with
experiment, it was necessary to include other configura-
tions in the expansion (18). An indication of the relevant
configurations needed is obtained through a CI calcula-
tion of the energy levels of Al+. Ten 3sns' and 3pnp'
configurations were used to calculate the 'S' levels of
Al+. The I" and 'P' levels were calculated using the
3snp', 3pns', and 3pnd configurations. The orbitals are
generated numerically in Hartree-Slater potentials. The
energy differences between "3s "'S' and the "3s3p" I"
and 'I" levels are given in Table II. Good agreement with
experiment is obtained. These ionic states are projected
onto the solutions Pp(r&, r2, r3) of Eq. (11) on the surface S
to evaluate the escaping electron's amplitude in each dis-
sociation channel and hence the K matrix.

Table III shows all the configurations used in our full
three-electron calculation. The primed notation indicates
orbitals that are not necessarily orthogonal to the
unprimed orbitals. Nonorthogonal orbitals enlarge the
number of integrals but adds flexibility. to our basis set.
The 'I" threshold of Al+ is 7.42 eV above the 'S' thresh-
old and 2.77 eV above I", therefore channels converging

TABLE IEE. D' channels used in this calculation.

No. of orbitalsConfiguration

(3s 3s')'S'nd
(3p3p')'S' d
(3s 3p) P'np'
(3s3p)'P np'
(3s 3d)'P'np'
(3p 3p') P'nd

10
5
8
s
2

to the 'I" are strongly closed at energies close to the 'S'
threshold. We enforced this condition by ensuring that
the np' wave functions in the 3s3p 'I"np' channel had
zero amplitude on the surface S. This enables us to
analyze the D' spectrum in terms of the two channels
(3s )'S'ed and (3s3p) P'ep'. The K matrix was calculat-
ed as in Sec. II, and the mixing angle and eigenquantum
defects 0/m, and p& and p2, respectively, are plotted in
Fig. 6 in the vicinity of the 'S' threshold. The most strik-
ing aspect of Figs. 6(a) and 6(b) is the similarity between
the energy dependence of these MQDT parameters and
those of Mg 'D' plotted in Fig. 4. In particular we again
see the rise in p| due to the penetration of the d wave and
the associated behavior of 0/m in the energy range—0.15 & e& & 0.0. 8/n also rises to —,

' at e& -0.2 Ry. The
quantum defects of the discrete spectrum and the phase
shift of the continuum function in the autoionization re-
gion are calculated using these parameters and Eq. (16).
Figure 7 shows the quantum defect of the 3s~nd series as
a function of energy and the phase shift of the d wave in
the continuum. The rise by one of 5/m at ei =0.21 is due
to the (3s3p) I"4p autoionizing resonance. The 3s3p
configuration is clearly distributed throughout the 3s nd
series as seen by the slow rise in the quantum defect just
below the 'S' threshold. We obtain satisfactory agree-
ment with experiment ' ' and a significant improvement
on previous theoretical calculations especially for high
Rydberg states (see Table IV) considering we have used a
Hartree-Slater potential to represent the electron —closed-
shell core interaction. The quantum defects seem to be
generally lower than the experimental ones by about 0.05,
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Level

3$3d
3s 4d
3$ 5d
3s 6d
3$ 7d
3s Sd
'S' threshold

Experiment
[Ref. 2(b)]

0.3684
0.5740
0.7360
0.8291
0.8915
0.9125

This calculation

0.321
0.544
0.672
0.767
0.832
0.871
0.924

TABLE IV. Aluminum D' quantum defects.

Ref. 4

0.335
0.512
0.606
0.577
0.406

0.25
(~)

0.20—

O. I 5—

O.IO—

0.05—

0 I l I i I i I i I

-0.2 -O. I 0 O. I 0.2
e) (Ry)

3s ns configurations from penetrating the valence shell,
thus reducing the probability of excitation of the 3s3p .
This difference between alternate excitation channels is
familiar from the noble gases Ar, Kr, and Xe, where the
nd autoionizing levels converging to the p,~q threshold
have much larger widths than the ns levels. Neon, on
the other hand, has a 2p core and the first d-wave excita-
tion is to the n =3 shell. The ns levels in this case have
larger widths than the nd.

FIG. 6. MQDT parameters for Al 'D' plotted as functions of
the energy e~ relative to the Al+ '5' threshold. Shown are (a)
the mixing angle 8/m. and (b) the eigenquantum defects p~ and
P2.

12—

0.8—

04—

0 I I

-0.1

e, (Ry)

O. l

I

0.2

FKz. 7. 5/m vs the energy e& relative to the Al+ 'S' thresh-
old. The quantum defects p—:5/m of the 3s nd series in the
discrete region are drawn as a continuous function of energy.
Note the rise in the quantum defect from about 0.4 to 1.0 below
the 'S' threshold. This is due to the "3s3p " perturber. The
position of the (3s 3p) P'4p autoionizing level is also indicated.

however, the profile of their rise agrees well with experi-
ment as illustrated by the values in Table D'. As far as
the evolution of electron correlations in Al is concerned
we suspect that the three electrons "forin" an equilateral
triangle with the nudeus at its center in the low R region,
this being the generalization of the plus-type configura-
tion for two electrons. ' However, more work is required
to detail the evolution of correlations for three-electron
systems.

The D' series is, as we have seen, dominated by the in-
teraction between the 3s ed and 3s 3pep channels. How-
ever, the 3s ns S' series interacts very weakly with the
3s3pnp S' channel. This is due in part to the Pauli ex-
clusion principle which prevents the outer electron of the

I&. DISCUSSION

The study of atomic excitations should be generally ad-
vanced by the methods described in this paper, namely, (1)
the identification of critical regions of space and energy
where channel excitation occurs, through such plots as
Figs. 1 and 3, (2) the description of the motion of many-
electron system by an analysis of its wave functions in
configuration space (e.g., Fig. 2), and (3) the ab initio
evaluation of channel-coupling effects through the calcu-
lation of a small set of MQDT parameters. We have illus-
trated particularly how these methods provide a clearer
understanding of the sd-p interaction in magnesium 'D'
and of the analogous s d-sp interaction in aluminum
g)'. ~e are also able to calculate reliable energy levels in

the discrete and phase shifts in the autoionizing and con-
tinuum regions. These calculations required little compu-
tational effort in that, for example, the whole aluminum
calculation, from the generation of the basis set to the cal-
culation of the MQDT parameters and quantum defects
at all energies, took 30 CPU (central processing unit)
seconds on an IBM 3081 computer or about five minutes
on a Digital Equipment Corporation VAX 11/780. This
section outlines how our analysis can be brought to bear
on some outstanding problems.

Calculations on the heavier alkaline earths Ca, Sr, and
Ba are desirable as there exist extensive experimenta1 data,
particularly in barium. The nature of the + equiparti-
tion rule observed in calculations on the 'P' states of Be
and Mg also needs to be investigated for these heavier
atoms. However it will not be possible to represent the
electron —closed-shell core interaction by a Hartree-Slater
potential, as was done in this paper, due to the sensitivity
of, for instance, the 3d wave function in Ca+(3d) to this
interaction. A local-density approximation of the kind
used by Armstrong et al. might suffice for this purpose.
Spin-orbit coupling effects should also be included in cal-
culations, at least for barium. Extensive data exists also
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on the excitation of the resonance line of the alkali metals
by low-energy electron impact, collected mainly by
Gallagher's group. ' An analysis of such data may prove
particularly interesting in that fairly elaborate close-
coupling calculations have only come within 10'f/o of the
experimental excitation cross section for the analogous 2s
to 2p transition in electron-Be+.

Our work on aluminum should be readily generalizable
to the other group-III elements Ga, In, and Tl. Synchro-
tron radiation measurements on the "nsnp(n+1)p" au-
toionizing resonances of these atoms have been performed
recently. Scott, Burke, and Bartschat have used a
Hamiltonian of the form of Eq. (17) plus spin-orbit cou-
pling terms in their analysis of low-energy inelastic elec-
tron scattering on Hg. Electron-Cs scattering and
electron —spin-polarization effects in these atoms were
also studied. Further elucidation of the evolution of
correlations in three-electron systems through plots of the
type shown in Fig. 2 or by some other means is desirable.

As mentioned earlier, aspects of the silicon spectrum
initiated this work, The P' and D' "3s spnd" spectra
are perturbed by the 3s3p configuration. An attempt
to fit the P' series by Mies's quantum-defect treatment
of the effect of an isolated perturber on a Rydberg series
yielded fairly poor results. This shortcoming is now
understandable in view of our Al and Mg calculations, in

that the strong energy dependence of the MQDT parame-
ters due to electron correlations makes Mies's simple
treatment unrealistic in this case. There exists a wealth of
detailed spectroscopic data on the group-IV elements on
which ab initio calculations remain to be done.
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