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An exact scaling relation developed for nonlocal operators is presented. The matrix elements of a
general nonlocal operator are related to a set of reduced matrix elements through scaling coefficients
which do not explicitly depend on the particular nonlocal operator. The theory reduces to a conven-
tional local scaling formulation in that limit. The guide to developing the nonlocal scaling relation
comes from consideration of general symmetry properties of the nonlocal operator in a chosen repre-
sentation. Operators with high degrees of symmetry will generally lead to scaling relations requiring
a small number of scaling coefficients for practical applications. The theory is expected to be useful
not only for providing exact nonlocal scaling relations but also as a tool for developing approximate
scaling relations which still retain the nonlocal nature of the operator to an appropriate extent.

I. INTRODUCTION

Recently, there have been extensive studies on scaling
theories which establish a linear relation between matrix
elements of a desired operator and a reduced number of
independent  (input) matrix elements.! !’ Most
quantum-mechanical expressions for physical observables
involve large numbers of matrix elements including cases
where sums or averages over the quantum states enter.!®
Thus, the reduction of computational effort implied by
scaling can be important in many quantum mechanical
calculations where obtaining large numbers of matrix ele-
ments is often one of the most time consuming steps.
Furthermore, scaling may also be applied to inversion
problems where fundamental quantities such as the poten-
tial or rate-constant matrices are sought from a set of ap-
propriate experimental observables.” In molecular dynam-
ics, scaling relations were first found within the infinite-
order sudden approximation! and an energy-corrected
sudden scaling theory.? These techniques have been ap-
plied quite successfully to a number of dynamics prob-
lems such as the calculation of state-to-state cross sec-
tions,® the inversion of experimental relaxation data,’ and
the modeling of experiments.'® A similar scaling idea was
also proposed for the calculation of multicenter molecular
integrals!®> and for classical observables averaged over
phase space. '

The scaling theory developed thus far has been mainly
restricted to local operators which are multiplicative and
diagonal in the chosen representation (usually coordinate
space).! =% For example, the T-matrix operator in the sud-
den approximation is local and multiplicative in the inter-
nal coordinate space. For such local operators, a scaling
relation is found by expanding either the operator or a
product of the matrix element wave functions in terms of
a’ complete set of basis functions with an appropriate
weighting factor.? Then, an entire set of matrix elements
can be related to a smaller set of fundamental elements
which often correspond to a column (or row) of the origi-
nal matrix. The scaling coefficients relating various ma-
trix elements to the fundamental elements have been re-
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ferred to as “spectroscopic,”! since they are independent
of operator, and therefore they can be calculated once and
used for many different operators. The latter property is
very important with regard to the practical use of scaling
theory, and the scaling theory for nonlocal operators
presented in this paper essentially retains this feature.

Many quantum-mechanical operators are inherently
nonlocal and therefore are not multiplicative or diagonal
in the representation chosen for study.>!° Only a few ex-
amples of such nonlocal operators are the transition
operator (T- or S-matrix operator) in scattering theory
and optical spectroscopy,’® the exchange operator in
molecular structure theory,zo'21 Green’s functions,?? and
optical potentials.?> In spite of the richness and impor-
tance of nonlocal operators in quantum mechanics, there
has been little work on scaling theory which is applicable
directly to this class of operators. Instead, a nonlocal
operator is often approximated as a local operator (e.g., by
using the sudden approximation for the collision transi-
tion operators) after which the local scaling technique is
applied. Recently, Eno!” has proposed an exact scaling
relation which is capable of treating nonlocal operators.
In this technique, a new arbitrary operator is introduced
and the matrix of the desired operator is related to the set
of matrix elements of the new operator through scaling
coefficients which explicitly depend not only on the origi-
nal operator but also on the new operator introduced in
the scaling process. A judicious choice of the extra opera-
tor is critical and further study on the convergence
behavior is necessary. Because of the complexity of the
scaling coefficients, this approach may be useful as a tool
for finding approximate scaling relations rather than as an
exact scaling relation. The formulation in the present pa-
per, however, avoids any explicit dependence upon the
desired operator in the scaling coefficients.

The new approach in this paper for developing an exact
scaling relation for a nonlocal operator is based on ex-
ploiting any available symmetry properties of the operator
in a representation of choice. The notion of the symmetry
here is quite general and encompasses any simplifying
features of the operator. We thus construct an exact non-
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local scaling relation based on utilizing this symmetry to
transform the problem into a natural set of variables,
which are better able to describe the nonlocal operator.
For example, sum and difference variables form a natural
choice of variables in many contexts?* and their use leads
to an immediate simplification. In particular, a local
operator is a special case of a nonlocal one expressed in
these variables. Therefore, we attempt to maximize the
use of symmetry of the nonlocal operator to find an exact
scaling relation in which the entire set of matrix elements
of the nonlocal operator is related to a reduced set of ap-
propriate matrix elements through scaling coefficients
which do not explicitly depend on the particular operator.
However, the scaling coefficients will generally contain in-
formation on the symmetry aspects of the operator. In
some cases, it is expected that there may be a significant
operational savings achieved by using scaling relations
developed in this fashion. It is also expected that these
scaling relations may be useful for developing further ap-
proximate scaling relations which retain the nonlocal na-
ture of the operator to an appropriate extent.

Section II first briefly summarizes local scaling theory
and casts it in a more general form parallel to the nonlo-
cal theory to follow. A presentation is then given of the
general concepts behind nonlocal operator scaling. The
reduction of the nonlocal scaling relation to local scaling
is demonstrated along with an analysis of other special
forms of nonlocal operator. In Sec. III, the exact nonlocal
scaling relation is applied to the matrix elements of nonlo-
cal operators expressed in terms of harmonic oscillator
wave functions. Some concluding remarks are presented
in Sec. IV.

II. A SCALING RELATION
FOR NONLOCAL OPERATORS

In this section, we present the general concepts needed
for the scaling of nonlocal operators. First, we will briefly
review and extend the relevant aspects of local scaling
theory® in order to provide the background to the nonlocal
developments. The reduction of the nonlocal scaling rela-
tion to special cases will also be discussed.

A. Local operators: Further perspectives
A matrix element of a local operator A4 (x) is given as
Ay= [ $1(x)4(x)¢;(x)dx , (1)

where {¢;(x)} are the basis functions and (Q, is the
domain of integration for x. The vector x can be of arbi-
trary dimension and may be associated with any appropri-

ate space (e.g., coordinate or momentum space). Now, we

consider a new variable
y=y(x) (2)

and an (orthonormal) complete set {1;(y)}. Here, the
transformation between x and y must be unique and in-
vertible. The choice of y should be made to better reflect
the structure of the operator A4(x). By expanding the
operator A4(x) in.terms of {;(y)} with the appropriate
weighting factor [¥o(y)] ™},

A(x)=3 Aot (y)/Po(y) , 3)
k

we can easily find the following scaling relation:

A= TjrAro 4)
. k
~where Ay is the matrix element of A in the new basis set
{i(y)}
Aro= [, V()4 X)Yo(y)dy (5)
Y
and 7,1 « is the scaling coefficient given as

¢k(x)
Yoly)
Here, the function ¥(y) is nodeless,? usually correspond-
ing to a ground-state function of the set {;(y)}. The

scaling relation in Eq. (4) can be obtained equivalently by
expanding the product of basis functions ¢} (x)¢ (%),

¢t ()¢, (x)= 3 Tk (y)bo(y)/ | Ty | (7)
k

L= [o 10— = ¢;(x)dx. ®

and directly substituting Eq. (7) into Eq. (1) with
J,=0x/0y being the Jacobian for the transformation
from x to y. The local scaling formula in Eq. (4) is an ex-
act relation and no approximation is involved. As evident
from Eq. (6), the scaling coefficients are entirely indepen-
dent of the form of the operator 4 (x) and therefore they
can be calculated once and used as needed for many dif-
ferent operators. However, it is also evident from Eq. (6)
that {¢;(y)} and hence {I;;;} should generally reflect the
properties of A(x) and/or the product set {¢7(x)}
X {¢;(x)}. The scaling relation in Eq. (4) has some simi-
larity to the Wigner-Eckart theorem although a funda-
mental difference is apparent through the presence of the
summation. Equation (4) can also be interpreted as the re-
sult of generalized Fourier expansions through either Egs.
(3) or (7). The utility of the scaling relation is critically
dependent on the convergence of these generalized Fourier
expansions as well as the spectroscopic nature of the scal-
ing coefficients. It has been shown that the expansion of
Eq. (4) in many cases is finite because of the nature of the
scaling coefficients, and thus a significant operational sav-
ings is possible. This local scaling relation has been suc-
cessfully applied to problems in which nonlocal operators
(e.g., the transition operator T) are first approximated as
local operators by using dynamical simplifications such as
the sudden approximation.>~!3

A significant point with regard to the nonlocal operator
discussion below concerns the introduction of the
transformation of variables in Eq. (2) and the use of the
new basis {1;(y)}. Traditional local scaling theory has
not involved either of these operations. The introduction
of the transformation in Eq. (2) should be viewed as being
performed to take advantage of the natural variable
dependence (i.e., a symmetry in the sense used for nonlo-
cal scaling below) of the operator 4. Similarly the use of
the set {1;(y)} is suggested in order to best span the space
of the transformed operator or the wave function product
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in Eq. (7). These generalizations of local scaling theory
result in the relation of Eq. (4) between the matrix ele-
ments of A4 in the original basis {¢;(x)} and a column of
the matrix in the basis {1;(y)}. Although this is not the
traditional form of local scaling theory, the added compli-
cation is minimal. Furthermore, the generalization ex-
tends the utility of local scaling theory as well as provides
a critical springboard for the nonlocal scaling below.

B. Nonlocal operators

In contrast to Eq. (1), a matrix element of a nonlocal
operator B (x,y) takes on the following form,

By= [, [0, ¢10Bxy)8;(y)xdy . (®)

A nonlocal operator B is not multiplicative or diagonal in
a chosen representation, and it may include differential
operators. The technique used for scaling local operators
is not directly applicable in the present case, although a
generalized procedure will now be developed. Guidance
in this matter can first be obtained by some qualitative ob-
servations. Based on the common local approximation
B(x,y)~B(x)8(x—y) and more general considerations,?*
one might expect a dominant region of significance for
B(x,y) to be in the vicinity of x~y. Other special cases
could have different behavior, and the first step in achiev-
ing a nonlocal scaling is an examination of B(x,y) for any
evident structure as a function of x and y. Such structure
will imply the existence of a natural set of variables which
best describes the nature of the operator. Thus, it is possi-
ble to choose a set of new variables, (u,v):

u=u(x,y), (9a)

v=v(x,y) . (9b)

Here, u and v must be linearly independent and the
transformation between (x,y) and (u,v) must be unique
and invertible. It was noted in the local scaling approach
of subsection A that it is also possible to introduce a new
variable in similar fashion [see Eq. (2)]. In terms of the
new set of variables, the matrix element in Eq. (8) can be
rewritten as

B;= fnu fnvat(u,v)ﬁm,v)@(u,v)|J|dudv, (10)

where {#;} and B signify the new functional forms of
{¢;}] and B in terms of (u,v), respectively, and
J =09(x,y)/d(u,v) is the Jacobian for the transformation
from (x,y) to (u,v). In many problems it is anticipated
that a dominance will arise with respect to one or other of
the variables (u,v) (e.g., this occurs in the near local
operator limit using sum and difference variables), and
this behavior can be utilized to simplify the evaluation of
the integral in Eq. (10). The basis of the nonlocal scaling
technique presented below rests on taking advantage of
the existence of a set of natural variables (u,v). The
choice of variables would depend not only on the structure
of a nonlocal operator but also on the basis set used to cal-
culate the matrix elements. As will be discussed later, the
judicious choice of this set is critical for this scaling tech-
nique and the possibility of such a choice largely depends
on the symmetry of the given nonlocal operator.

In terms of the natural variables (u,v), the operator B
(or B) is expected to have simpler behavior. Indeed, the
choice of (u,v) would largely be guided by seeking such
simplifying characteristic behavior. With these comments
in mind, we assume the existence of an appropriate com-
plete set of function {n;(u)} and {&;(v)} which span the
domain encompassed by u and v, respectively.?® In terms
of these functions, B may be expressed as

B(u,v)=B(x,y)
=¥ bmi(WE (V) /[no(w)Es (V)T , (11)
ki

where { by} are constant expansion coefficients and 74(u)
and £y(v) form nodeless weight functions in the same
sense as arose in Eq. (3) for local scaling.”® The introduc-
tion of complex conjugates into Eq. (11) is for conve-
nience and other equivalent choices could as well be made.
Since the variables (u,v) and functions {7;(u)} and
{£:(v)} are “natural” for the system, we expect the expan-
sion in Eq. (11) for B not to contain a large number of
terms. This is precisely the argument one would put forth
for the choice of {;(y)} for the local case in Eq. (4). As-
suming the chosen functions are orthonormal,
(n;|m;)=38; and (&;|&;)=3,;, we may readily identify
the coefficients,

bu= [, [o MEWEWEB@VINwE(Vdudv.  (12)

Substitution of Eq. (11) into Eq. (10) will finally yield the
desired scaling relation,

Bij= > ILjjubu , (13)
l

where

T le(“)é)zk(v) -~
Lija= fﬂu fnv¢i(u,V)m¢j(u,v) |J |dudv .

(14)

In parallel with local operator scaling, it is significant to
point out that the scaling relation in Eq. (13) may equally’
be derived from expanding the product function
#7(x)¢;(y) in Eq. (10) in terms of the same set of new
functions introduced above:

¢7 (x)$;(y)= 3 Lj umr(@no(wEs(vV)E ) /| T | . (15)
Xl

Direct substitution of this expansion into Eq. (8) will
again lead to the scaling relation in Eq. (13). The scaling
coefficients in Eq. (14) and the reduced matrix elements in
Eq. (12) may be calculated analytically if possible, or nu-
merically. The above nonlocal scaling relation is exact
and there is no approximation involved. It shows that a
matrix element B;; can be expressed in terms of the scal-
ing coefficients {I;;;;} and reduced matrix elements
{ br}. Notice that the scaling coefficients do not explicit-
Iy depend on the operator B. In cases of related sets of
operators, for which the same set of natural variables
(u,v) and basis sets {7;(u)} and {£;(v)} can be used, it
should be possible to treat {I;; 5} as spectroscopic in the
same sense as for local scaling.
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The utility of the above nonlocal scaling relation would
depend on the ease of calculating the scaling coefficients
and the reduced matrix elements. It would also depend on
the speed of convergence of the expansion in Eq. (13). As
mentioned before, one of the major goals of the scaling
approach is the achievement of a significant operational

- savings for the calculation of matrix elements. Evidently,
there would be no operational savings if we need as many
reduced matrix elements { by} as the original matrix ele-
ments {B;;}. The essence of finding the symmetry of
B(x,y) leading to Eq. (13) indicates that there will gen-
erally be fewer reduced elements than in the original set.
This point is especially clear if B is exactly expressed, or
reasonably well approximated, in terms of a finite set of
product functions,

_ M
Buv)= 3 a,(u)By(v).

(16)
m=1
Then, a reduced matrix element by; can be written as
M .
ka:‘ 2 (am )kO(Bm )Ol B (17)
m=1
where
(ko= fn M (Wa,, (W)ge(u)du , (18a)
Brda= [ ESVIBa(WEWIAY . (18b)

These two reduced matrices have exactly the same forms
as the reduced matrices entering into the local scaling
theory of Eq. (4). We can calculate (a,,)xo and (3., )
separately and combine them together as necessary to con-
struct a reduced matrix by;. This separability of the re-
duced matrix elements can lead to a significant operation-
al savings for the nonlocal scaling approach. For exam-
ple, suppose we desire to calculate the N X N matrix { B;;}
and we need a K XK' matrix of reduced elements {by;}.
If Eq. (17) holds, only KM and K'M matrix elements of
a,, and f3,,, respectively, would be necessary. When M is
small enough and K and K’ is not too large compared to
N, the operational savings by using this scaling technique
can be significant. It should now be clear that, if a nonlo-
cal operator has some degree of symmetry, Eq. (13) can be
useful as an exact scaling relation with a potential for sig-
nificant operational savings.

The exact scaling relation Eq. (13) can also be used as a
tool for finding approximate nonlocal scaling relations
taking into account the nonlocal nature of the operator to
an appropriate extent. For example, we may approximate
B(u,v) if it is a slowly varying function of one of the
variables. This possibility is evident in the form of Eq.
(17). In addition, it may also be possible to approximate
the scaling coefficients { I;; 4} in some problems.

At this point, some discussion on special cases is ap-
propriate. The choice of variables (u,v) was arbitrary
above, but a commonly expected case?* consists of sum
and difference variables

(19a)
(19b)

u=(x+y)/2,
v=(x—y)/2.

Furthermore, many cases may be dominated by a strong
dependence on v and a weak dependence on u. A Green’s
function G (x—y) is clearly an extreme example with
dependence only on v. Under these latter conditions, the
analysis based on Eq. (17) is quite simple with M=1. The
choice of variables in Eq. (19) is also natural in momen-
tum (or quantum number) space from semiclassical argu-
ments again leading to a suggested weak dependence on u
over that of v.

The nonlocal scaling relation in Eq. (13) reduces to lo-
cal scaling when the nonlocal operator B(x,y) can be
written as

B(x,y)=A4(x)8(x—y) , (20)

where A4 (x) is a local operator, and clearly in this limit
B;j=A;;. This limit corresponds to the sudden approxi-
mation for the transition operator in dynamics prob-
lems."> A nonlocal operator of this form can be also
viewed as a simple separable case in Eq. (17) with
a(u)=A4((x+y)/2), B(v)=6(x—y), and M=1. Thus, it
is understandable from the above discussion on matrix
dimensionality issues for the nonlocal scaling relations
how the local scaling limit can achieve such significant
operational savings. In this case, we choose (u,v) in Eq.
(19) and {¢;} ={n;}={&;}. Then, a reduced matrix ele-
ment is expressed as

by =d5(0)d;(0)Ajg - (21)

The local scaling relation in Eq. (4) with {¢;}={4;} and
y=xX is readily obtained by substituting Eq. (21) into Eq.
(13) and the use of the closure relation as well as the fact
that ¢;(u,0)=¢;(x).

Another interesting special case of nonlocal operator
scaling occurs when the nonlocal operator takes on the
following form,

B"(x,y)=¢,,(x)D (x,y)pn(y) , (22)

where ¢,,(x) and ¢, (y) are members of the same basis set
used in Eq. (8) and D(x,y) can be an arbitrary operator.
In this case, because of the presence of ¢,,(x) and ¢} (y) in
the operator, its scaling relation involves double applica-
tion of the local scaling relation in Eq. (4) for x and y
separately.!® It is noted that D(x,y) is independent of m
and n. All two-electron integrals in molecular structure
calculations belong to this category with D(x,y)
=1/|x—y|". Other special cases may also arise in vari-
ous areas of quantum mechanics, with each having its
own particular features.

III. AN EXAMPLE WITH HARMONIC
OSCILLATOR FUNCTIONS

As an example of the exact nonlocal scaling relation in
Eq. (13), we consider a case in which {¢;}={n;]={&}
are harmonic oscillator basis functions in one dimension.
We choose the sum and difference variables in Eq. (19) be-
cause the harmonic oscillator basis sets can be easily
manipulated with this variable transformation. At this
point the form of the operator B(x,y)=B(u,v) will be
taken as arbitrary. In order to implement the scaling rela-
tion in Eq. (13), we first need to calculate the scaling coef-
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TABLE I. Computational operation counts for nonlocal scaling using Eq. (23).

Operator Reduced matrix

B(u,v) type Operation count Ratio?
General® bu - 2N? 2
S am(W)Bp(V) (@tm ko and (B o 4NM 4M /N
a(u)B(v) axp and By 4N 4/N
a(u) or B(v) ko or PBor 2N 2/N

*Ratio of the operation counts in scaling approach to the number of original elements, N2.

®An operator having no evident symmetry.

ficients {I;; 4} in Eq. (14). By using the generating func-
tion for Hermite polynomials,?” we can readily obtain the
analytic expression for the scaling coefficient { Iy x;}:

k1 1

N i+k, i J
L= | T oisi k1l 2 (=D ag a1 T
iy ,

(23a)

for i +j >k +1and i +j +k +I=even, and otherwise

Lju=0. (23b)
In Eq. (23a), the symbol Jy, is
k+r||{l—r
Jklr=§‘(~l)q g k—g (24)
and aj is given by the following recursion relation,
af=2ai 7\ +(i+Daf3} (25)

with @J=1 and ap-—a{+p_—0 for p>0. In the above
equations, the summations are over all possible values of
the indices. In practice, tables of {Jy;,} and {a;} can be
prepared first and stored to be used for construction of
the scaling coefficients {I;;;}. Implementation of Eq.
(23a) is then very efficient. Since B was arbitrary here, it
is clearly evident that the scaling coefficients have no ex-
plicit dependence on the operator. '

In Table I, we summarize the computational operation .

counts in the scaling approach for calculating a N XN
matrix of various types of nonlocal operators with har-
monic oscillator basis functions. Since the scaling coeffi-
cients in Eq. (23) are spectroscopic, the operation counts
include only the effort (i.e., the number of independent
matrix elements) for calculating the reduced matrix { by, }.
The scaling expansion in Eq. (13) is finite because of Eq.
(23b) and we only need to calculate the reduced matrix
elements { by} for k +1<2N. As evident from Table I,
there is no operational savings achieved by the scaling ap-
proach for a nonlocal operator with no distinct symmetry.
On the other hand, if the operator can be expressed as a
function of only u or v, there is clearly a dramatic opera-
tional savings in the scaling approach. In fact, this limit
includes the local operator case for which the advantage
of the scaling approach has been demonstrated through
various practical application. Table I also shows that
there are other cases where we can achieve significant

operational savings' through the nonlocal scaling ap-
proach, while the nonlocal nature of the operator is still
retained to an appropriate extent. The magnitude of the
operational savings depends largely on the degree of sym-
metry in the nonlocal operator.

IV. CONCLUDING REMARKS

We have presented the general concepts needed to estab-
lish .exact nonlocal scaling relations. The procedure rests
on the ability to identify any meaningful systematic
behavior of the nonlocal operator in a chosen representa-
tion. If no symmetries in this sense can be found, then
there is nothing to be gained by scaling. On the other
hand, most physical problems are expected to have vary-
ing degrees of symmetry and thus result in a concomitant
savings through scaling. In this sense, local behavior
represents an extremely high order of symmetry. By us-
ing a set of natural variables which best characterizes the
nature of the nonlocal operator, it is possible to relate an
entire set of nonlocal matrix elements to a reduced set of
matrix elements through scaling coefficients. The scaling
coefficients suggested in this paper maintain their spectro-
scopic nature, although they depend implicitly on the
structure of the operator as well as the nature of basis set
through the choice of a set of natural variables. However,
we also point out that these same comments apply to the
general form of the local scaling relation in Eq. (4).

Three broad general applications can be envisioned for
the scaling theory presented in this paper. First, if the
operator B is explicitly known beforehand, then the neces-
sary symmetry analysis discussed above may be carried
forth. Each operator will have to be evaluated on its own
merit with respect to the degree that it can be scaled. In
this regard, approximations of the operator, scaling coeffi-
cients, or reduced matrix elements should also be con-
sidered when appropriate. The second class of scaling ap-
plications arises for solving the Schrodinger equation. As
a specific application, we could consider the integral equa-
tion formulation where matrix elements of the transition
operator T represent the solution. Since the exact form of
T is not known beforehand, an ansatz needs to be made.
A general scaling theory ansatz for Ty, as in Eq. (11), in-
volves no approximation, but this approach is likely not to
lead to a simplification of the computational effort. A
more fruitful approach would consist of making an ansatz
on the symmetry structure for 7" and then proceed by us-
ing this in the Lippmann-Schwinger equation to calculate



882 DUCKHWAN LEE YAND HERSCHEL RABITZ 32

the hopefully smaller number of reduced T-matrix ele-

ments.”* For example, the well established reference form

of a local T operator with a (weak) nonlocal correction in
q. (17) could be proposed for analysis.

Fmally, the third broad application would be to prob-
lems in the inversion of appropriate experimental data
back to more fundamental underlying information. If
sufficient data were available, one might try to scale the
local or nonlocal (including optical potentials) potential
operator in order to reduce the number of unknowns to a
minimal level. More typically, such extensive data will
not be available, but inversion of a more modest extent
may still be possible. This notion has been central to re-
cent efforts at inverting various types of relaxation data
back to more fundamental collisional rate constants.’
Thus far, the energy-corrected sudden scaling theory has
been the principal tool employed for this purpose. The
energy-correcting aspect of the scaling is an attempt to go
beyond the local nature of the sudden approximation tran-
sition operator. There is clearly room for more systematic
development of hierarchical approximate dynamical scal-
ing relations, and the formulations presented here could

provide such an approach. In particular, again a (simpli-
fied) nonlocal scaling ansatz would be made with the re-
duced matrix elements now established by fitting the ex-
perimental data. There are surely other applications
beyond those listed here, and only further work will eluci-
date this matter.

In summary, we have shown that a significant opera-
tional savings can be achieved depending on the symmetry
of the nonlocal operator as well as the nature of the basis
set. Thus, the approach can be useful for providing an ex-
act scaling relation for those nonlocal operators with high
degrees of symmetry. In addition, the rigorous nonlocal
scaling theory can also be useful as a tool for developing
approximate scaling relations by studying the nature of
the nonlocal operators in their natural variable space.
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