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An improved version of the Glauber-eikonal amplitude for electron-molecule scattering, originally

developed by Bhattacharyya and Ghosh, that includes the effects of nonspherical potential terms up

to v=6 is presented. Application is made to e-Hz scattering at intermediate energies to test a re-

cently proposed, parameter-free, correlation-polarization potential. This potential is based, as sug-

gested by O' Connell and Lane, on the hybridization of local-electron-gas theory and the long-range

polarization. Results obtained are found to be very encouraging.

I. INTRODUCTION

In one of the first attempts' of the application of the
Glauber approximation to intermediate-energy electron
scattering by molecular targets Bhattacharyya and Ghosh
considered the one-center expansion of the effective
electron-molecule potential and obtained the Glauber
scattering amplitude in terms of a series in products of
Bessel functions. This amplitude for a fixed molecular
orientation is then utilized, in the framework of adiabatic
approximation, ' to derive average elastic (sum of pure
elastic and rotational excitation) and state-to-state
rotational-excitation cross sections. Following this
method, we made a systematic study of electron scattering
by molecular hydrogen, ' ' nitrogen, and oxygen and
positron scattering by a hydrogen molecule. ' Recently,
Bhattacharyya and Syamal" obtained the Glauber-eikonal
amplitude for an effective complex potential in order to
study the effects of electronic excitations on rotational ex-
citations of the hydrogen molecule. All these studies have
revealed that the Glauber-eikonal scattering amplitude is
quite effective in reproducing different experimental cross
sections. But the method of Bhattacharyya and Ghosh '

for real electron- (position-) molecule potentials and that
of Bhattacharyya and Syamal" for complex electron-
molecule potential suffer from a serious limitation. In the
one-center expansion of the effective electron- (positron)
molecule potential in terms of Legendre polynomial P
they considered terms up to v=2. But such an expansion
is very slowly convergent about the nuclei, and neglect of
nonspherical terms represented by v&2 makes the com-
puted cross sections unconverged with respect to the
asphericity of the electron- (positron-) molecule potential.
That the inclusion of nonspherical potentials with v~2
affects the calculated cross sections significantly is evident
from the unconverged' and converged' close-coupling
studies of e-N2 scattering at intermediate energies by
Truhlar and co-workers. Thus it is obvious that if this

shortcoming could be eliminated, at least to a certain ex-
tent by including a few more nonspherical terms in the
derivation of Glauber amplitude, the potentiality of this
amplitude in describing electron- (positron-) molecule
scattering at intermediate energies could be properly as-

sessed and reliable cross sections could be provided.
Furthermore, in all previous calculations ' simple

parameter-dependent model potentials have been used to
represent the electron- (positron-) molecule interaction,
which, in the state-of-the-art context, could be much im-

proved. Recently O' Connell and Lane' suggested a
nonadjustable model for electron scattering that includes
exchange and correlation effects in a hybridization of
local-electron-gas theory and long-range polarization. Pa-
dial and Norcross' calculated the hybrid correlation-
polarization potential for several molecules including po-
lar molecules. They obtained encouraging results for e-Hz
and e-N2 scattering at low energies. It would be interest-
ing to test this model also for intermediate-energy electron
scattering.

Accordingly, we derived in the present paper the
Glauber-eikonal scattering amplitude, which includes
nonspherical one-center expansion terms up to v =6, for
linear molecules possessing D„I, symmetry. We have
considered the real part of the effective potential and the
target molecule is assumed to be in ground electronic and
vibrational states. Application is made to e-H2 scattering
for incident energies 20—400 eV. In an earlier study
Bhattacharyya et al. used the ab initio polarization po-
tential of Henry and Lane' and the parameter-dependent
polarization potential of Hara. ' The static and the spheri-
cal part of the exchange' potentials were generated by us-

.ing the Wang's wave function. In contrast, we used here
more accurate Fraga-Ransil' wave functions to calculate
the static, exchange, and correlation-polarization poten-
tials. To test the correlation-polarization potential we
compared the cross sections involving this potential with
those involving the Henry-Lane polarization potential and
also with the available experimental data.
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II. SCATTERING AMPLITUDE
AND CROSS SECTIONS

I"y(b) =—f V'(r)P ~ y ~ (cosO„)dz,—oo

(6)
%'e assume that the linear molecule used as a target is

in ground electronic and vibrational states so that the tar-
get may be treated as a rigid rotor. Then the target wave
functions are the spherical harmonics Fz~(R) T. he in-
cident electron with position vector r interacts with the
target through the potential V(r, R), where R is the unit
vector along the internuclear separation R. In the
intermediate-energy region the adiabatic approxima-
tion ' ' can be assumed to be valid; ' then the knowledge
of f(O, R), the elastic scattering amplitude for a fixed
molecular orientation of R for the scattering angle 8,
would readily give the state-to-state differential scatter-
ing cross section (DCS) I(j ~j',8) for the rotational-
excitation process j ~j ' and the average elastic DCS (pure
elastic plus all rotational excitation) (I(8)).

In the present paper we used Glauber-eikonal amplitude
for f (O, R) which is given by (we use atomic units
throughout)

ik;f(8 R)= — e "( 'z' ' ' —1)bdbdy
2m.

with

X( b, R) =—f V(r, k)dz,—OO

r=b+k;z.
In the above expressio~ m, v; =8k; is the momentum of
the incident electron, q =k; —kf is the momentum
transfer to the target, and b is the impact-parameter vec-
tor. The center of mass of the target molecule is taken to
be the origin, while the direction of k; the polar axis.

We consider f (O, R) as a sum of two contributions,

f (O,k) =f '(O, R)+f"(O,k), (3)

where f '(O, R) is the contribution arising from b=0 to
b =b0 and f (O,k) from b =b0 to b = oo. We shall de-
fine b0 later on, but the basic criterion for b0 is that

X(b,R) «1 for b &b0.
For linear molecules the effective electron-molecule po-

tential V(r, R) in Eq. (2) can be expanded in terms of
Legendre polynomials as

maxV

V(r, k)= g V'(r)P„(r R) .

1 for y=0,
2 for y&0.

with

X "(b 8 )=5 g PJ "~(cosO )I ' "(b)R 2 (2i )2 ()t l R

I

I2l, 2n(b) Vzl(r)P/12& I (cosO„)dz
0

In the present paper we set l,„=3 in the above expres-
sion which corresponds to v,„=6in Eq. (4). Considering

Eqs. (1), (3), and (7), the P„ integration in f (O, R) can be

readily performed. For f '(O, k), we follow Bhatta-
charyya and Ghosh '" to obtain

f (O, R)= ik; g f2„—(8,8~)cos(2ngz),
n=0

where
T

f JD(qb) —,C g A~q
—1 d db

p~V =0

(10)

f2„'(8,8g ) = . for n =0
b0

—,
' f CJz„(qb) g B„lbdb

1~9 =0

for n&0, (10")

Arq i~5q5qJq(X ——)Jq(X )[J„,(X )+J„,(X )],
B„pq i"+~5p5q J——p(X )Jq(X )

X[J„+„,(X )+J„+„(X)

Here (O~, gg ) defines the orientation of the molecular axis
with respect to the polar axis. For molecules belonging to
point group D ~, v is even, including zero, and the in-
tegral (6) vanishes for odd values of y. Thus collecting
the terms corresponding to the same values of y for dif-
ferent v and setting y =2n and v=21, Eq. (5) can be writ-
ten as

maxI

X(b,R)= g X "(b,O&)cos[2n(P„—Pz)]

v=v, „ is the highest-order term at which the one-center
expansion (4) is made to terminate to achieve proper con-
vergence. With the use of (4) and the addition theorem

for P,(r k), Eq. (2) becomes

X(b,R) y y 5y
.I,y(b)P,ly I (cosO~ )

Xcos[y(P Pz )]

and

+(—1)qJ, „,(X )+(—1)qJ„„,(X')]

n~ ——3q+2p,
n2 =3q —2p

—iXo(,b, HR )C=e

(10"')

where
In the case of f (O, R), X(b, R) « 1 and by making use of
the expansion e" 1+x we get on P„ integration
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maxf (O,R) = —k; g fz„(b,ell ) cos(2ngll )
n=0

with

f(e,R) = —l'kl y f2/(e, eg )cos(2llyll ),
n=0

where

(12)

f2„(b,e~ ) =(—1)"f X "(b,el' )J2„(qb)b db . (11')

It is to be noted that f (O, R) is always real and number
of terms n is governed by v,„=2l,„at which truncation
is made for the electron-molecule potential. Remember-

ing these aspects of f (O, R), Eqs. (10) and (11) can be
written as

bof2'(e ell )=f2'(e ell ) &fz—n(»e~) (13)

This is the final expression for the Glauber-eikonal
scattering amplitude for a fixed orientation of the molecu-
lar axis R.

The above amplitude, in the adiabatic approximation,
yields for the state-to-state DCS [Eq. (14)] and average
elastic DCS [Eq. (16)]

I(j~j',8)=
m= —j m'= —j'

1/2
(j —Im

I
)' (j'—Im'I )'

(j+
I

m
I

)! (j'+ Im'
I
)! (14)

with

(f (8 8 ))= f PJ (cose )f „(e e )

XP~ (cose~ )»nell d OR

2n = Im —m'I,
2 for n=0
1 for n&0,

k;(I(e))= g A„ f I f2„(O,OIl )
I

sine„de~ .
n=0

(15)

(16)

I

the second term [Eq. (21)] with the nonzero lower limit

zo, defined by the relation ro ——b +zo, is to be considered.
For b &bo, only the second term in Eq. (19) with the
lower limit being zero in Eq. (21) becomes effective.
Equation (21) can be further simplified using the asymp-
totic expression (18)

1I ' "(b, r &ro)= ——" f Pfl'" '(p)(i p, ')' 'dp—-
V. 21 ~o'O

f P/l l(P)(1 P ) dP
1

2l Q2I ~2I
V (r&r, )=-

r21+1 2 4 (18)

where Q2l(l ) 1) is the electric moment, and a2l (I=0,1) is
the dipole polarizability of the molecule. We take bo ——ro
so that Eq. (9) becomes

Total cross sections o.(j~j') for the transition j~j' or
the average total elastic cross sections (cr) are calculated
using Eq. (14) or Eq. (16) in

o.=2m f I sine d 8 . (17)

Finally, in order to show the advantage gained by divid-
ing the b-integration range in Eq. (1) into two zones at
b =bo, we consider the z integration in Eq. (9). For suffi-
ciently large values of r, say r & ro, V (r) can be replaced
by its asymptotic expression

(22)

where po zol(b 2+zo——)'~ . Equation (20) is to be evaluat-
ed numerically. But the integral (22) can be obtained

analytically. As a result, computation of f (O, R) [Eq.
(11)]for b & bo reduces to the evaluation of the integral

which can be readily performed by using a polynomial ex-
pansion for J,(x)/x following Roy and Sil.22 Further-
more, in this case, analytic evaluation of (f2„(e,e~)) in
Eq. (15) becomes straightforward.

III. EFFECTIVE ELECTRON-MOLECULE
POTENTIAL

A. A brief surveyI21,2n(b) I21,2n(b r r )+I21,2n(b r ) r ) (19)

where

2I ' "(b, r &ro)= —f V '(r &ro)P/l" '(cose„)dz,
Vg

In the effective potential approach electron scattering
by molecular targets is described by the potential V(r, R)
which consists of three parts (we suppress R in the argu-
ment for brevity),

V(r) = V, (r)+ V,„(r)+V„(r) . (23)

00I ' "(b, r & ro) =— V (r ) ro)PJ~" (cose„)dz .
V oO

(21)

Thus, for b &bo, I ' "(b) is given by Eq. (19) in which

The static potential V, (r) represents the effects of interac-
tion between the incident electron and the unperturbed
ground electronic charge distribution. V,„(r) is the effec-
tive local exchange potential which takes into account the
nonlocal electron-exchange effects due to the exclusion
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principle, and V„(r) represents the correlation effects re-
sulting from the interaction of the incident electron with
the distorted molecular target. Much of the difficulties
encountered in the theoretical study of electron scattering
is due to the last two effects.

For exchange potential V,„(r), two approximations are
widely used in electron scattering problems: Hara's ver-
sion' of the free-electron-gas exchange (HFEG) approxi-
mation and the semiclassical exchange (SCE) approxima-
tion of Riley and Truhlar. z3 In the present paper we have
considered the first approximation. The free-electron-gas
(FEG) exchange potential for a bound electron is given
by V„(r)=2@„(r), (29)

known theoretical results of more rigorous calculations, or
an experimental feature such as resonance.

Recently, O' Connell and Lane' (OL) have suggested a
method of obtaining a model potential for V„(r). This
potential is a hybridization of local FEG correlation ener-
gies and the long-range polarization energies. It is free
from any adjustable parameter, while easy to apply even
for complex targets. OL have applied it successfully to
electron scattering by noble gases. According to them the
short-range (SR) part of the correlation potential V„(r)
effective for small r is defined as

V„(r)= — KFF—[q(r)],2 (23') where e«(r) is the local FEG correlation energy' ' '

where

with

rl(r) =K(r) IKF(r)

(24)

e„(r)= .

0.0311 lnr, —0.048+0.009r, lnr, —0.018r, ,

r, (0.7
—0.061 55+0.018 98 lnr, ,

O. 7 ~r, & 10 (30)

—0.438r,-'+1.325r,-'"—1.47r,-' —0.4r,-'",
defined in terms of local momentum K(r) of the electron
and the local Fermi momentum

K„(r)= [3n. p(r)]'~3, (26)

p(r) being the local electron density. For scattering prob-
lems rI(r) & 1 and assuming that the incident and molecu-
lar electrons are in the same potential field Hara' ob-
tained for K(r),

K(r) =K~(r) +2I+k;, (27)

V„(r)=—V~(r) = V„(r)+V~(r)Pz(r R), (28)

where Vz and Vz are given by the last term in Eq. (18).
Small-r behavior of V&(r) is not known accurately. For
simple molecules, a few calculations are available, 7

but such a calculation for larger systems is prohibitively
difficult. For this reason, usually a cutoff function '

with an adjustable parameter is used together with (28).
The cutoff parameter is determined either from a
knowledge of molecular structure or by reproducing

where I is the ionization potential of the target. The
HFEG potential defined by Eqs. (23)—(27) is known to
underestimate exchange effects and some authors, to
compensate for this, treat the ionization potential I as a
parameter. This potential is known as tuned free-
electron-gas (TFEG) exchange potential. Equation (27)
shows that the HFEG potential asymptotically yields

,
'

k; +I for the —kinetic energy of the incident electron, in-

stead of —,k;. Thus an asymptotically adjusted potential
(AAFEG) is sometimes devised, by setting I=O, to
reproduce correctly the incident energy at large r.

Theoretically, it is quite difficult to take into account
properly the correlation effects V„(r). However, for
large r, the long-range (LR) part of the correlation poten-
tial results in the dipole polarization potential Vz(r)
which, for molecular targets, can be written as

r, &10

with

r, = [31(4~p)]'~

V„(r) is aspherical for molecular targets and can be ex-
panded in Legendre polynomials

V„(r)= V,,(r)+ V„(r)Pz(r R) .

(31)

(32) .

Since the FEG approximation takes no account of long-
range interaction caused by polarization of the target, ex-
pressions (28) and (29) are joined smoothly at the point r,",
where they first cross each other. We call this hybrid po-
tential V„z(r) to distinguish it from polarization poten-
tials V~(r) described in the preceding paragraph.

Padial and Norcross' (PN) calculated V«z(r) for a
few molecules, including polars. But they redefined Eq.
(29) following Kohn and Sham:

V',.(r) = [p&,.(r)] .
C)P

(33)

0.0311 lnr, —0.0584+0.001 33r, lnr, —0.0084r, ,

V„"(r)=
y(1+ —', P,r,

' + —,P,r, )

,(1+13,r,' "+P,r, )'

rs&&

(34)

They found that the values of V„~(r =r, ) are indepen-
dent of the target molecule used, an observation first
pointed out by OL for noble gases. Furthermore, applica-
tion to e-Hz and e-Nz scattering at low energies have re-
vealed that V„~ obtained by using Eqs. (33) and (28) is
somewhat stronger and PN have suggested that an ad hoc
reduction of it could yield improved results. They have
cited a better calculation of correlation energy by Perdew
and Zunger (PZ) which yields the following form of
V.'. (r):



858 P. K. BHATTACHARYYA, D. K. SYAMAL, AND B. C. SAHA 32

where y= —0.1423, P, =1.0529, and P2 ——0.3334. Since
this correlation potential is weaker than that given by Eq.
(33) by about 15% for r, & 10, PN have recommended the
use of it in computing V„~(r) following O' Connell and
Lane. '

B. Model potentials for e-H2 scattering

For e-H2 scattering, we have devised two groups of po-
tentials, groups A and B, which differ mainly in the
method of incorporating V„(r), the effects of correlations
resulting from the interaction of the incident electron with
the distorted target. For V„(r), we have used V„~(r) in
the group-A potentials, while Vz(r) is used in group-B po-
tentials. For V„z(r), we have used the small-r form of
V„(r) of PZ, Eq. (34). For comparison, V„~(r) is also
generated by using the other two forms of OL, Eq. (29),
and PN, Eq. (33). Polarization potential for the e-H2 sys-
tem has been calculated by Lane and Henry, "Truhlar
et al. , and Gibson and Morrison. In the present paper
we have used for V&(r) the analytic expressions, as given
by Henry and Lane' (HL), which reproduce quite accu-
rately the Lane and Henry "polarization potential ob-
tained by using the polarized orbital method.

For each of the groups of potential two types of FEG
exchange potentials are considered: (a) the HFEG paten-
tial in which experimentally determined value, 0.564 a.u. ,
is used for the ionization potential I, denoted by H, and
(b) the TFEG potential for which I is treated as a parame-
ter, denoted by H(I~). We have taken I~=0.071 a.u.
which is obtained by Morrison and Collins bg reproduc-
ing exact static exchange cross sections at k; =0.08 a.u.
Finally, a particular potential model is defined by men-
tioning the group and V„(r) and V,„(r) used, in the form
(group)- V«(r)- V,„(r). In Table I we have summarized
the potential models used in the present paper. For each
potential model the same static potential V, (r) is used.

We have used the Fraga and Ransil' H2 wave function
for equilibrium internuclear separation of 1.402ao to cal-
culate charge 'density p(r). This charge density is then
utilized to calculate V, (r) and different V„z(r) and
V,„(r) potentials. Calculations are performed using stan-
dard computer codes. " In Table II different characteris-
tic data for e-H2 potential are given. The Fraga-Ransil
wave function was used earlier by different workers. ' '

It yields a quadrupole moment of 0.48eao which is akin to
the highly accurate theoretical value of 0.484eao as
well as to the experimentally obtained value of
(0.474+0.34)eao. For static and exchange potentials, ex-
pansion terms for v=0—6 are considered. For V„z(r),
terms other than v=0 and 2 are found to be negligible at

TABLE I. Nomenclature of e-H2 potential models. '

V„(r)
V„p(r) Vp(r) V,„{r)

A
A
A
A
A
B
B
B

PZ
PZ
PZ
OL
PN

HL
HL
HL

HFEG
TFEG

no
TFEG
TFEG
HFEG
TFEG

A-PZ-H
A-PZ-H (Ip )
A-PZ-X"
A-QL-H (Ip )
A-PN-H (I )

B-HL-H
B-HL-H (Ip )
B-HL-X

'Abbreviations used are explained in the text.
X indicates that V„(r) is neglected.

Differential cross sections (14) and (16) are obtained nu-
merically in two steps: first by performing z integration
in Eq. (19) and then the b and 8~ integrations in relevant
expressions (10'), (ll'), (l5), and (16). In the present cal-
culations we set bo ——ro ——10ao (see the last paragraph of
this section). For b & bo, the region 0 & b & bo is divided
into 30 variable-step-size zones. Each of these zones is
subdivided by using 8-point Gauss-Legendre quadrature.
Using these values of b, z integration is performed numer-
ically when r &ro [Eq. (20)] and analytically when r ) ro
[Eq. (21)]. In the case of numerical integration, the in-
tegrated region 0 &z &zo is divided, depending on b, into
a number of variable-step-size meshes, each mesh being
evaluated by using 8-point Gauss-Legendre quadrature.
Potential coefficients needed at Gaussian points within
the region 0(r &ro ( V,

' and V,„) and 0&r &r, ( V„~)
are obtained by spline-fitting these potentials calculated
earlier at an interval of r=0.05ao. Furthermore, except-
ing for V,„,Eq. (19) depends on energy through the factor
I/v; and this is carefully exploited to reduce computer

small r compared to corresponding static potential terms.
This is also observed by PN' for similar types of mole-
cules (D „q symmetry)

The different spherical parts (excluding exchange) of e-
H2 potential are shown in Fig. 1. The Vzop potential of
OL is stronger than that of PN and PZ and the polariza-
tion potential V& of HL over the entire region 0 & r & 7ao.
In the region 0&r &r, , PZ potential is weaker than PN
potential, but both of them appear to be a smoothed-out
HL potential; these potentials are, however, stronger than
the HL potential above r =r, and up to r =7ao. Of the
three V„z potentials, PZ has the largest characteristic ra-
dius r, with the smallest value for V„z(r, )

IV. NUMERICAL PROCEDURE AND CONVERGENCE

TABLE II. Characteristic data for e-H2 potential model in atomic units.

Vco-p

OL
PN
PZ

0
C

2.46
2.94
3.05

3.32
4.83
4.60

V,,~(r, )

—0.071.
—0.035
—0.030

0.564

I b

0.071

Qz'

0.48 5.179 1.202

'Obtained by using Fraga-Ransil wave function (Ref. 19).
Reference 25.

'Reference 35.
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FIG. 1. Spherically symmetric part of e-H& potential: S,
Fraga-Ransil static potential V, (r); OL, PN, and PZ,
correlation-polarization potentials V, ~(r) of O' Connell and
Lane, of Padial and Norcross, and of Perdew and Zunger,
respectively (above the region r =r„marked by arrows, these
potentials are represented by long-range polarization potential

ao/2r —); HL, polarization potential V~(r) of Henry and Lane
(Ref. 16}.

time while computing cross sections at different energie, 's.

Finally, integration over molecular angles 6~ is performed
using 12-point gauss-Legendre quadrature. In this case,
however, the dependence of cross sections on even func-
tions of 6z is properly utilized. For b &bp, the signifi-
cant simplification achieved in computing the amplitude

f (6,R), and hence the cross sections, is described earlier
in Sec. II. Integrated cross sections (17) are obtained by
using the Simpson's rule.

Equation (14) shows that the highest-order term in

fz„(6,6z ) [Eq. (13)] determined by the maximum value of
n that contributes to I(j ~j ', 6) depends upon the rota-

bo
tional states j and j '. It is found that fz„(6,6z )

[Eq. (10')], for a particular value of n, converges when
terms up to p, q=4 are considered. The series in (16) con-
verges rapidly with increasing n and truncation at n=2
gives well-convergent results.

The accuracy of computed cross sections in the one-
center approximation [Eq. (4)] depends upon the conver-
gence of different cross sections with respect to increasing
expansion terms v. The convergence of different cross
sections at 60 and 200 eV achieved in the present calcula-
tions with a limited number of terms (v,„=6)of the po-
tential model A-PZ-H(I&) is shown in Table III. It is
found that integrated cross sections (cr) and the DCS
(I(8)) at small and intermediate angles are well con-
verged. Inclusion of potential terms with v& 2 greatly in-
fluences the large-angle scattering at 200 eV.

For a particular value of b the phase term X(b,R) [Eqs.
(7)—(9)] depends on the strength of the electron-molecule
potential in the region b & r & oo and on the incident ener-
gy. When b equals four to five times the internuclear dis-
tance R, the strength of the potential in this region be-
comes such that, for most targets, I lz"(b) «1, even for
incident energy as low as a few electron volts. This value
of b is usually less than rp at and above which the asymp-
totic expression (18) becomes valid. Thus the choice of
bp =r p meets the essential requirement for b p, e.g.,
X(b,R) «1. In the present case, the expression (18) is ex-
act at r & rp= 10ap for static and correlation-polarization
potentials; for HL polarization potential we have used, to
be precise, the expression uzi!2—(r +a~&), where the
upper sign corresponds to l=0 and az~ are constants. '

At b =10ap we find that I ' "(b)-10
,with

bp ——rp ——10ap for incident energy 5 eV (note that the ma-
jor contribution to I ' " comes from the spherical part of
the polarization potential). To test how sensitive the
present calculations are to this choice of bp we have com-
puted relevant cross sections with two different values of
b 0 namely, 8a o and 12a o. In both the cases, cross sec-
tions obtained are found to be identical with those for
bp ——10ap [potential model A PZ H(Iz ) r-esul-ts for
bp ——12ap are shown in Table III].

V. RESULTS AND DISCUSSIONS

In the present paper we have calculated the state-to-
state DCS I(J'~j ', 6) and integrated cross sections

TABLE III. Convergence of integrated cross sections (cr) (10 m ) and DCS (I(6)) (10
m /sr} for e-H~ scattering using the model A-PZ-8 (Ip).

Energy
(H)

60 2
4
6
6b

2
4
6
6b

1.415
1.380
1.366
1.366
4.183
4.197
4.180
4.180

2.980
2.948
2.938
2.938
2.078
2.067
2.063
2.063

50'

1.040
9 960
9 785
9.786
1.329
1.324
1 3Q9
1 31Q

150'

7.050
7.114
6.846
6.848
1.S27-4
6.399
6.862
6.8s8-4

180'

6.357
6.490
6.246
6.247
8.795
5.330
5.843
5.839

'x" stands for x X 10".
Calculated with bo ——12ao and ro ——10ao.
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rr(j ~j') for the pure elastic processes j =O~j '=0 and

j = 1—+j'= 1 and rotational-excitation processes
j =0—+j'=2 and j = 1~j' =3. We have also computed
the orientationally averaged elastic DCS (I(0)) and in-
tegrated cross sections (o ) as well as momentum-transfer
cross sections (o. ). Calculations are made using the po-
tential models A-PZ-H and 8-HL-H at 20—100 eV, A-
PZ-H(I&) and B-HL-H(Iz) at 20—200 eV, and A-PZ-X
and 8-HL-X at 20—400 eV. Test calculations are per-
formed at energies 40 and 100 eV with the models A-PN-
H(I~) and A-OL-H(I~).

A. Average elastic differential scattering cross sections

1. Comparison with experiments

Recently, a number of measurements of elastic DCS for
e-H2 scattering has appeared in the literature. These mea-
surements do not discriminate rotational and vibrational
excitation. We have considered only those measure-
ments which are recommended by Trajmar et al. ' in
a recent review article. Measurements of Wingerden
et al. at 100—2000 eV and 5—55', of Srivastava et al.
(subsequently renormalized ') at 3—75 eV and 20—135',
and of Shyn and Sharp at 2—200 eV and 6—156' are ab-
solute, while those of Fink et al. at 100—1000 eV and
3—130' are relative. The data as reported by the authors
themselves are used for comparison.

We first concentrate on the models A-PZ-H (I~ ) and
8-HL-H(I~). Average elastic DCS for these models are
presented in Tables IV and V and are compared with ex-
periments in Figs. 2—8. We find that both the models, in

general, give excellent agreement with the experimental
data of Shyn and Sharp at 150, 100, and 60 eV, but sys-
tematically underestimate these between 40—20 eV. The
data of Srivastava et al. ' ' are in excellent agreement
with our results between 60—30 eV, and are closer than
those of Shyn and Sharp to our results at 20 eV. At 75
eV, the only available experimental data are those report-
ed by Srivastava et al. and the present cross sections
overestimate these throughout the scattering angles. At
200 eV, measurements of Shyn and Sharp are in good
agreement at small scattering angles, but increase sys-
tematically with increasing scattering angles. Considering
the calculations with the models A-PZ-X and 8-HL-X at
300 and 400 eV, the measurements of Fink et al. at 200
and 400 eV and those of Wingerden et al. at 100—400 eV
are well reproduced. Only the large-angle measurements
at 100 eV by Fink et al. are somewhat higher.

A detailed comparison of (I(8)) curves presented in
Figs. 2—8 shows that the replacement of HL polarization
potential Vz by PZ correlation-polarization potential V„z
modifies the angular dependence of (I(8)) at 30—400 eV.
(I(8)) involving these potentials cross each other at a
certain angle 8 which decreases with increasing energy.
Between 0' and 8, A-PZ-H(Iz) cross sections are smaller;
above 0 and over a comparatively smaller angular region
these are higher, and then become identical with B-HL-
H (Iz ) cross sections. Interestingly all measurements
rather favor this augmentation in the angular dependence
of (I(8)) arising from the replacement of HL Vz by PZ
Vco-p.

To summarize, given the dispersion in the experimental
data of different independent measurements, the theory

TABLE IV. Average elastic differential scattering cross sections (I(8) ) (in 10 m /sr) for e-H2 potential model A PZ H(I~). --
(9 (deg)

0
5

10
15
20
25
30
35
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

20

3.989
3.213
2.568
2.036
1.604
1.257
9.822
7 670
6.oo4-'

1.668-'
1.2O2-'
9.032
7 044
5.673
4.710
4.029
3.551
3.223 —2

3.009
2.889
2.851

30

4.165
3.196
2.425
1.822
1.358
1.008
7 473
5.562
4.175-'
2.451-'
1.538-'
1.029
7.238-'
S.305
4.033
3.180
2.604
2.214
1.951
1.776
1.665
1.603
1.S83

40

4.245
3 ~ 122
2.264
1.622
1.152
8.162
5.799

3.O33-'
1.715-'
1.OSS-'
6.924
4.767
3.419
2.561
2.011
1.657
1.426
1.273-2
1.171
1.107
1.071
1.059

E (eV)
60

4.298
2.938
1.969
1.299
8 ~ 503
5.583

2.543
1.793
9.785
5.847
3.689
2.444
1.729
1.318
1.073
9.163
8.104
7.362
6.846
6.504
6.309
6;246

75

4.306
2.806
1.784
1.115
6.928
4.3S I
2.805
1.877
1.309
7 037
4.09S
2.508
1.655
1.202
9.495
7.916
6.835
6.059
S.497
5.098
4.830
4.676
4.626

100

4.302
2.610
1.534 .

8.851-'
S.115
3.O37-'
1.89o-'
1.244
8.600
4.482
2.480
1.504
1.042
8.004
6.482
5.413
4.631
4.049
3.618
3.306
3.094
2.971
2.931

1SO

4.281
2.299
1.182
5.982

1.735-'
1.OS4-'
6.846
4.611
2.197
1.211
8.138
6.029
4.624
3.619
2.875
2.317
1.905
1.611
1.410
1.282
1.211
1.188

200

4.262
2.063
9.463
4.319
2.104
1.147
6 905
4.732
2.816
1.309
7.982
5 ~ 553
3.988
2.895
2.105
1.548
1.176
9.362
7.833-4
6.863
6.268
5.945
5.843

'x" stands for x 0&10".



32 GLAUBER-EIKONAL STUDY OF ELECTRON-MOLECULE. . .

60 120 ' 180 2P5 x10
60 120 180

5x IQ

10l9 —10 10 10

M
E

10 —10 10

Od

E

-21
10

-2l
10 —10 M 1g2l -22

10

0
-22

2x10 ) ) l ) ) I i ( l

60 120 180
8C AT T ER I NG ANGL E ( deg )

FIG. 2. Average elastic differential scattering cross sections
at 20 and 30 eV as a function of scattering angle. Experimental:
~, Srivastava et al. (revised, Ref. 41); 0, Shyn and Sharp (Ref.
40). Theoretical:, potential model 8-HL-H {I~); ———,
potential model A-PZ-H (I~ ); —.—.—., potential model A-PZ-
H. (Arrows indicate which scales apply. )
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FIG. 4. Same as Fig. 2 but at 60 and 75 eV.

predicts the experimental data remarkably well, both in
magnitude and shape, at 30—400 eV. The agreement be-
tween the theory and experiment is better at small and in-
termediate scattering angles. The deviation is prominent
at large angles and it increases with decreasing energy.
Models A PZ H(I~) (2-0—2-00 eV) and A PZ-X (300 a-nd

400 eV) give better fit to experiment than the correspond-
ing 8 models.
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FIG. 3. Average elastic differential scattering cross sections
at 40 eV. Experimental: , Srivastava et al. (revised, Ref. 41);
0, Shyn and Sharp (Ref. 40). Theoretical: —,model 8-
HL-H(I~) and ———,model A-PZ-H{I~) '(present calcula-
tions); —-—,Truhlar and Brandt (model 3, thermally averaged,
Ref. 56).

2 x10 l ~ l I ) ) L

0 60 120 180
SCATTERlNG ANGLE (deg)

FIG. 5. Average elastic differential scattering cross sections
at 100 eV. Lower panel: Experimental: 0, Shyn and Sharp
(Ref. 40); U, Fink et al. (Ref. 38); D, van Wingerden et al.
(Ref. 39). Theoretical:, model 8-HL-H(I~) and ———,
model A-PZ-H (I~ ) {present calculations); —- ——., Khare and
Shobha (Ref. 47). Upper panel: Comparison of small-angle
cross sections for models A-GL-H(I~) { ), A-PN-H(I~)
( —- —- —- ), and A-PZ-H {I~) ( ———). (Arrows indicate
which scales apply. )
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FIG. 6. Average elastic differential scatteririg cross sections
at 150 eV. Experimental: 0, Shyn and Sharp (Ref. 40); D, van
Wingerden et al. (Ref. 39). Theoretichl:, model 8-HL-
H (I~ ) and ———,model A-PZ-H (I~ ), present calculations.

10
0 60 120 180

SCATTERING ANGLE (deg)
FIG. 8. Average elastic differential scattering cross sections

at 300 and 400 eV. Experimental:, Fink et al. (Ref. 38); D,
van Wingerden et al. (Ref. 39). Theoretical:, model 8-
HL-X and ———,model A-PZ-X, present calculations. (Ar-
rows indicate which scales apply. )
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FIG. 7. Average elastic differential scattering cross sections
at 200 eV. Lower panel: Experimental: 0, Shyn and Sharp
(Ref. 40); Cl, Fink et al. (Ref. 38); Q, van Wingerden et al.
(Ref. 39). Theoretical:, model 8-HL-H(I~) and ———,
model A-PZ-H(I~), present calculations. Upper panel: Corn-
parison of large-angle scattering. Experimental:, Fink et al.
(Ref. 38). Theoretical:, model B-HL-H(I~), present cal-
culations; ———-, Bhattacharyya et al. (model B, Ref. 7).
(Arrows indicate which scales apply. )

We have presented the cross sections (I(8)) obtained
by using the potential models A-PZ-H and B-HL-H in
Tables VI and VII, respectively. The general features of
(I(8) ) curves for these models are similar to those for
the pertinent models A-PZ H(Iz) and B PZ -H(I&). T-his-
is illustrated in Fig. 2 for the models A PZ-H and A-P-Z-

H(I&) and at incident energy 20 eV. The cross sections
involving HFEG exchange potential are somewhat smaller
in magnitude. The difference between the exchange
models HFEG and TFEG reduces with increasing energy
(Tables IV—VII).

In Fig. 5 we have compared (I(8) ) at 100 eV and at
scattering angles 0'—30' for the potential models involving
different V„~ potentials. It is found that (I(8) ) for the
models A PZ-H(I&) and A PN-H(I&) are in reaso-nabl-e

agreement, but are considerably smaller in comparison
with those of the model A OL H(I~). --

2. Comparison with other theoretical works

The elastic scattering of electrons by hydrogen mole-
cules has been extensively studied by using the Born ap-
proximation. Attempts have been made to improve
upon the Born approximation by including the effects of
either electron exchange, ' or polarization, '" or
both. ' The exchange is usually treated by using the
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TABLE V. Average elastic differential scattering cross sections (I(8)) (in 10 m2/sr) for e-H2 potential model B-HL-H(I~).

e (deg)

0
5

10
15
20
25
30
35
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

20

3.949
3.196
2.583
2,084
1.678
1.347
1.077
8.591
6.842
4.3s1-'
2.810
1.S71-'
1.3O1-'
9.491
7.262
5.805
4.824
4.148
3 679
3 357
3.148
3 030
2.992

30

4.156
3.210
2.476
1.906
1.462
1.117
S.493-'
6.445-'
4.892
2.849
1.715
1.OSS-'
7333-2
5.249
3.966
3.142
2 595
2.224
1.970
1 798
1.688-'
1.626
1.606-'

40

4.253
3.154
2.337
1.726
1.269
9.Z73-'
6.7SO-'
4.910
3.5SO-'
1.945
1.116-'
6.883
4.578
3.263
2.469
1.968-'
1.640
1.420
1.271
1.171
1.107
1.071
1.059

4.325
2.992
2.067
1.421
9.692
6.567

3.012
Z.O61-'
1.020
5.575
3 397
2.283
1.666

-1.301
1.071
9.187
8.142
7.410
6.900
6.563
6.370
6.307

75

4.340
2.870
1.894
1.241
s.oss-'
5.197
3.3S4-'
Z. 1S1-'
1.444
6.866
3.729
2 305
1.588
1 192
9.529
7.976
6.904
6.132
5.569
5.166
4.894
4.736
4.685

4.342
2.686
1.657
1.010
6.092
3.662-'
2.215-'
1.368
8.734
4.052
2.249
1.450
1.043
8.085
6.565
5.492
4.696
4.095
3.646
3.320
3.100
2.973
2.931

150

4.329
2.392
1.313
7.079

Z.O31-'
1.1Z7-'
6.595
4.131
1.990
1.194
8.242
6.123
4.698
3.657
2.882
2.310
1.900
1.607
1.409
1.281
1.210
1.188

200

4.314
2.168
1.076
5.226
z.sz6-'
1.256-'
6.667
3.872
2.472
1.276
8.099-'
5.647
4.04S
2.907
2.101
1.547
1.177 3

9.363
7.814
6.832
6.Z3S-4
5.913
5.812

'x" stands for x )&10".

TABLE VI. Average elastic differential scattering cross sections (I(8) ) (in 10 m /sr) for e-Hz potential model A PZ H. --
0 (deg)

0
5

10
15
20
25
30
35
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

20

3.730
2.977
2.358
1.855
1.451
1.130
8.788
6.839
5.34Z-'
3.334-'
Z.17S-'
1.501
1.OSS-'
8.239
6.462
5.228
4.356
3.736
3.299
2 997
2.800
2.690
2.654

30

3.976
3.028
2.282
1.703
1.262
9.32Z-'
6.887
5 ~ 114
3 835
z.zs6-'
1.424
9.592
6.801
5.018
3.835
3 035
2.491
2.121-2
1.870
1.703
1.597
1.538
1.519

40

4.101
2.998
2.161
1.540
1.089
7 684
5.444-'
3.901
2.843
1.614
9 987
6.605
4 578
3.300
2.480
1.951
1.609
1.386
1.238
1.140
1.077
1.043
1.032

E (eV)
60

4.209
2.864
1.911
1.2S6
8.193
5.366
3.571
2.440
1.723-'
9.446
5.679
3.602-'
2 395
1.698
1.296
1.056
9.031
7.995
7.269
6.763
6.428
6.236
6.174

75

4.239
2.752
1.744
1.086
6.73Z-'
4.219
2.718
1.820
1.Z71-'
6.868
4.016
2.469
1.632
1.188
9.932
7.839
6.774
6.009
5.454
5.059
4.794
4.642
4.592

100

4.257
2.576
1.510
8.691
5.013
2 973
1.851
1.ZZO-'

8.44S
4.419
2.453
1.490
1 034
7.951
6.444-'
5.38S
4.608
4.030
3.601
3.291
3.080
2.956
2.919

300'

4.064
1.616
6.OO7-'

2.337-'
1.O7S-'
S.853
3 410—2

2.024
1.284
7.035
4.482
2.882
1.813
1.142
7.668-"
5.602-4
4.410
3.6S7-4
3.Z14-4
2.889
Z.67O-4

Z.542-4
2.500

400'

4.088
1.401
4.473
1;602
7.318
3.855
2.090
1.231
8.426
4.826
2.820
1.s76
8.935
S.667-"
4.036
3.124-4
2.491
2.001
1.63O-4
1.364
1.1SS-'
1.089
1.058

'without exchange (model A-PZ-X).
x" stands for x && 10".
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TABLE VII. Average elastic differential scattering cross sections (in 10 m /sr) for e-H2 potential model B-HL-H.

0 -(deg)

0
5

10
15
20
25
30
35
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

20

3.698
2.969
2.378
1.906
1.526
1.219
9 717
7.735-'
6.56-'
3.921
2.544
1.703
1.189
8.694
6.659
5.323
4.422
3.802
3.372—2

3 077
2.886
2.778
2.743

30

3;970
3.045
2.334
1.787
1.365
1.038
7.880
5.972
4.532-'
2.645-'
1.598
1.018
6.885
4.942
3 743
2.972
2.459
2.112
1 873
1.713
1.609
1.551
1.532

40

4.111
3.031
2.234
1.643
1.203
8.770
6.374
4.633
3.378-'
1.839
1.059
6.559
4.378
3 131
2.377-2
1.900
1.588
1.377 2

1.235
1 139
1.077
1.043
1.032

E(eV)
60

4.235
2.918
2.009
1.377
9.364
6.334
4.270-'
2.902
1.987
9.859
5.407
3 308
2.231
1.634
1.279
1.055
9.060
8.037
7.320
6.820
6.488
6.299
6.237

75

4.273
2.816
1.853
1.211
7.845
5.055-'
3.261-'
2.121-'
1.405
6.698
3.651
2.265
1.566
1 177-2
9.429
7.902
6.844
6.082
5.526
5.128
4.858
4.702
4.651

100

4.298
2.652
1.632
9.933
5.982
3.592
2.172-'
1.342
8.580
3.992
2.222
1.436
1.035
8.034
6.528
5.464
4.674
4.076
3.629
3.306
3.087
2.960
2.919

300'

4.118
1.732
7.133-'
2.883
1.201
5 537
2.952
1.812
1.244
7.160
4.564
2.901
1.812
1.145
7.661
5.574
4.402
3.692
3.223-4
2.898
2.680 4

2.553-4
2.511-4

400'

4.144
1.526
5.439
1.919
7 350
3 354
1.860
1.201
8.555
4.916
2.838
1.577
8.956
5.639
4.036
3.132-4
2.502
2.015
1.643
1.374
1.196
1.097
1.065-4

'Without exchange (model B-HL-X).
x" stands for x X10".

Ochkur ' or Ochkur-Rudge approximation. Different
forms of polarization potentials with adjustable parame-
ters have been tried. ' ' ' As a typical case, we consid-
er the incident energy 100 eV. At this energy, the calcula-

tions Khare and Shobha are compared in Fig. 5. It is
found that the small-angle cross sections of these authors
underestimate considerably the present cross sections as
well as the experimental data, whereas the large-angle

TABLE VIII. State-to-state differential scattering cross sections (in 10 m /sr) for e-H2 scattering at 40 eV.

0
(deg) I(0~0) I(1~1)

Model A-PZ-H(I )

I(0—+2)
(x10 ')

r(1~3)
(x10 ') I(0~0) I(1~1)

Model B-HL-H(I~)
I(0~2)
( x 10-')

I(1~3)
( x10-')

0
5

10
l, 5
20
25
30
35
40
50
60
70
80
90

100
110
120
140
160
180

4.239
3.115
2.256
1.614
1.144
8.078
5.713-'
4.072
2.942
1.620
9 565
5.927
3 774
2.445
1.616
1.099
7.771
4.503
3.231 —3

2.890

5.700
6.416
7.027
7.512
7.881
8.169
8.410
8.635
8.858
9.290
9.630
9.7.87
9.743
9.545
9.255
8.924
8.590
7.993
7.593
7.454

4.241
3.118
2.259
1.617
1.148
8.111
5.746
4.107
2.978
1.658
9 950
6.318
4.164
2.827
1.986
1.456
1.121
7.701
6.268
5.871

3.463
3.935
4.307
4.594
4.815
4.986
3.130
5.263
5.395
5.651
5.852
5.943
5.916
5.798
5.626
5.431
5.235
4.887
4.653
4.572

4.246
3.147
2.329
1.718
1.259
9.169
6.639
4 793
3.458
1.818
9.894
5.647
3.389
2.128
1.391
9.442
6.659-'
3.779
2.641
2.335

6.207
6.946
7.738
8.558
9.375
1.015'
1.085'
1.144'
1.191'
1.241'
1.244'
1.215'
1.168'
1.113'
1.056'
1.001'
9.506
8.673
8.150
7.973

4.249
3.150
2.332
1.721
1.263
9.210
6.683
4.839
3.506
1.868
1.039
6.133
3.856
2.573
1.814-'
1 345
1.046
7.248
5.901
5.524

3.764
4.267
4.749
5.235
5.724
6.190
6.609
6.963
7.237
7.534
7.549
7.371
7.089
6.761
6.422
6.097
5.796
5.307
5.000
4.897

'x" stands for x X 10".
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cross sections are comparable with the present ones. At .

small angles, a better agreement, however, is found to
occur with the calculations of Truhlar and Rice (not
shown). At lower energies, Born approximation, even
with the inclusion of polarization and exchange, give poor
results.

Next to Born approximation, the Glauber approxima-
tion (and its different versions) is the alternate high-
energy approximation which has been used ' ' ' fre-
quently for e-H2 scattering. But most of the calculations
reported so far, excepting those by our group, ' ' essen-
tially make use of the independent-atom approxima-
tion"9 (IAA) in which the effects of bonding is incor-
porated through an adjustable parameter. A notable ex-
ception is the Glauber calculation by LaGattuta who has
derived the scattering amplitude by considering a Gauss-
ian basis for the electronic part of the target wave func-
tion. Their results at 40 and 100 eV are in poor agree-
ment with the experimental data (see Figs. 1 and 2 of Ref.
55) as well as with the present calculations. The
IAA ' and modified Glauber calculations, on the
other hand, give good agreement throughout the scatter-
ing angles at and above 100 eV (not shown). Earlier cal-
culations of Bhattacharyya et al. (model B) show signifi-
cant discrepancy in large-angle scattering compared to the
present calculations with model B-HL-K(Iz). This is il-
lustrated in Fig. 7 for the incident energy 200 eV. Present
calculations with potential terms v&2 and v&6 (Table
III) indicate that this discrepancy arises mainly from the
neglect of potential terms with v&2 by Bhattacharyya
et ah.

In the energy region considered here only a few close-
coupling calculations, following either one-center
or two-center techniques, have been reported so far. The
most recent work of Staszewska et a/. , which is an im-
proved version of the earlier work of Truhlar and
Brandt, takes into account the effects of electron excita-
tion through an effective absorption potential. Their
cross sections (model SEPa, without absorption) are in ex-
cellent agreement, both in magnitude and angular depen-
dence, with those of ours at 100 eV, but are systematically
higher in magnitude at 40 eV (not shown). At 40 eV, the
cross sections (model 3, thermally averaged) obtained ear-
lier by Truhlar and Brandt are also somewhat higher in
magnitude (Fig 3). Tru. hlar et al. have also computed
elastic cross sections at 20, 30, and 40 eV by employing
the infinite-order sudden approximation. These cross sec-
tions considerably overestimate the present ones at all en-
ergies (not shown).
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40 eV obtained by using the models A-PZ-K(I~) and B-
HL-K (Iz ) are presented. In Fig. 9 cross sections
I(1~1,8) and I(l —+3,8) at 40 eV for these models are
compared with the corresponding experimental ' ' and
theoretical quantities. It is found that I(1~1,8) cross
sections for either of the models are in excellent agree-
ment, both in magnitude and shape, with those obtained
experimentally. On the other hand, I(1~3,8) cross sec-
tions for these models are about 2 to 4 times smaller and
show completely opposite angular dependence. These
cross sections for the model A PZ K-(I~)-are smaller at all
scattering angles than those for model B-HL-K(I&). For
both the processes, the close-coupling cross sections
are higher in magnitude, but show similar angular depen-
dence in the case of the inelastic process.

Table VIII shows that pure elastic cross sections
I(j ~j,8) increase with the increase in the initial state J,
but the corresponding inelastic cross sections
I(j ~j +2,8) decrease in such a way that the sum of the
cross sections I(j ~j,8)+I(j~j +2,8) remains almost
independent of j. Other characteristic features of the
state-to-state cross sections, such as the energy depen-
dence and the dominance of the inelastic cross sections

B. State-to-state differential scattering cross sections

At intermediate energies the only measurements of
state-to-state differential scattering cross section available
are those of Srivastava et al. However, a few calcula-
tions at energies pertinent to the present investigation are
made using the infinite-or'der sudden, close-coupling,
and Glauber approximations. ' ' ' ' For comparison we
have considered the close-coupling cross sections of Truh-
lar and co-workers.

In Table VIII different state-to-state cross sections at

)0» I

0 60 120 1 80
SCATTERlNG ANGLE(deg)

FIG. 9. Lower panel: Pure elastic differential scattering
cross sections at 40 eV for the transition j=1—+j'=1. Upper
panel: Pure rotational-excitation differential scattering cross
sections at 40 eV for the transition j = l~j'=3. Experimental:
o, Srivastava et al. (revised, Ref. 41). Theoretical:
model 8-HL-H (I~) and, Inodel A-PZ-H (I~ ), present cal-
culations; —- ——-, Truhlar and Brandt (model 3, Ref. 56).
(Arrows indicate which scales apply. )
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TABLE IX. Integrated cross sections (10 m ) for e-H2 scattering obtained by using different
group-A models: comparison with experimental and other theoretical results.

Energy
(eV)

g(0~2) 0.(1—+3)
Model' o.(0—+0) (&&10 ') o(1~1) {)&10 ') &o)' (o &'

20

30

40

60

75

150

300
400

(i)
(ii)
(iii)
(iv)

(i)
(ii).

(i)
(ii)
(i)
(ii)
{iii)
(iv)

3.243
2.922

2.380
2.210

1 ~ 849
1.750
1.924
2.341

1.253
1.210
1.001
0.975
0.745
0.732
0.778
0.965

0.490

0.363

0.221
0.167

0.896
0.880

1.054
1.035

1.118
1.102
1.123
1.144

1.095
1.084
1.022
1.014
0.882
0.877
0.884
0.896

0.647

0.494

0.322
0.245

3.279
2.957
4.56"
2.422
2.252
3.04"
1.894
1.794
1.969
2.387
2.65"
3.503'
1.297
1.254
1.042

-1.016
0.781
0.767
0.813
1.001
1.338'
0.515

0.383

0.234
0.177

0.548
0.538
7 09"
0.642
0.631
4.92"
0.681
0.671
0.684
0.696
3 79"
2.285'
0.668
0.661
0.626
0.623
0.545
0.542
0.547
0.554
0.864'
0.410

0.320

0.214
0.164

2.488
2.316

1.964
1.862
2.039
2.458

5.270"
1.748 3.873'

3.976'
3 54"

1.442

3 03"
3.732'

1.068 1.960'1.366
1.321
1.106
1.080
0.837
0.824
0.870
1.058

0.894

0.704 1.154'
0.751'
0.975'
1.019
1.427'
0.471'
0.686
0 325'
0.515
0.210'
0.159'

0.559 0.493

0.418 0.378

0.258
0.196

3.335 2.219 4.693'
3.012

2.30'
3.36~

1.70'
2.508

1.00'
1.27~

0.70'

0.77~

0.89"

0.50~

0.52
0.39~

0.36"
0.23
0.15'

Models (i) A-PZ-H (I~ ), (ii) A-PZ-H, (iii) A-PN-H {I~),and {iv) A-OI. -H {I~).
"Without exchange. Model A-PZ-X.
'Other theoretical results.
Experimental.

'Reference 43 (BOA/P, Table IV; 20 eV, B/P, Table III).
Reference 41 (renormalized data of Ref. 37).

~Reference 40.
"Reference 59.
'Reference 48 (model Q, ); for 30 eV, see Ref. 47.
'Reference 58 (model SEPa).
Reference 39.

'Reference 50.
Reference 42.

over the pure elastic cross sections at large angles, are
identical with those observed earlier by Bhattacharyya
et al. When exchange effects are treated using the
HFEG potential, instead of the TFEG potential, only the
magnitudes of different cross sections are lowered.

C. Integrated and momentum-transfer cross sections

In Table IX integrated cross sections for different elas-
tic and inelastic processes and for the average elastic
scattering calculated by using different A models are com-
piled to compare their relative magnitudes. These quanti-
ties for the 8 models are given in Table X. Comparison
with different experimental measurements and with
other theoretical calculations ' '" ' ' ' ' are also made
in Table IX. In general, we find that the cross sections

(o ) are independent of the initial rotational state j of the
molecule. Furthermore, these cross sections at 30—200
eV for the A models, A-PZ-H(Iz) and A-PZ-H, and for
the corresponding B models, B-HL-H(I~) and B-HL-H,
are usually within the dispersion in the experimental data
of different independent measurements. At 300 and 400
eV, where exchange effects are negligible, model A-PZ-X
cross sections are closer to experimental data than model
B-HL-X cross sections. At the lower part of the energy
region, where exchange effects are prominent, the TFEG
model is more effective than the HFEG model. In this re-
gion the model 8 cross sections, compared to correspond-
ing model A cross sections, are more akin to experimental
data. Nevertheless the nature of (I(8) ) curves (Figs.
2—g) suggests that the potential models A-PZ-H(Iz) and
A-PZ-X (at 300 and 400 eV) give the best overall agree-
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TABLE X. Integrated cross sections (10
models.

m ) for e-H2 scattering obtained by using group-8

Energy
(eV)

20

30

40

60

75

100

150
200
300
400

Model'

(i)
(ii)
(i)
(ii)
(i)
(ii)
(i)
(ii)
(i)
(ii)
(i)
(ii)
(i)
(i)
b
b

cr(0—+0)

3.492
3.164
2.567
2.392.
1.996
1.892
1.355
1.310
1.084
1.056
0.808
0.794
0.532
0.395
0.241
0.183

o.(0—+2)
( X 10-')

1.128
1.114
1.287
1.267
1.328
1.310
1.253
1.241
1.153
1.144
0,982
0.977
0.715
0.545
0.356
0.271

o.(1—+1)

3.537
3.208
2.619
2.442
2.049
1.945
1.405
1.360
1.130
1.102
0.847
0.833
0.560
0.417
0.255
0.193

cr(1 —+3)
( X10-')

0.689
0.680
0.784
0.772
0.808
0.797
0.764
0.757
0.706
0.700
0.606
0.603
0.451
0.351
0.235
0.179

3.608
3.278
2.699
2.521
2.132
2.026
1.483
1.437
1.202
1.174
0.910
0.896
0.608
0.455

(a&b

2.464

1.932

1.589

1.173

0.981

0.771

0.539
0.414
0.282
0.214

'Models (i) B-HL-H(I~) and (ii) B-HL-H.
Without exchange. Model B-HL-X.

ment with the experimental measurements throughout the
energy interval considered here. At 30—100 eV polarized
Born (with exchange) calculations of Trajmar et al. are
about 1.56 to 1.4 times higher than the present calcula-
tions for the model A PZ H(Iz). -On-the other hand, the
calculations of Khare and Shobha are about 1.6 times
higher at 30 eV. The results of Gupta and Khare" are
comparable only at 100 eV, but underestimate our results
at still higher energies. The close-coupling cross sections
(model SEPa) obtained by Staszewska et al. s overesti-
mate the present ones at 40 eV by a factor of 1.9, while
those at 100 eV by 1.7.

In Table XI momentum-transfer cross sections (o~)
for different potential models are compared with those
obtained experimentally ' and theoretically ' by
different workers. It is observed that both the models

A-PZ-H(Iz) and B-HL-H(I&) give fairly good agreement
with the measurements between 30—200 eV.

D. A few observations

Exchange

The exchange interaction modifies significantly the
electron scattering cross sections at the low-energy region.
In this energy region exact static exchange (ESE) calcula-
tions for simple molecules can be performed. ' ' Thus a
model exchange potential can be tested ' ' by carefully
comparing the predictions of this model (plus the static
potential) with the accurate ESE calculations. For hydro-
gen molecules, Morrison and Collins have made such a
study by calculating the eigenphase sum and they have

TABLE XI. Momentum-transfer cross sections (o ) i 10 m ) for e-H2 scattering.

Models 20 30
Energy (eV)

40 60 75 100 150 200

A-PZ-H (Ip )
A-PZ-H
A-PZ-X
B-HL-H (Ip )

B-HL-H
SCT'
SS
TPB'
TB
SST'

1.164
1.056
0.752
1.262
1.149
1.73
2.11
1.55

0.724
0.679
0.507
0.770
0.721
0.801
1.02
0.747

0.498
0.475
0.369
0.520
0.497
0.515
0.64
0.441
0.709
1.026

0.284
0.276
0.228
0.292
0.285
0.268
0.29

0.207
0.203
0.173
0.212
0.208
0.167

0.137
0.135
0.120
0.139
0.138

0.15

0.212

0.073

0.067
0.075

0.083

0.046

0.043
0.046

0.060

'Reference 41 (renormalized data of Ref. 37}.
"Reference 40.
'Reference 59.
Reference 56 (model 3).

'Reference 58 (model SEPa).
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pointed out that the HFEG exchange model is to be prop-
erly tuned (TFEG) by adjusting the ionization potential to
get an agreement with the ESE calculations. They have
also found that the difference between the predictions of
the two models decreases with the increasing energy.

At intermediate energies, no ESE cross sections, to our
knowledge, are available. To test an exchange model we
have to compare its predictions directly with the experi-
mental cross sections (o.). In the present case, we observe
that for the group A models with PZ V„z potential the
effect of exchange interaction is to increase the cross sec-
tions (o ) (see columns 7 and 8, Table IX) by about 36%
at 20 eV to 17% at 100 eV for the model HFEG. The
TFEG model, on the other hand, registers an increase of
50% (20 eV) to 19% (100 eV). Thus the two exchange
models differ considerably at the lower part of the energy
region considered here. The predictions of the two models
gradually converge with increasing energy (this is also
true for the group B models, as is evident from Table X).
A comparison with the experimental data of Srivastava
et al. and Shyn and Sharp (see columns 7 and 10, Table
IX) suggests that TFEG cross sections are in better agree-
ment compared to the HFEG ones. These observations
indicate that HFEG exchange potential is weak even at
intermediate energies and needs "tuning. "

2. Correlation polarization

One of our major objectives of the present study is to
investigate the usefulness of V„~ potential at intermedi-
ate energies. We have noted in Sec. IV A 1 that differen-
tial scattering cross sections (I(8)) involving PZ V„z
potential give better agreement with the experiment than
those involving HL Vz potential. The region of PZ poten-
tial most effective in changing the angular dependence of
(I(8)) when it replaces HL potential could be ascertained
by examining the contributions of the spherical parts of
these potentials to (I(8)). The relevant cross sections at
30 eV are presented in Fig. 10. In Fig. 1 the points 3
(0 85&o) 8 (2 5&o) and C (3 05&o) of PZ V,,~ and the
minimum in HL Vz at D (r=1.4ao) correspond, respec-
tively, to the scattering angle 74, 66', 60', and 70 shown
in Fig. 10. Between the scattering angles 0'—74,
V, +V„~ cross sections are smaller than V, + V~ ones;0 p

. the situation reverses roughly above the scattering angle
74'. Apparently, r= 1.4ap —2.5ap is the most sensitive re-
gion of V„z or V potentials. The effects of stronger
HL V~ in this region more than compensate for the ef-
fects of stron er PZ V,,z in the region r=2.5ao —70o.
As a result, + V„z cross sections become smaller than
V, + Vz ones. Below r =1.4ao the nature of modulation
of static potential V, due to HL V~ and PZ V,,z changes
(I(8) ) roughly above the scattering angle 74' as shown in
Fig. 10. When the nonspherical potential is switched on
cross sections in this region are affected most.

Figure 1 shows that in the region r = 1.4ap —2.5ap PN
V z lies between HL V~ and PZ V,~z, whereas OL
,~z is even stronger than HL Vz potential. This is re-

flected in the relative magnitudes of (I(8) ) (Fig. 5) and
(o ) (Tables IX and X) computed at 40 and 100 eV by us-
ing these potentials.
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[
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FIG. 10. Comparison of elastic differential scattering cross

sections involving spherical part of Henry-Lane polarization
( V, + V~ ) and Perdew-Zunger correlation-polarization
( V, + V, ~) potentials. Elastic DCS for short-range Fraga-
Ransil static potential V, and the long-range potentials HL V~

and PZ V, ~ alone are also shown. The scattering angles A, B,
and C marked on the V,,~ and D on the V~ cross sections cor-
respond to the positions in the pertinent potential shown in Fig.
1. (Arrows indicate which scales to apply. )

VI. CONCLUSIONS

We have presented in the present paper an improved
version of the Glauber-eikonal scattering amplitude origi-

Rotationally inelastic cross sections depend upon the
nonspherical parts of the electron-molecule potential.
I(1~3,8) at 40 eV shown in Fig. 9 and o(j—+j+ 2)
presented in Tables IX and X suggest that nonspherical
PZ potential is much weaker than the nonspherical HL
potential. Finally, we would like to point out one impor-
tant aspect of the nonspherical polarization potential. All
the known theoretical calculations ' ' ' ' ' (including
the present one), in which different static and polariza-
tion potentials have been used by employing different
quantum-mechanical approximations, fail to reproduce
the shape of experimental cross sections I(1~3,8). The
only exception is the potential model A calculations of
Bhattacharyya et a/. ' in which a Buckingham-type cut-
off parameter is used' for Vz. This suggests that precise
knowledge regarding the nonspherical polarization poten-
tial of hydrogen molecules is still lacking. However, more
accurate experimental data are needed to confirm it.
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nally developed by Bhattacharyya and Ghosh. We have
used this amplitude to test a recently proposed,
parameter-free model of correlation-polarization contribu-
tion to FEG electron-molecule potential by applying it to
e-H2 scattering at intermediate energies.

We observe that the correlation-polarization potential
(PZ) employed is weaker than the Henry-Lane polariza-
tion potential and gives smaller average elastic and state-
to-state integrated cross sections. For average elastic DCS
and integrated cross sections, agreement between theory
and experiment is better when calculations are made with
the correlation-polarization potential. Correlation-
polarization potential yields better cross sections when
used in combination with the TFEG exchange potential
[A-PZ-H(Iz)] than in combination with the HFEG ex-
change potential (A-PZ-H). This is because the HFEG
model is weak for hydrogen molecules even at intermedi-
ate energies. For a two-electron system like Hq the overall
success of the correlation-polarization model is quite en-

couraging and further tests of the model on molecular tar-
gets possessing more electrons should be undertaken.

As for the present Glauber-eikonal amplitude, we find
that inclusion of nonspherical potential terms with v=4
and 6 significantly improves the intermediate- and large-
angle average elastic DCS; these cross sections at and
above 100 eV become comparable with those obtained by
using the polarized-Born approximation. At 30—100 eV
the polarized-Born approximation gives poor results, but
the present amplitude reproduces the small- and
intermediate-angle DCS remarkably well. To test the po-
tentiality of the present approximation application should
be made to targets possessing stronger nonspherical poten-
tial than hydrogen.
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