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The derivation of model Hamiltonians such as crystal-field and spin Hamiltonians requires the

decoupling of electrons, which may be done by defining an appropriate equivalent Hamiltonian H,q.

The connection between H,q and the original Hamiltonian, and between the respective eigenfunc-

tions, is explicitly given. The eigenfunctions of H,q are linear combinations of simple products of
atomic spin orbitals, the latter being chosen in such a way that its antisymmetrization leads to a

linearly independent set. The problem is then reformulated in a chosen subspace (effective space)

via the effective-Hamiltonian formalism. The model Hamiltonian H, d is then obtained by project-

ing out the undesired degrees of freedom. If in the two-atom two-electron case one keeps in H, d

only first-order terms in the interatomic interaction, one gets the usual Heitler-London approxima-

tion. For this reason the formulation has been called the extended Heitler-London method. As an

illustration the formalism is applied to the H2 molecule, where the usual Heisenberg Hamiltonian is

rigorously derived and the values of the energy baricenter and magnetic exchange constant are

given, up to the second order of perturbation theory.

I. INTRODUCTION

The first step towards a microscopic description of a
solid-state system is the formulation of an appropriate
model Hamiltonian H,d. This Hamiltonian has to be
contrasted with —or have its parameters adjusted from-
the results of a certain set of experiments. As these exper-
iments cover a well-defined energy range, one needs only
to look at a known number n of energy eigenvalues of
H, d with known degeneracies. One may therefore define
H ~ in such a way that it operates within an n-
dimensional vectorial space A,d. The problem is that the
basis functions which span Q,d are not known a priori.

When doing, for instance, near-ultraviolet electronic
spectroscopy of Cu + ions in solids it is known that the
levels of interest stem from the ground multiplet D, so
that one needs only to consider a 2X 5-dimensional space.
But this space is not the one spanned by the ionic d orbi-
tals and the s = —,

'
spinors, because electric dipole transi-

tions would then be forbidden by Laporte's rule, which is
known not to be the case. It is therefore necessary to in-
voke admixtures with at least one excited configuration. '

One may nevertheless, as is customarily done by experi-
mentalists, define a model Hamiltonian within the model
space 0 ~ spanned by the D eigenfunctions of the free
Cu + ion.

The given example clearly shows that —apart from its
dimension —the model space Q,d may be chosen quite
freely. As the eigenvalues of H, d should be equal to a
set of eigenvalues of the actual Hamiltonian H—a set
which depends on the experiments performed on the
system —it is clear that H, d does not coincide with H.
The theoretician is therefore confronted with the task of
establishing an explicit connection between the model and
the actual eigenvalue problem.

If the task involved only the reduction of the dimension
of the domain of H while preserving at the same time all
the degrees of freedom of the system, the solution would
be easily obtained. In this particular case H, d would be
a suitably defined effective Hamiltonian associated both
with H and a reference Hamiltonian determined by the
available experimental data (see Appendix 8 for a more
thorough discussion of effective Hamiltonians).

That this is not the general case is clearly shown by the
Cu + example where, due to the nonvanishing overlap,
one cannot neglect the effect of the ligand's electrons. It
is in fact the interaction with these electrons which gives
the main contribution to the crystal-field parameters.
One has therefore not only to work in a reduced domain,
but also to get rid of a given number of degrees of free-
dom.

The problem of deriving model Hamiltonians in the

32 81 1985 The American Physical Society



SOLIVEREZ, GAGLIANO, AND ARTECA 32

case where the kept and the discarded dynamical variables
correspond to nonidentical particles has been fully dis-
cussed in a previous paper. Et was shown there —a result
which is also valid for identical particles —that a neces-
sary condition for the existence of a meaningful model
Hamiltonian is that the state of the subsystem of dispos-
able particles be nondegenerate. By "meaningful" it is
here meant that H, d should give not only the actual en-

ergy eigenvalues but also determine in the usual way the
time evolution of all physical magnitudes. The classical
interpretation of the nondegeneracy condition is that the
omitted particles then play the role of a scleronomous
constraint which determines the values of the parameters
of the subsystem under study. For a more detailed discus-
sion of this point the reader is referred to the Appendix
and the end of Sec. V of the aforementioned paper.

Under the previously given condition H, d can be ex-
pressed as the mean value of a suitably defined effective
Hamiltonian, there being an explicit connection between
the model eigenfunction and the actual one. Unfortunate-
ly the prescription does not apply to the case where the 're-

tained and the omitted dynamical variables belong to in-
distinguishable particles. The reason for this failure is
that one may get rid of the latter only when they can be
fully factorized in the wave function, which does not hap-
pen for symmetric or antisymmetric wave functions where
the variables are inextricably admixed.

Due to this difficulty the few theoreticians concerned
with the justification of model Hamiltonians such as
crystal-field Hamiltonians and the spin Hamiltonians
which describe the magnetic properties of solids, " have
looked only at their eigenvalues, disregarding the problem
of the relationship between the actual and model eigen-
functions. Stevens wrote, for instance, "the operators in a
spin Hamiltonian are equivalent operators which repro-
duce the energy levels, but not the eigenstates. There may
be a connection between the states, but what it is is often
obscure. " In his discussion of direct exchange effects,
Herring points out that the correspondence between the
actual and model Hamiltonians is not a projection —as is
the case for nonidentical particles —but a more general
mapping defined by the equality of certain matrix ele-
ments [see the first paragraph of p. 22 and Eq. (3.5) of his
paper]. Although Herring realizes that a suitable choice
for model wave functions is the Heitler-London one, he
does not pursue the idea to the very end, probably due to
the difficulty of introducing the necessary higher-order
corrections. He chooses to introduce an ad hoc potential
with the desired physical features instead of explicitly
deriving it from the mapping.

To our knowledge the first significant advance in the
last direction was made by Eremin and co-workers in con-
nection with the derivation of crystal-field Hamiltonians.
Several important steps were overlooked in their deriva-
tion which is also obscured by its perturbative nature and
the apparently inconsistent use of orthonormalization
schemes. The formulation we present here overcomes
these limitations, at least for the two-electron case, this
being the first step towards a discussion of many-electron
and many-atom systems. Although we will illustrate the
formalism with the simplest known spin Hamiltonian, the

Heisenberg Hamiltonian describing the exchange splitting
of the H2 molecule's ground state, the same scheme may
be used for the derivation of any model Hamiltonian.

All present calculations of electronic structure require
choosing some specific basis set, the first successful at-
tempt being that of Heitler and London in the early days
of quantum mechanics. Their choice of atomic spin orbi-
tals was surely dictated by the chemists' traditional view
of molecules as being built up from atoms. The sound-
ness of this atoms-in-molecules approach becomes evident
as soon as one realizes that the interatomic interactions
are a small fraction of the total molecular energy. '

One therefore guesses that the original Heitler-London ap-
proximation is the first-order contribution in a perturba-
tive calculation, a guess that we show here to be correct.
A similar argument applies to atoms in solids as long as
its number N is kept small, and even when % goes to in-
finity if due care is taken when performing the expan-
sions. '

The extended Heitler-London method which we are
about to develop has several advantages. First, it may be
used to rigorously justify model Hamiltonians like the
crystal-field and the spin (exchange) Hamiltonians previ-
ously discussed. Second, it contains the important corre-
lation effects" that are necessarily absent in any
molecular-orbital formulation because of its intrinsic
independent-electron nature. Third, it provides a sys-
tematic way of analyzing solid-state trends in terms of the
known properties of the constituent atoms, a feature
which would be lacking in any fully ab initio calculation.

The method is based upon three main ideas which are
convenient to briefly discuss in advance in order to put in

proper perspective the somewhat abstract mathematical
formulation that follows.

(1) The mathematical complications introduced by the
antisymmetry constraints are eliminated by introducing a
new Hamiltonian which forces the wave functions to be
antisymmetric. This requires to reduce the domain of the
actual Hamiltonian H so that there is a one-to-one
correspondence between the original antisymmetrical basis
functions and the new ones. The resulting new Harnil-
tonian explicitly shows the spin dependence of the energy
which is the consequence of the exchange interaction.
When one naturally chooses es the new basis a set of sim-
ple products of spin orbitals, the way is paved for a
decoupling of the electrons. In the case of an orbitally
nondegenerate ground state, the scheme automatically
leads to an exchange Hamiltonian which in the two-
electron case exactly reduces to the usual Heisenberg
Hami'ltonian.

(2) The lack of orthogonality of the aforementioned
basis introduces the complication that the matrix repre-
sentations used in actual calculations do not preserve the
standard form of the eigenvalue equation. This standard
form is restored by using symmetric orthonormalization
operators, which at the same time preserve both the
system's symmetry properties and the unitary character of
some operators.

(3) In order to link our formulation with the model
Hamiltonians used in practice, it is necessary to restrict
the problem to a proper effective subspace. This is made
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II. FORMALISM

Consider the following simple products of atomic spin-
orbitals:

4'(1,2, . . . , N)=$1(1)$2(2) . . QN(N), (2.1)

f(j ) =y(r, )X(oj), (2.2)

where r and o. are the electronic coordinates and spin.
The corresponding antisymmetrized products are
where the antisymmetrizer A is given by'

A = g pP/N! .
P

(2.3)

The sum runs over the N! permutations I' of N electrons,

p being 1 for the even permutations, and —1 for the odd
ones. The antisymmetrizer A is a projection operator
which has the following properties:

A~=A, (2.4)

by using the effective-Hamiltonian formalism, in either an
exact or a perturbative fashion. ' ' This is the same as
first working with some selected set of functions, and then
introducing the corrections induced by the neglected ones.

In order to work with the desired model basis one has
to eliminate some degrees of freedom keeping at the same
time an explicit connection between the primitive and fi-
nal basis functions. One then finds the eigenvalues and
eigenfunctions of the resulting new Hamiltonian H, d by
using symmetry arguments and solving the usual secular
equation. The eigenvalues thus found coincide with those
of H, and the actual wave functions are in a one-to-one
correspondence with the eigenfunctions of H, d. This is
in agreement with the usual practice of writing model
Hamiltonians whose domain is some freely selected model
subspace chosen from experimental arguments.

The paper's organization is as follows. Starting with
the general formulation, we then apply it to the Hz mole-
cule in the approximation corresponding to the standard
Heitler-London approach. After showing how one
rigorously obtains in this case a Heisenberg Hamiltonian,
we next discuss the introduction of the excited states, ex-
plicitly giving the second-order perturbative approxima-
tion.

where

+j(s)(rl r2 . rN +SM(~1 ~2 . . ~N ) (2.10)

@j(rl r2 rN) q 1(rl)q 2(r2) gN(rN)

& &sM I
&s'M' &

=&ss'AM'

S &SM=S(S+1)&SM, Sz+SM ™KSM.

(2.12)

(2.13)

The orbital part 4z~z) in general will depend on the total
spin S as illustrated by Eq. (C9). In what follows each
function of the kind Eq. (2.10) will be called an orbitally
simple product (OSP), p and j standing for a whole set of
indices. The corresponding antisymmetrized product
(AP) is

fp ——A%'p . (2.14)

The basis I%'~ I of OSP's should be defined in such a
way that all AP's derived from Eq. (2.14) are linearly in-
dependent. This means that no OSP should be included
that under an exchange of arguments is either invariant or
identical to any other OSP in the set. In the first case the
corresponding AP vanishes (exclusion principle), while in
the second the corresponding AP's differ from each other
at most in sign, as follows from the property Eq. (2.6). A
simple prescription for generating such a basis is to define
a standard order for the spin-orbital s indices in Eq. (2.1),
including in the set only those simple products which con-
tain no repeated indices and are ordered both with respect
to them and to the arguments. This ensures that no two
products will be present which differ only by a permuta-
tion of arguments, the same holding true for the derived
OSP's. As two different spin orbitals may be obtained by
taking the same orbitals with different spins, this means
that the orbital part @, Eq. (2.11), may contain up to two
identical orbitals.

If the atomic orbitals are normalized,

(2.15)

dent, thus commuting with the dimensionless total elec-
tronic spin angular momentum operator S. Therefore u
may be taken to be an eigenfunction both of S and S,. It
is thus convenient to take instead of the simple products
Eq. (2.1) the linear combinations

+q(1,2, . . . , N)

=A,
AP =PA =@A .

then so are all OSP's,2.5

(2.6) (2.16)
If the set of simple products f%'I is properly chosen —a

problem which we discuss below —the corresponding set

I A%'I is a basis for the expansion of the molecular wave
function obtained from the eigenvalue equation

Both the OSP's and the AP's are in general not orthonor-
mal, their metric matrices being

(2.17)

Hu =Eu,
where

(2.7) (2.18)

Au =u, (2.8)

(2.9)

As we will disregard relativistic effects, H is spin indepen-

where we have used Eqs. (2.4) and (2.5).
Any actual calculation deals with matrices and not with

operators. This makes no difference for orthonormal
basis because the representation of any operator equation
is then faithful. As is discussed in Appendix, A, which is
the reference for what follows, this is not the case when
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dealing with the nonorthonormal bases of our interest. In
this case the matrix representation of the eigenvalue equa-
tion (2.7) reads

G d''I =Ed'&,

where

(2.30)

Hic =EH c (2.19) c'& =g 'X d'", (2.31)

where H~ is the matrix representation of H in the basis

If~j, and c is the column matrix of the coefficients in the
expansion Eq. (2.9). Letting 0 be the orthonormalizer
Eq. (A19) where fz is here defined by Eq. (2.14), from
Af~ =f~ it follows that G'=G~eq= (2.32)

N being the matrix representation of N in the basis I %~ j.
(3) We now define G,q in such a way that the matrix

eigenvalue problems Eqs. (2.24) and (2.30) are identical.
That is,

Og =HO=0.
If we define the new Hermitian operator

G=O HO,

(2.20)

(2.21)

d'I=d . (2.33)

As G is a known operator, Eqs. (2.32) and (2.33) allows
us to define H, q, and to establish the connection between
u ' and u. We thus find

(2.22)

then the results of Appendix A show that the matrix rep-
resentation of the operator pseudoeigenvalue problem

H
q (N ')——G,qN

where from Eq. (A29)

(2.34)

Gv =EO Ov (2.23)
N-'= g ~%, )(gN')„(%, ~, (2.35)

is given by the matrix eigenvalue equation

Go=Ed . (2.24)

Here, E is the molecular energy Eq. (2.7), and the molecu-
lar wave function Eq. (2.9) is given by

u = gczf~=OU= g(A 'Od)~f~,
P

(2.25)

where 0 is the matrix representation of 0 in the basis

This is very convenient because one may then use all
standard properties and techniques. If GI is, for instance,
a diagonal matrix, then its eigenvalues are the diagonal
elements, a property which is not valid for Eq. (2.19).

Our goal is to go over from an eigenvalue problem in
the space of the AP's to one in the space of the OSP's.
While there is an isomorphism between the two sets given
by the mapping Eq. (2.14), the OSP's cannot be expanded
in terms of the AP's bemuse a projection operator like 3
has no inverse. What we will do instead is to introduce a
Hermitian equivalent Hamiltonian He& in the following
way.

(1) The molecular energies are the eigenvalues of H,q,

(2.26)

where

u"= gcgq0'~ .
P

The matrix representation of Eq. (2.26) is then

H, c'&I=Eg c'& .

(2.27)

(2.28)

(2) In order to have a proper matrix eigenvalue problem
we define the new operator

G,q
——N H', qN, G,q

——G,q, (2.29)

where X is the orthonormalizer of the OSP's. It then fol-
1ows that

being the basis biorthonormal to (qI~I. We may
therefore write [see Eq. (A9)]

H, = g ~
qiq)(NG~Nt)pq(%'q

~

=M ~M, (2.36)
p, q

where M is the mapping operator

M = g ~
f~)(A 'ONt)pq(+q ~, M =M

s' e

From d'~=d, it immediately follows that

u =Mme@ .

(2.37)

(2.38)

Summarizing, we have mimicked, in the space spanned
by I%&I, the development leading from Eq (2.7) t. o the
eigenvalue equation (2.24) in the space spanned by
I A V~ I. The corresponding steps are given side by side in
Table I, where we have also included those related to the
establishment of a true matrix eigenvalue problem. The
crucial equation is the definition Eq. (2.32).

If one wishes to obtain all the molecular eigenvalues
and eigenfunctions, one needs only to solve the matrix
eigenvalue equation (2.24). In order to write a model
Hamiltonian H z operating in a model subspace corre-
sponding to a reduced number of degrees of freedom —the
spin ones in the example to be considered —it is necessary
to go over to the operator eigenvalue equation (2.26). This
comes about because the formulation of H, ~ requires
both a factorization of the wave function in the undesired
degrees of freedom, and the use of the effective Hamil-
tonian formalism in order to define a new eigenvalue
problem with the chosen dimension.

It is first of all necessary to define both an effective
subspace Q,rr, and a Hermitian reference Hamiltonian
H„,~ such that Q,~~ is spanned by one or several complete
degenerate sets of eigenfunctions of H„f. As ln most
cases of interest the effective Hamiltonian will be deter-
mined in a perturbative fashion, it is convenient to make
the partition
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TABLE I. Steps leading to the definition of H,q. Each
column corresponds to the space spanned by the basis at the
heading. The actual line of reasoning goes down from the first
equation of the third column, to the very bottom, and then up to
the top of the second column.

[owe j

H, ffw =Ew .

The corresponding eigenfunctions of Heq are

0 =SW

(2.49)

(2.50)

eigenvalue ep. The eigenvalues F. of H, q stemming from
eo are given by the operator equation

H,qu'q =Eu'q
u'q= g cd%~

P

u = gcpA%'~
P

so that the molecular wave function is given by

u =AS' . (2.51)
H ~~d~=Edeq a,'~c~=Eg c'q

NVH, q
——G,q

Geq=& ~eq&
G,qd' =Ed'
Ceq g

—lg deq

aA~c =EA c HoA+d =Ed

G A% LIOA%'

G =ORTHO

GA~d =Ed
c=A '0 d

S =Pp —XVPo,

Heff ——PoH, qPo —PpXVPo,

(2.52)

(2.53)

Up to the second order of perturbation theory we obtain
[see Eqs. (B18) and (B19)]

G~ =GA~

dq=d

an expression which will be used for the application dis-
cussed in Sec. III.

III. HEISENBERG'S MODEL HAMILTONIAN

H,q
——H„f+ V (2.39)

A. The Heitler-London approximation

Disregarding magnetic interactions the H2 molecular
Hamiltonian in atomic units is given by'

ref refH ref%'p ——ep%'~ (2.40)

in such a way that V is small. From what was said in the
Introduction, ' '" V should therefore be related to the in-
teratomic interaction.

I.et the eigenfunctions of H„f be

H =Ho+ U

where

Ho=h (1)+hg(2)+1/R

U = —1/r11 —1/r 2, + 1/r12,

(3.1)

(3.2)

(3.3)

where

where

P (E =6)
qjfef ) {qyfef

~

The spectral decomposition of H„f is then

H„f= geP, ,

(2.41)

(2.42)

(2.43)

h, and hb are the Hamiltonians of the isolated hydrogen
atoms at R, and Rb, r&b is the distance from electron 1

to nucleus b and similarly for rz„r, 2 is the interelectron-
ic distance, and R the internuclear separation. We take as
basis functions the OSP's generated by the ground-state
orbitals of the constituent H atoms, which corresponds to
the approximation of Heitler and London. ' If ap(r1)
and bp(rz) are the ls hydrogen orbitals centered on R,
and Rb, respectively, we get

VosM =&oYs11f S =0 1 M = —S —S+1 . S (3 4)

the last sum being over all degenerate eigenfunctions of
H„f with eigenvalue e.

As is shown in Appendix B, the Hermitian effective
Hamiltonian He ff which represents H, q

in the subspace
Q,ff is given by the following expressions:

H, ff ——S~H,qS

4o ——ap(r1)bp(r2),

Zoo= [a(o1)P(az) —P(cr1 )a(o2)]/&2,

711——a(a1)a(cr2),

+10 [a(al)p(cr2)+p(cr1)a(o2)]/~2

(3.5)

(3.6)

S =Z(Z Z)

z =p, +x(z(vz) —vz)p, ,

X = g P~/(F. eo)~—
e (&eo)

( vz ) = g p, vzp, .

(2.45)

(2.46)

(2.47)

(2.48)

x1 1
——p(o1)p(ap) .

It therefore follows that

Ho@o=eo@o

where

Ep=2ep+ 1/R

(3.7)

(3.8)

Here Pp is the projection operator corresponding to the
subspace Q,ff spanned by the eigenfunctions of H„f with

and ep is the hydrogen atom's ground-state energy.
For the two-electron case the antisymmetrizer Eq. (2.3)

is given by
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A =(1—T, T, )/2, (3.9)

where T, and T, are the coordinates' and spins' transposi-
tion operators, respectively. It is easily verified that the
spinors XSM are eigenfunctions of T„so that

where

Eo =&0+[(I+Q'/2) J—( —,
' +Q')&]/(1 —Q ),

and

(3.22)

Ts+SM ~S+SM

where

t( =1, tp ———1,
from which one obtains

(3.10)

(3.1 1)

Aq'QSM =
z (@0—rs T C'o)&SM . (3.12)

Notice that due to the choice Eq. (3.6) the wave functions
Eq. (3.12) are, in general, linear combinations of Slater
determinants.

The operator M,~, Eq. (C21), may in our case be writ-
ten

1lfsy =A
l @0)AQQ (T )(@0

l
(3.13)

[A,H] =0, (3.15)

which is a consequence of the fact that H is a symmetric
operator. ' Here we have not explicitly written the unit
operator in spin space, gs M l

Xs M ) (Xs M l

. The
Coulomb direct and exchange integrals are, respectively,
given by

J=JQQ
——(aobo

l
Uapbo)j,

IC =Epp = (apbp
l

Ubpa0 )

Upon writing

(3.16)

Aoo (T, )=2/(1 QT, )=2(l+—Q T, )/(1 —Q ),
(3.17)

where

(3.18)

which from Eqs. (2.34), (3.7), (C18), and (3.5) gives

H q=
l @0~[&0+ A200 (T )(J ICT )Aoo —(T )](40

l

(3.14)

Here we have used the commutation property

J,„,h ——(K —Q J)/(1 —Q ) . (3.23)

It may be easily verified that Ep is the baricenter-of the
energy eigenvalues, and that J„,h is half the separation
between the singlet and triplet states. Heisbenberg Hamil-
tonians of this sort are usually obtained by comparing en-
ergies, no explicit connections being established between
its eigenfunctions and the actual ones, ' ' as has been
done here.

While the Heitler-I. ondon approximation correctly
gives the general features of the energy curve E(R), the
predicted equilibrium internuclear separation is 10% too
large, and the dissociation energy is about —, of its actual
value. ' But its most drastic shortcoming is the fact that
it predicts a singlet-triplet crossing at large distances
which is incompatible with the property of two-electron
systems of always having a singlet ground state. ' Any
improvement on this situation requires introducing the ex-
cited states, as is discussed below.

B. The introduction of excited states

We now extend the previous basis in order to include
excited eigenstates of the isolated neutral H atoms, disre-
garding the high-energy ionic states where two electrons
are in the same atom (H ions). The OSP's Eqs. (C 1) and
(C2),

+p @j{S+SM

@jk(rl r2) 0 j(rl )q k(r2)

are then such that the condition

(3.24)

is always fulfilled, because the case j = k corresponds to
the excluded ionic states. We will order the indices so
that the first orbital in Eq. (C2) is centered on R„and the
second is centered on Rb. As the set of allowed orbital
parts I@jI is the same for both values of S [see the dis-
cussion leading to Eqs. (C9) in Appendix C] we may
therefore write

is the usual overlap integral, it is immediately found that

H, q
——

l
C&0)[eo+(J—Q Ir )/(1 —Q )

+p +jk+SM ~

Pjk aj(rl)bk(r2)

(3.25)

(3.26)

—Ts(K —Q J)/(1 —Q )](Crp l, (3.19)

which is the desired result.
As in this particular case the orbital part is fully factor-

ized, it is possible to reduce H,q to a spin-only Hamiltoni-
an. Upon taking matrix elements with Np, and bearing in
mind that"

Ts & +2s]'s2,

h, aj(ri) =ejaj(ri),

hbbk(r2)=ekbk(r2) .
(3.27)

Taking into account Eqs. (3.26) and (3.27) it follows that

where j and k are now S independent, Iaj] is an ortho-
normal set of atomic orbitals of the hydrogen atom cen-
tered at R„and similarly for I bk ]. That is,

we obtain the Heisenberg Hamiltonian

HHeis (@0
l
Heq@or Ep Jexchal S2 r (3.21)

IIOC jk —~jk@jk, IIO+p —~p+p

e~k ——ej+ek+1/R .-

(3.28)

(3.29)
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Due to the exclusion of the ionic states, it turns out that

I @jk I is an orthonormal set

(@jk I +I ~ = ~~j I a~)(bk
I
b ~ =8jl~k 8jk, l

H„f——e,
V=W '~'(T, )~W'"(T, )

i~2(T )(J ~T )g i~2(T )

(3.39)

(3.40)

x~ "(T,)&c. I, (3.32)

where each subindex stands for a pair of orbital subindices
and we have used the Hermiticiiy of A. H being a sym-
metric operator it follows that'

[A,H] =0,
which from Eq. (2.5) gives

AHA =HA =HA .

(3.33)

(3.34)

Upon defining the general direct and exchange Coulomb
integ rais

The symmetric mapping operator Eq. (C21) may now
be simply written

M,y
——A g I Nj )Ajk

'
( T, ) (4k

I
(3.31)

j,k

where each subindex now stands for a pair of orbital in-' ces.
From Eqs. (2.36) and (3.31) we obtain

Heq ™symHMsym

I e, )~,k'"(T,-)(ek
I
~H~e, )

j,k, l, m

S =Pp —XVPo,

H ff =PpH qPp —Pp VXVPp

(3.42)

(3.43)

The second terms in Eqs. (3.42) and (3.43) give the correc-
tions to the Heitler-London model, which is thus shown
to be the first-order approximation to H, d. The spin-
only Heisenberg Hamiltonian representing the spin depen-
dence of the H2 molecule ground state is now given by

HHeis ~@0
I Heff@0~ Eo ~exch 1 2 ~ (3.44)

where after some lengthy algebra it is shown in Appendix
D that

Presented in such a fashion the formalism correctly de-
scribes bond dissociation, a limit which is difficult to treat
in most approaches. We may now choose as the effective
space the one corresponding to the Heitler-London ap-
proximation of Eqs. (3.4)—(3.6),

jeff—[ posM I
S =0, 1, M = —S, —S + 1, . . . , S I

(3.41)

Up to the second order of perturbation theory we obtain
[see Eqs. (B18) and (B19)]

Jjk = ( Csj
I

U@k ),
re,k=(e, I

UT, e„)j,
(3.35)

(3.36)

1

Ep 00 2~00 ~

J-.h, =&op

(3.45)

(3.46)

XA( ' (T), (3.37)

which are spin operators. The previous expression
reduces to Eq. (3.19) for the restricted basis Eq.(3.4).

In order to apply the effective Hamiltonian formalism
we have to split H,q into a known reference Hamiltonian
H f and a remainder V. Because we intend to find H, ff
in a perturbative fashion, V has to be small. Apart from
the constant Coulomb nuclear interaction 1/R, the first
sum in Eq. (3.37) is essentially the isolated atoms' energy,
and the second is the interatomic interaction. The last
sum is therefore small compared with the first, ' '" being
a good candidate for V. Unfortunately the first term is
not Hermitian, which is an unavoidable requisite for H„f.
We will instead take

H„f—g I
qs, )e, (q, I, — (3.38)

P
which differs from the first sum in Eq. (3.37) only by
terms of the order of Q [Eq. (3.18)]. The spin matrices
H „fand V are therefore given by [see Eq. (2.39)]

the orbital matrix elements of H,„, Eq. (3.32), may be
written

(4j IH, q I

N ) = QAjk' (T, )ekAk (T, )
k

+ 2 y ~jk (Ts )(Jkl +k!TS)
k, l

where the matrices = and A are defined in Appendix D.
As we are here concerned only with the formalism, the
numerical calculation of the contribution of the excited
states to Ep and J„,h will be reported elsewhere.

IV. CONCLUSIONS

We have established —through a linear mapping —an
explicit connection between the actual molecular eigen-
value problem in the space of the antisymmetrized wave
functions, and an equivalent problem in the space of suit-
ably selected simple-product wave functions. The decou-
pling which the image eigenvalue problem makes possible
provides a way of eliminating undesired electronic degrees
of freedom. Thus, when using the effective Hamiltonian
formalism in order to determine only a selected set of
eigenvalues and eigenfunctions, it is possible to project out
such unwanted degrees of freedom, if a simple condition
is fulfilled. This condition, which has been previously
discussed in connection with the- decoupling of nonidenti-
cal particles, is that the effective subspace given by the
tensorial product of the subspaces of the desired and un-
desired degrees of freedom is such that the latter is one di-
mensional. It is then possible to explicitly write Hamil-
tonians which correspond to the model ones used in the
interpretation of well-defined sets of experiments. In fact,
the final goal of the present line of study is the calculation
of the parameters appearing in the model Hamiltonians
given by crystal-field theory.
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The very abstract nature of the formalism made it
necessary —both for the reader's convenience and in order
to be sure that no essential detail was overlooked —to give
an example simple enough to be given in a few pages, but
having at the same time all the main complications. The
H2 molecule was chosen because it is known that in the
first approximation the crystal-field Hamiltonian can be
interpreted in terms of the superposition of central-
ion —single-ligand interactions. The exclusion of the ion-
ic states was made only in order to simplify the algebra,
but they will surely have to be taken into account in the
actual numerical calculations. One should also notice that
orders higher than the second have also to be considered
in order to verify the convergence of the perturbative ex-
pansion. Herring (Ref. 6, p. 100) argues that many high-
order contributions would be required to obtain good
values of J„,h because of its strong dependence on the
wave functions' tails. If such turns out to be the case, it
might be convenient to use empirically adjusted model
wave functions instead of the atomic ones, as is done for
instance in the modified atoms-in-molecules method.

The derivation of the Heisenberg Hamiltonian was
chosen because it is the simplest example of a whole class
of spin Hamiltonians widely used in the study of magnetic
properties of solids. The necessary restriction of the non-
degenerate nature of the ground orbital state makes the
method applicable to the derivation of such spin Hamil-
tonians only for the case of insulators.

The extension to the many-electron and many-atom
case seems fairly straightforward and will be made in a
subsequent paper. In this case one unfortunately loses
some nice properties of the two-electron system, such as
the possibility of describing it exactly in terms of a spin
metric operator. The spin Hamiltonian will in general
contain other permutation operators apart from T„ that
is, products of more than two spin operators.

In spite of the numerical complications introduced by
the appearance of many-center integrals in the perturba-
tive expansion, the authors believe that the formulation
makes possible a first-principle interpretation of the pa-
rameters appearing in many commonly used model Ham-
iltonians.

APPENDIX A: NONORTHONORMAL BASIS

~ = g Ifi&&i &f
1, m

(A5)

where A is the matrix representation of 3 in the basis

Ifj I given by

~jk=&f,
l ~fk&

For instance, the unit operator is given by

I.p= g I fi & &fi
I

= g I fi &e &f
I l, m

= g Ift&&ft I

= g fi&e '&f
l, m

(A6)

(A7)

It is easily seen both from Eq. (Al) and the third member
of Eq. (A7) that g is the matrix representation of the unit
operator. The fact that this is not the unit matrix makes
it necessary to review some preconceptions one has about
matrix representations in nonorthonormal basis of opera-
tor equations such as

AB=C . (A8)

Introducing the unit operator (A7) between 2 and B,
and taking matrix elements in the basis IfjI, we obtain

A g
—'B=C,

1

(A9)

thus showing that matrix representations in nonorthonor-
mal basis are not faithful.

If, for instance, B is the inverse of A, so that Eq. (A8)
may be rewritten

AB = lop,

it then follows from Eq. (A9) that

'= g Ifi&(g~ 'gb &f
I, m

=g lf, &~,-'&f
l

.
I, m

The eigenvalue equation

(A10)

(A 1 1)

fk Q glkfi
I

In terms of biorthonormal functions an arbitrary linear
operator 2 may be written

Let Ifz Ibe a set of linearly .independent nonorthonor-
mal basis functions, their scalar products defining the ele-
ments of the metric matrix g,

Hu =Eu,
where

(A12)

(A13)

&f~ I fk & = &fj I fk & =&jk, (A2)

where 5jk is the Kronecker delta. It follows at once that

f, = ggkj'fk
k

(A3)

g,k= &f, lfk & . (A 1)

This matrix is always Hermitian and positive definite, 5

the last property making it possible to define the positive-
definite matrix g", where n is any real number.

The basis functions IfJ I biorthonormal to Ifj I are
uniquely defined from the condition

leads to the matrix equation

Hc=Eg c, (A14)

where c is the column matrix of the coefficients c~. In a
nonorthonormal basis the matrix representation of an
eigenvalue operator equation is not a standard eigenvalue
problem. Equation (A14) may be rewritten as an eigen-
value equation but for an operator different from H. To
realize how this may be done it is convenient to change to
one of the infinitely many orthonormal basis tfj J where

(A15)
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in which case we know the matrix representation to be
faithful. Such a change of basis may be generated by an
orthonormalization operator 0 defined by

From Eqs. (All) and (A18), the inverse of the ortho-
normalizer has the following expression:

(A29)
l, m

and such that

(f~ I fk & = (Ofj I Ofk & = (f~ I
OtOfk & =5jk . (A17)

From Eq. (A9) its follows that

The particular choice

U=1

leads to the symmetric orthonormalizer

(A30)

O~g '0 =1, (A18) 0 sy111=g 1/2 (A31)

where 1 is the unit matrix.
The orthonormalizer 0 may be written

l, m l, m

O=Q Ifi&OI &f I
=g Ifi&(g 'Og ')i &f

(A19)

l, m I, m

(A32)

l, m l, m

= 2 I&i&gI '"&fm
I

= g Ifi&am'"&fm I,

where O~ is a matrix element in the basis Ifj I.
In order to avoid future misunderstandings it should be

stressed that if one solely uses matrix representations in
the basis tfj I, then

Of, &+Ok fk .

O,y
——O,y (A33)

but in the general case 0 is not Hermitian. The inverse
operator Eq. (A29) is in this case expressed by

(A34)
l, m

The reader will easily verify that one gets instead

of, = QOkjfk= g(g-'O)k, fk .
k k

The general solution of Eq. (A18) is

(A20)

(A21)

The symmetric orthonormalization is the simplest one
which preserves the symmetry properties of the original
basis functions. This feature being of great importance
when establishing the connection with model Hamiltoni-
ans, in actual calculations we will always use. Osym.

APPENDIX 8: THE EFFECTIVE-HAMILTONIAN
FORMALISM

where U is any unitary matrix and g'~ is chosen to be
positive definite.

Upon expansion in the new basis of the eigenfunction u
in Eq. (A9),

u = Cj j= Ck k
j k

we get

c=g —'Oc' .

(A22)

(A23)

0 '=O~g —',
we find

(A24)

0 g
—'H g

—'0 c'=Ec' (A25)

which is a standard eigenvalue equation. From Eqs. (A9)
and (A18) we can see that Eq. (A25) is nothing but the
matrix representation of the operator equation

0 IIOu'=EO Ou', (A26)

where

Replacing Eq. (A23) into (A14), and taking into account
that from Eq. (A18)

Href(t'ja ej 4j'ar a = 1&2 r . r dj (81)

where the second subindex distinguishes the different
eigenfunctions belonging to the dj-degenerate eigenvalue
ej. If ej is the energy level determining Q,f~, and

Consider a physical system represented by a Hamiltoni-
an H defined in an n-dimensional vectorial space Q.

An effective Hamiltonian is the operator defined in the
subspace Qd~, such that its eigenvalues and eigenfunctions
are in a one-to-one correspondence with the chosen ones
of H.

It is convenient to define a Hermitian reference Hamil-
tonian H„f such that Q,ff is spanned by the eigenfunc-
tions belonging to one of its eigenvalues. H„r does not
have to represent an actual physical system: in the exam-
ple given in the Introduction it would be the Hamiltonian
of the free ion's valence electrons minus the spin-orbit in-
teraction. Furthermore, Adf could be spanned by the
eigenfunctions belonging to several eigenvalues of H„f, or
a new new reference Hamiltonian could be defined which
has the eigenvalue of interest the baricenter of the previ-
ous ones.

Let, therefore,

and

u = Cj j
J

(A27) H+jp ——Ej~ %jp (82)

then the levels Ez, of interest all stem from ej, so that if

u =Ou'. (A28) V=H —H„g, (83)
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then

+ ff I vaja I
(2 = 1,2, . . . , d, f

and

lim Eja =ej .
V~O

(84)

(85)

such a way that the higher-order terms are of decreasing
magnitude, that is, to choose H„f in such a way that it
resembles H as much as possible.

APPENDIX C: THE TWO-ELECTRON CASE

HJ +Ja EJa %3a (86)

The effective Hamiltonian HJ is the operator such that
We consider the two-electron case where the antisym-

metrizer A is given by Eq. (3.9), and the orthonormal
OSP's have the form

where

Jd

eja g cab'Pjb
b=1

HJ —SJ HSJ,

%'ja ——SJ%'ja,

(87)

(88)

e, =ej„x, , (e, Ie, &=g„=s„,
@jk(rl r2) 0 j(rl )~(0k(r2)

(C 1)

(C2)

-and

j&k, (C3)

According to the discussion given in Sec. II on the choice
of Ie~ ) it should be

Pjeja&0 for all a, (810)

SJ being the wave operator.
There is an infinity of nonsingular operators SJ satisfy-

ing Eqs. (86)—(89), the only restriction being that Q,ff
should be such that

He~&0 .

It may be easily verified that

2 =A,S,+S,A, ,

(C4)

(C5)

where

dJ

(811)

where 3, and S, are the coordinates' antisymmetrizer and
symmetrizer operators, ' respectively, and similarly for
the spins,

a=1

is the projection operator over A,,ff. The simplest unitary
wave operator SJ which yields a Hermitian effective
Hamiltonian having the same symmetry properties as H
is defined by'

Aj =(1—Tj)I2,

Sj =(1+Tj)/2,
(C6)

where j=c,s. It follows at once from Eqs. (3.10) and
(3.11) that

sj =zj(zj zj )

—1
SJ ——Sj,

where ZJ satisfies the nonlinear equation

z, =Pj+x, (z, ( vz, &
—vz, )Pj,

Xj = g Pj l(ek —ej ),
k (~j)

(~ &
= QPk~Pk,

k

with the limiting condition

(812)

(813)

(814)

(815)

(816)

XOO =zoo S.&oo=o

~s+1M O~ Ss+1M +1M ~

from which we obtain

jk00 ( a jk +00 ~

~ejk 1M (~c@jk)X(M

As it should be A, C&jk&0, it follows that

j(k if S=O,

j &k if S=1.

(C7)

(C8)

(C9)

lim Zj ——PJ .
V~O

(817)

SJ ——Pj —Xj VPJ, (818)

Hj = Pj (H —VXj V)Pj =ejPj+ Pj VPj Pj VXj VPj . —

Although Eq. (814) may sometimes be solved exactly,
one will most often solve it by iteration, whereupon one
obtains the degenerate version of Rayleigh-Schrodinger
perturbation theory. Up to second-order terms one

ts13, 28

The metric matrix Eq. (2.18) is given by

Apq
——(fp I fq & = ( A ep I

3eq &
= ( ep I

A A eq &

=(e, I&'e, &=(e, Ice, ), (C10)

where we have used Eqs. (2.4) and (2.5). From Eqs. (Cl),
(3.10), and (2.12) it follows that

~j(S)SM,k (S')S'M'

=&@q(s) I &XSM
I 2 (1—T'T. )XS'M'&

I C'k(s )&

(819)

In the perturbative approach it is essential to choose V in where

Aj( )kS( )(Sf )S5SS'5MM' ~ (Cl 1)
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A,k(r)= —,'(&'I',.
I
@k & t&@j

I
~g@k &) (C12) which we obtain for any real n,

and each subindex now stands for a pair of indices.
The metric matrix is therefore block diagonalized, the

two blocks corresponding to S=o and S=1. As A is pos-
itive definite, so are the aforementioned submatrices, upon

n n
Aj(s)sM, k(s')s M'' Aj(s)k(s)( s@ss'~MM' (C13)

where the powers A n may be obtained in the usual way.
Vr'e discuss next the specialization of the symmetric

orthonormalizer Eq. (A32) to the two-electron case:

I ~J(s) &'
I ~sM & Aj(s)sMk(s')s'M' &+s'M'

I & + k(s ) I
A

1, m S,S' M, M' j(S),k(S')

APs
I +ps) &Aj'(s)k(s)(ts) &'I)k(s)

I
PsA

S,j(S),k(S)
(C14)

where

P, =calx, &&a,
2

[Ps,A] =0,

(C15)

(C16)

where " and A are matrices to be determined. The pa-
rameters Eo and J,„,h in Eq. (3.21) are then given by [see
Eq. (3.20)]

&0 =:-oo—
~ &oo

and Jexch +00 (D5)

Po =A$ P] =S$ .(C17)

It is now convenient to define the spin operators

Ajk(T. ) = &4'j
I A+k & = 2(«'j

I

c'k &
—«'j I T.c'k &T. )

(C18)

H,g——H, q
—VX V, (D6)

In order to determine " and A we will use in the defini-
tion Eq. (3.21) the second-order approximation Eq. (2.53),

such that

jk( T )~sM Ajk(rs )~sM . (C19)

H, q
——A ' (T, )eA'i (T )

+ —'A ' (T)(J KT)A ' —(T), (D7)

as may be seen from Eq. (3.10). In what follows these
operators will be called the metric spin operators.

It follows at once that Eq. (C14) may be written

O. m=A +PS g I
C'(s)&A (s)k(s)(T. )&~'k(s) IPsA .

S j(S),k(S)

V=H q
—H d ——H,q

—e.
From Eq. (D2) we may write

A / )(T2)=s6+I T

A '~'(T, )=L+7T, .

(D8)

(D9)

(D10)

APPENDIX D: SECOND-ORDER CORRECTIONS
TO THE HEISENBERG HAMILTONIAN

Because T, is an idempotent operator

2
T$ —TS

any matrix function F(T, ) may be written

F(T, ) =F )+F2T, ,

(D 1)

where I' ] and F 2 are constant matrices. In particular Eq.
(3.21) may be written

HHeis 00 +00Ts

(C20)

The symmetric mapping operator Eq. (2.37) is therefore
given by [see Eq. (A31)]

M,„=O,„Pq,——A g I
4'( & A( & q)

l, m

=A +PS g I
@j(s)&A (s)k(s)(T )&C'k(s)

I s .
S j(S),k(S)

(C21)

One could give explicit expressions of b„ I, 5, and y in
terms of the matrix elements Eq. (2.18), but they are ir-
relevant for the discussion that follows. Introducing Eqs.
(D9) and (D10) into (D7) we find

H, q
——= —A T, .(&) (&)

where

=-")=a~a+) ~r+ '(s Js+y J-y say yit—s)—
(Dl 1)

(D12)

—VX V= =-(')—~(2)T, ,

where

(D14)

A(')= 8~r )~a—+ '(s—sec+) z-q sJ) )Js—)—
(D13)

the superscripts indicating that the given expressions are
the first-order approximations. The reader may easily
verify that, replacing Eqs. (D12) and (D13) into Eqs. (D4)
and (D5), one may obtain the Heitler-London approxima-
tion Eqs. (3.22) and (3.23). The second-order corrections
are obtained from the last term in Eq. (D6). Making use
of Eqs. (D8) and (Dl 1), it follows that
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A' '=(E —='")XA+AX(E —='") .

(D15)

(D16)
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