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Charge transfer in H* + Hy(X'=,; v =0) collisions has been studied theoretically at energies from
0.2 to 20 keV with use of a molecular-state—expansion method incorporating electron translation
factors. Two-state semiclassical close-coupling calculations have been performed to investigate the
ion-molecule collision dynamics. The molecular states, used as the expansion basis, have been ob-
tained by using the diatoms-in-molecules (DIM) method as functions of the internuclear distance R
and two molecular orientation angles 6 and ¢. The effect of orientation of the target molecule on
the charge-transfer mechanism has been examined and the charge-transfer cross section is found to
be very sensitive to the molecular orientation at energies below 0.5 keV or above 10 keV. Between
these energies, however, the orientation effect was small (due to accidental near-degeneracy of the
probability from different 6). Our results are in good agreement with experimental measurements in

the energy range where they are available.

I. INTRODUCTION

Charge transfer in ion-atom collisions has been a sub-
ject of extensive study, theoretically and experimentally.
In low- to intermediate-energy regions, eigenfunction-
expansion methods based either on a molecular represen-
tation or an atomic representation usually have been con-
sidered appropriate for applications. However, due to the
neglect of so-called electron-translation factors (ETF’s) in
the molecular-orbital expansion, a fundamental difficulty
has been encountered; namely, the scattering wave func-
tion is not Galilean invariant. Only recently has the
molecular-orbital (MO) method, incorporating the ETF’s,
been applied to study collision dynamics in one-electron
systems.! =5 On the other hand, while there exists no fun-
damental difficulty in the treatment of the ETF’s in the
atomic-orbital (AO) method, it has been recognized that a
simple two-center AO—expansion method is defective
particularly when a close collision is important.

To describe the molecular character properly at small
internuclear separations,’ united-atom orbitals as well as
the two-center AQO’s are included in the modified
AO—expansion method. This pseudostate AO method (or
AO + method) has been applied to the various one-
electron systems with much success.”® In the
intermediate-energy regime, it has been shown that use of
the ETF-modified MO method and AO + method pro-
duce almost identical results in most one-electron sys-
tems.®

Turning to ion-molecule collisions, there is a surprising
lack (virtually none) of rigorous theoretical investigations
on dynamics which occur in ion-molecule collisions in the
low- to intermediate-energy regime. The reason is two-
fold: (i) it is quite a complex problem to obtain reason-
ably accurate adiabatic potentials and eigenfunctions as
functions of internuclear coordinates and molecular orien-
tations for the polyatomic system; (ii) for the polyatomic

32

system, the number of internal degrees of freedom that
need a proper dynamical treatment increases dramatically.

These aspects of ion-molecule systems have created the
nearly impenetrable barriers for theoretical atomic physi-
cists. Some attempts have been made®!° to study charge
transfer in ion-molecule collisions in the keV energy re-
gion by applying the AO—expansion method. Unfor-
tunately, these attempts employed a drastic approximation
in the evaluation of matrix elements appearing in the cou-
pled equation; hence, the results are either in poor accord
with measurements® or only in qualitative agreement.!
Furthermore, as we have stated earlier, if the small impact
parameters are important in the collision, then the simple
AO—expansion method is not valid in the low-to
intermediate-energy region.

At high energies (E > 50 keV), the perturbation method
has been used by Tuan and Gerjuoy,!! and by Band!? to
study charge transfer in H* +H, collisions. Having uti-
lized the method based on the Born approximation, they
have calculated total charge-transfer cross sections and
also the ratio of the cross sections for process
H*+H—->H*+H and H*+H,—~>H+H,*, o(H)/o(H,)
as functions of the incident energy. The conclusions
drawn by these two groups are entirely different and the
discrepancy has remained unresolved particularly for en-
ergies below 25 keV.

Below ~10 eV, however, where rearrangement col-
lisions of heavy particles (chemical reaction) becomes an
important process, the investigation of the chemical reac-
tion process is one of the most active fields in theoretical
chemistry. In particular, reliable information on energy
surfaces for various polyatomic systems as well as reliable
methods for determining the surfaces have become avail-
able recently. Of these methods, the diatoms-in-
molecules!’* (DIM) method possesses several attractive
features for application to the scattering problem.!* This
approach, based on the valence-bond (VB) method, parti-
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tions the Hamiltonian into diatomic and atomic frag-
ments. Thus all reliable theoretical, as well as experimen-
tal, data for the energies of the diatomic molecules and
the atoms are used to represent the fragments. The accu-
racy of this method for some triatomic cases has been
tested with regard to the equilibrium distance, the dissoci-
ation energies, and other molecular quantities. In some
cases it has been found that this method can provide
better results than the -simple self-consistent-
field—configuration interaction (SCF-CI) method.

In this work, we have applied the DIM method to the
H* +H, system to obtain reasonably accurate molecular
wave functions and corresponding eigenenergies; and we
have derived the coupled equations within the semiclassi-
cal formalism. We have also given a theoretical rationale
for the earlier ad hoc treatment'> of nonadiabatic cou-
pling, showing that this method is indeed equivalent to
the inclusion of electron-translation factors (ETF’s) in the
scattering wave function. We have also studied the effect
of molecular orientation on the charge-transfer mecha-
nism.

Since the keV energy region is of interest here, the col-
lision time is far shorter than the vibrational and the rota-
tional periods of the molecule. This fact allows us to as-
sume that vibrational and rotational motions of the target
molecule can be frozen during the collision (sudden adia-
batic approximation). Hence, the Franck-Condon approx-
imation should be appropriate to describe the nuclear
motion during the transition in the molecule.

II. MOLECULAR STATES (DIM METHOD)

The DIM method, first proposed by Ellison,!* has been
extensively developed by Tully and others'*~ 6 in conjunc-
tion with the study of the dynamics of chemical reactions.
The DIM method has already proved itself as a powerful
tool for investigating the electronic structure of polyatom-
ic molecules in large measure due to its simplicity, al-
though its range of applicability and accuracy are still be-
ing tested. We briefly outline the method here.

Consider a polyatomic system with N atoms a,b,c, . . .
containing n,,n, ... electrons in each atom within the
Born-Oppenheimer approximation. Assuming normalized
and antisymmetrized atomic orbitals £ are defined for
each atom M with « indicating all quantum numbers, we
construct a set of n-electron product functions ¢,,:

¢m=H§$M) , (1)
M

where m denotes all of the indices of each atom, i.e.,
m={a,B...}. Then, using the functions of Eq. (1), the
polyatomic basis functions (PBF’s) ¢,,, which are the
bases for the DIM method, are given by

<D1\'I="‘{¢m ’ (2)

where .7 is the n-electron antisymmetrizer.
The Kth molecular eigenfunction W then can be writ-
ten as a linear combination of the PBF’s.

M

Equation (3) leads us to the usual eigenvalue equations
with the eigenvalue Eg. It is written in the matrix form

HC=SCE , 4)

where H and S represent the Hamiltonian matrix and the
overlap matrix, respectively, and both are Hermitian.

Next, following Ellison,'3 we partition the Hamiltonian
into the diatomic and the atomic fragments, as can be
shown in the matrix form,

N N N
Ii: 2 2 I_i(I‘M)——(N——Z) EI_J(L) . (5)
L=1M=1 L=1
M>L

In Eq. (5), H*M) and H'L are fragment Hamiltonian ma-
trices for an isolated diatomic fragment LM and for an
isolated atom L, respectively. Formally, Eq. (5) is exact.
However, the fundamental approximation in the DIM
method is to construct each Hamiltonian matrix by in-
volving only those electrons assigned to each fragment:
This enables us to determine these partitioned diatomic as
well as atomic fragment matrix elements purely from ex-
perimentally and/or theoretically known information
about atoms and diatomic molecules. Because of this ap-
proximation, the DIM method may not be able to obtain
accurate potential curves in the small-R region, say, R < 1
a.u. where electron correlations among fragments become
important. Once this information is available for a range
of values of the internuclear coordinate of the diatomic
molecule, then the problem reduces to the conventional
eigenvalue problem. We have used the zero-overlap (ZO)
approximation to solve Eq. (4), in which case the matrix S
in Eq. (4) is taken to be the unit matrix. Extensive
work3~1¢ on the treatment of the matrix S has revealed
that the ZO approximation and explicit inclusion of the
matrix S obtained from using a simple valence-bond type
approximation for the PBF’s of Eq. (2) give very similar
results to the roots of Eq. (4). This indicates that an accu-
rate treatment of the matrix S is probably not necessary.
For the present Hy* system, the DIM method requires
us to diagonalize a 3 X 3 matrix element constructed from
the diatomic fragment Hamiltonian matrices, involving
Hy(X'3,), Hy*(1so,), and H,"(2po,) states and the
atomic fragment Hamiltonian matrix of the H(1s) state in
Eq. (5). This yields three roots corresponding to
[H+HyX'Z,)], [H(ls)+H,"(1s0,)], and [H(ls)
+H,%(2po,)] states asymptotically. We have used the
Kolos and Wolniewicz!” theoretical results for H, molecu- -
lar eigenvalues, obtained from a large-scale James and
Coolidge-type calculation, and the Bates and Carson'®
method for H,* molecular ion eigenvalues, which solves
the nonrelativistic adiabatic eigenvalue problem “exactly.”
As we discussed earlier, since the relative collision velo-
city is so high compared to that associated with the vibra-
tional and rotational motions of the H, molecule, the sud-
den adiabatic approximation for the molecular nuclear
motion should be an appropriate approximation. In fact,
we have fixed the internuclear distance of the H, molecule
at its equilibrium distance, i.e., R, =1.401 a.u. Figure 1
defines coordinates necessary to describe the projectile H
ion (A) and target H, (BC) molecule. The figure shows
the space-fixed molecular frame, which represents the
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FIG. 1.
system.

Coordinate in the laboratory frame for the H* +H,

molecule lying with the fixed orientation in the space-
fixed frame. We have computed the potential surfaces
and wave functions for this case, varying the molecular
orientation.

III. COUPLED EQUATIONS

Within the semiclassical formalism, the scattering wave
function is e I‘Eanded in terms of the DIM molecular wave
function ®; b1

\Il=Eai(t)(I)PIM(r;R;p)F,~X,~"(p) , (6)

where F; represents the electron-translation factors
(ETF’s) and X! denotes the vibrational wave function of
the molecule. The inclusion of the ETF’s is essential to
ensure that the scattering wave function satisfies the
correct boundary condition. The coupled equations de-
rived for the expansion coefficients a; have a form similar
to that obtained for ion-atom collisions.> Within the
Franck-Condon approximation, the coupled equations, to
first order in V, can be written

ia;=¢€;a;+ 3 V-(P+A);Mya; , @)
J

where €; is the ith state adiabatic potential energy ob-
tained by the DIM method and M;; represents the vibra-
tional overlap matrix, i.e., (J ]X ’>. P and A
denote the nonadiabatic couphng and its ETF correction
term, respectively. Specifically, these terms have the
forms

Pij=<¢?IM!*iVR,<DiDIM> » (8a)

Ay=(P™|[H,, 8;]| ®P™) , (8b)
and

Si=3fit, (8c)

where f; represents a so-called switching function which
is defined only at the asymptotic region as f;— +1 (on 4
or B site). Detailed discussion of this switching function

can be found in Ref. 19. The coupling P and A can be
divided into two contributions in the rotating-frame coor-
dinate, namely, the radial coupling and the angular cou-
pling.  The coupled equations (7) can be easily solved nu-
merically, and the corresponding scattering amplitude a;
can be obtained at all times ¢.

In the present application to H* 4+ H, collisions, only
two channels are considered for inclusion in the coupled
equations, namely, the initial channel which corresponds
to Ht +H,(X! Z,:v=0) and the final channel corre-
sponding to H( 1s)+H2 (1sog: v =v'). These channels are
connected through the radial coupling matrix elements
giver in Eq. (8).

Assuming the f;=+1 depending upon the site of the
electron for all values of R (this procedure is equivalent to
the application of the first-order atomic ETF on the
Born-Oppenheimer wave function), we can show that the
“correct” radial coupling matrix element, (P+ A)R with
the DIM wave function of Eq. (3) is

(P+Af=3 ECiM:i% Civ - ©
M N

The nonadiabatic coupling matrix P contains not only the
“real” coupling arising from the change of character of
the electronic wave functions as they adjust to the moving
molecular field, but also the “fictitious” coupling arising
from simple translation of atomic states with the moving
nuclei. The ETF correction term A identifies and cancels
the fictitious part of P that only represents displacement
of basis functions with the moving nuclei. Therefore,
(P4 A) represents the real coupling. Without inclusion
of the ETF correction term, the nonadiabatic coupling
shows origin-dependence of the electron coordinate.
Hence, the cross section cannot be determined uniquely.
In an earlier treatment,'*!® the fictitious part of the cou-
pling was ignored in the calculation by assuming a priori
that the contribution from this term should be small in
the low-energy collision. However, as we have proved
above, this fictitious coupling term is exactly canceled out
by the inclusion of the ETF, so that the previous treat-
ment is “accidentally” correct.

The required vibrational overlap matrix elements were
computed numerically from the accurate Hy(X 128, v) and
H,*(1so,, v') potential energies for v'=0—20. However,
the partial charge-transfer cross section forming the
H3 (v') ion with v’> 11 contributes less than 1% to the
total charge-transfer cross section. Therefore, most of the
calculations shown below have been performed by includ-
ing the final vibrational state up to v’'=10.

IV. RESULTS AND DISCUSSION

The dependence of the calculated results on the col-
lision energy and on the molecular orientation is presented
in this section. In the calculation the projectile is always
on the x-z plane, while the target molecule changes its
orientation with respect to 6 and ¢. As we will show
later, the 6 dependence of the molecular orientation is
found to be substantially stronger than its ¢ dependence,
and hence, our example chosen for discussion is mainly
for the 6 orientation.
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TABLE 1. Comparison of potential parameters R, and D,
for linear and equilateral configuration of H;*.

DIM ab initio DIM
(Ref. 15) (Ref. 20) (Present)
Linear configuration
R, (a.u) 1.53 1.54 1.54
D, (a.u) —1.299 —1.280 —1.288
Equilateral configuration
R, (au) 1.498 1.429 1.478
D, (a.u) —1.356 —1.348 —1.352

A. Adiabatic potentials

The adiabatic potential surfaces for the H;* system
have been studied extensively by both ab initio and
semiempirical methods, including the DIM method.!”* A
comparison of the equilibrium distance R,, and the disso-
ciation energy D,, is shown in Table I. First, we should
note that the differences between the present results and
those of Preston and Tully,15 who used the same DIM
method, might be due to their fitting of the diatomic data
with the Morse potential (in the present work we use a
purely numerical method). The better apparent agreement
of our potential with the ab initio calculation by Conroy?°
may be due to this as well.

The calculated adiabatic potential curves are shown in
Fig. 2 for several values of 6 with ¢=0°. It might be
worthwhile to note that for the ground state (H* +H,),
although molecular orientation effects are apparent for
R <2 a.u, the potential curves are essentially identical for
R > 2 a.u,, independent of the molecular orientation. The
figure indicates that the colliding particle can approach
more closely at 6=90° than at 6=0°, since they do not ex-
perience strong nuclear repulsion until they reach values
of R <1 a.u. The difference between potential curves at
6=30° and 90° is also explained by the same argument as
before. The potential curve at 6= 60° shows a shape more

-06
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FIG. 2. Adiabatic potential curves as a function of internu-
clear distance R and angle 0 with fixed ¢=0°.

nearly like that at 6=0. This characteristic feature may
be understood by the fact that the combination of the
strong nuclear repulsion between colliding particles and
the nonuniform electron charge distribution of the Hj*
system with respect to the angle 0 is responsible. (We
found the oscillatory structure when the adiabatic energy
was plotted with fixed R against the 8 from 0—90°, con-
tinuously.) Alternatively, this may be an artifact due to
breakdown of the DIM method at small R. For the
H+H," channel, no marked orientation effect of the
molecule is observed even for R <2 a.u. This is due to
the fact that the H,* ion is less polarized by the presence
of the neutral H atom than by the presence of some ions.
This results in the flat portion of the [H + H,*(1s0,)]
potential curve falling at the R >3 a.u. region. The col-
liding partners do not experience the strong interaction
until they reach the region inside R ~3 a.u.

The same adiabatic potential curves are plotted on Fig.
3. This time, O is fixed at 30°, while ¢ varies. The differ-
ences in shapes of the potentials, corresponding to dif-
ferent values of ¢ are relatively small compared to the 6
dependence shown in Fig. 2. We will return to this point
in Sec. IVB. '

A constant energy gap between the initial- and the
charge-transfer channels for values of R > 3.5 may intro-
duce the Demkov coupling effect. Figure 4 displays the
radial coupling between the initial and the charge-transfer
states for different molecular orientations. Although the
coupling matrix elements exhibit different shapes and
magnitudes for R <4 a.u., they become identical for
R >4.5 a.u. This tail portion of the coupling gives rise to
the Demkov coupling effect. Since radial coupling is
more sensitive to the nature of the electronic wave func-
tion, the deviation in shape among the couplings in the
inner region is more remarkable, as expected, compared to
that of the potential curves in the same R region.

We have performed two-state close-coupling calcula-
tions, involving the initial H* +H,(X 128,, v =0) state and
the final H(1s)+H,"(1so,,v’) state. The state corre-

8= 30°

H+H% (Isog)

|
H*+H, (X 'Zg)

1 2 3 4 5 6 7 8 9
R(a.u)

FIG. 3. The same as Fig. 2 but change angle ¢ with fixed
6=30".
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FIG. 4. Radial coupling between H*+HyX'S,) and
H(1s)+H,*(1s0,) states as a function of internuclear distance
R and angle 6 with fixed ¢.

sponding to H(ls)+H,*(2po,,v’') has been excluded
from the present close-coupling calculation, since the en-
ergy gap between the initial and this state is large, and
correspondingly, the radial coupling is weak. In addition,
the Franck-Condon factor that connects this state with
the initial state is much smaller compared to that of the
initial [HT 4+H,(X 123 )] and the first charge-transfer state
[H + H,*(1s0,)].

The time evolution of the charge-transfer probability in
the two-state close-coupling approximation at E=0.6
keV, b =0.5, is shown in Fig. 5. For the conditions speci-
fied by E, b, 9, and ¢, two or three oscillations of proba-
bilities can be seen during the collision before the electron
selects a particular final state. The probability of 6=90°
has the largest value for these conditions since at this
orientation the H, molecule provides a favorable close-
encounter condition to the projectile. As the angle of the
molecular orientation is decreased, the probability be-
comes smaller. However, this picture holds only for close
collisions at this energy. When the conditions are
changed, the whole picture is altered.

The impact parameter times the probability has been
plotted against the impact parameter at E =1 keV for

>(I(;2 E=0.6keV
b=0.5a.u
> 10— $=0°
Lt
=
)
S _ - ——8:90°
o
g().s_ 8=60°
NN —e=30°
| adil 1 ! L \=I T 4—16:0°
40 -30 -20 -0 O 10 20 30 40 50
t(a.u.)
80 60 40 21 05 21 40 60 80 100
R(a.u)
FIG. 5. Time evolution of probabilities at E=0.6 keV,
b =0.5a.u.

x10'

E=lkeV
04 $o0°
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w
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£
o.l

5 6
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FIG. 6. Probability times impact parameter versus impact
parameter as a function of 6 at E =1 keV and ¢=0".

¢=0 and several choices of 0 in Fig. 6. Generally, there
are three main peaks corresponding to impact parameters
of ~2, ~3, and 4.5 a.u. for all orientations. Only the
6=90° case has a small peak at b~1 a.u., while others
show a slight hump or flat at the same impact parameter.
In a comparison of the 6=60° and 30° cases, 6=30° has a
larger peak at b~3 a.u. while =60° has a larger peak at
b~2 a.u. The overall area of the probability (cross sec-
tion) is very similar in these two cases. This trend holds
for all orientations This is because of “accidental near-
degeneracy” of the probability from different 6. Indeed,
calculated cross sections for all orientations are almost
identical in the energy range 0.6—6 keV.

The probability times the impact parameter is also plot-
ted against the impact parameter for 6=30° and several
choices of ¢ in Fig. 7. Again, three main peaks can be
seen at b ~2, 3, and 4.5 a.u., respectively. The remarkable
difference between Fig. 7 and Fig. 6 is the fact that the
peak at b ~2 a.u. grows and the peak at 3 a.u. shrinks as
the angle ¢ increases. The total area of P Xb (cross sec-
tion) is quite well balanced by increase and decrease of
these peaks and remains nearly constant. Overall, this
behavior smears out the molecular orientation effect on ¢.

To test the energy dependence of the molecular effect,
the probability times the impact parameter versus the im-
pact parameter is shown in Figs. 8 and 9, this time, for

X IO'

04— $=0° E = lkeV
6 = 30°
$=30°
03 v
a . 1
z ) ﬂ\
R R
\
s
0.1} ¢=90° \ AN P=60°
AV h '7/\\
KX | v I\\\ \r | [
= ] S
i 2 3 4 5 ®© 7 8 9 10
b(a.u.)

FIG. 7. The same as Fig. 6, but vary ¢ with fixed 6=30".
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x10 2
E=0.2 keV
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4 \u‘i \.!' h :
LR \ 8=60° '
/ A} \- \!t 3 I’ \S
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2 3 4 5 6 7 8

b (a.u.)
FIG. 8. The same as Fig. 6, except E =0.2 keV.

E =0.2 and 10 kev with different 6 and ¢=0°, respective-
ly.

Two main peaks at b ~1 a.u. and ~2 a.u. are observed
for 8=0° and 60°, and one main peak at b ~1 a.u. for the
0=90° case at E =0.2 keV in Fig. 8. Although there are
two main peaks in the 6=30° case, their magnitudes are
much larger than others and their locations are at b ~1.7
a.u. and 3.5 a.u., respectively. The orientation effect of
the target H, molecule at E=0.2 keV is much more visi-
ble in contrast to the one in Figs. 6 and 7. Another im-
portant difference in the feature as seen in Figs. 8 and 6,
is that the positions of all peaks are shifted toward small-
er b in the lower-energy case shown in Fig. 8. This im-
plies that at this energy, the close collision is the main
mechanism for the charge transfer. Again, departure
from the “accidental near-degeneracy” in the transition
probability can be seen in the higher energy case of
E =10 keV in Fig. 9. Again, two main peaks are found
at b~1 a.u. and 3.5—4.0 a.u. for all 8. However, the
magnitude of each peak is quite different for each 6, and
this leads to different values of the cross section for each
6. Although the position of the outer peak is around 3.5

- E=10keV
0.4 8:30° $=0°

b x P(E)

FIG. 9. The same as Fig. 6, except E =10 keV.

TABLE 1L Charge-transfer  cross  section  for
HY +Hy(X'2,,0,v =0)—H(1s)+H,™( Iso,,v'=4) at fixed
¢=0°. The digits enclosed in parentheses are powers of 10 by
which the numbers are multiplied.

Cross section (10~ cm?)

E kev) =0 0=30° 0=60° 0=90°
0.2 1.562(—2) 4.026(—2) 1.720(—2) 0.898(—2)
0.4 1.667(—2) 6.649(—2) 2.631(—2) 3.474(-2)
0.6 6.043(—2) 8.968(—2) 6.829(—2) 4.961(—2)
1.0 8.922(—2) 1.088(—1) 9.917(—2) 9.517(—-2)
2.0 1.21(—1) 1.26(—1) 1.23(—1) 1.45(—1)
4.0 1.33(—1) 1.33(—1) 1.30(—1) 1.73(—1)
6.0 1.20(—1) 1.46(—1) 1.17(—1) 1.59(—1)

10.0 1.02(—1) 1.22(—1) 9.901(—2) 1.34(—1)

a.u. as was seen in Figs. 6 and 7, the inner peak located at
b ~1 a.u. grows dramatically as the energy increases, but
no notable peak is seen in this region in Figs. 6 and 7.
This suggests that the close collision mechanism becomes
important to the charge-transfer process at the energy
above E ~ 10 keV.

B. Cross sections

Cross. sections o(E,0) for electron capture into the
H (1s) state, leaving the H,*(1s0,) ion in the vibrational
state v’'=4 are given in Table II. Also, the cross section
o(E,@) for electron capture into the H(1s) state is tabulat-
ed in Table III. First, let us discuss the results in Table II.
The influence of molecular orientation effects on the cross
sections is not apparent for collision energies between 0.6
and 6 keV. Between these energies, the cross section is
close regardless of the molecular orientation as is dis-
cussed in the previous section as the effect of the acciden-
tal near-degeneracy. The difference between the largest
and the smallest cross sections in this energy range is less
than 30%. Obviously, this characteristic is easily under-
stood, since a distant collision is an important mechanism
when the cross section shows its maximum. The collision
dynamics between the colliding partners is over before the
projectile sees a real molecule. Above or below this ener-
gy range, the molecular effect might come clearly into the

TABLE IIL Charge-transfer  cross  section for
HY+Hy(X'S,,4,v=0—H(1s)+H,"(1s0,, v'=4) at fixed
6=30°. The digits enclosed in parentheses are powers of ten by
which the numbers are multiplied.

Cross section (10716 cm?)

E (keV) ¢=30° $=60° ¢=90°
0.2 9.989(—2) 7.646(—3) 8.373(—3)
0.4 3.540(—-2) 4.162(—2) 1 3.696(—2)
0.6 6.42(—2) 5.733(-2) 5.485(—2)
1.0 8.820(—2) 9.139(—-2) 9.551(—2)
2.0 1.479(—1) 1.479(—1) 1.334(—1)
4.0 1.124(—1) 1.870(—1) 1.443(—1)
6.0 1.087(—1) 1.884(—1) 1.450(—1)

10.0 9.206(—2) 1.450(—1) 1.242(—1)
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FIG. 10. Charge-transfer cross section on the process

H++H2(X12g)~>H( 1s)+H,*(1so,) as a function of incident
energy. Theory: solid line. Experiment: O, Ref. 23; M, Ref. 22;
X, Ref. 21; VV, Ref. 24.

cross section because a close collision becomes an impor-
tant mechanism (see also Figs. 8 and 9). In fact, we can
notice a gradual increase of the molecular effect in the
cross section below 0.6 keV. At 0.2 keV, the lowest ener-
gy we studied, the cross section at 6 =30° makes the most
dominant contribution to the total cross section and, actu-
ally, this cross section is about four times larger than the
cross section at 6=90° which is the smallest of all. Above
6 keV, again, the molecular effect becomes apparent. The
ratio between the largest cross section at 6=90° and the
smallest at 6=0° is more than 50%. This should increase
as the collision energy increases.

Turning to Table III, which represents the cross section
at fixed 8(=30°) and varying ¢(=30°60°90°), we notice
that the orientation effect on ¢( > 30°) is less pronounced.
At 1 keV, the difference between the largest and the
smallest cross section is less than 8%. Although this
number increases up to 24% at 0.2 keV, it might be con-
cluded safely that the molecular effect of rotating the
molecule with ¢ is considerably smaller or actually
washed out (see also Fig. 7). This is again due to the ac-
cidental near-degeneracy of the cross section of each ¢.

Total cross section o(E), after integrating with respect
to the orientation angle 6 and ¢ (calculated step size is 2°
for both 0 and ¢), and summing all the vibrational states
of the H,* (150, ) molecular ion (v'=0-10), is plotted in
Fig. 10 along with experimental measurements.?! ~2* Our
results are qualitatively in good accord with all experi-
mental data in the energy range where they are available.

Our results are about 20% lower compared to the data
of Williams and Dunbar.?! (They claim that their experi-
mental error is within 5%.) At the higher energy (E > 10
keV), our result may tend to overestimate the cross sec-
tion. Indeed, the shape of our cross section above 10 keV
looks flatter than that of the measurements. The charge
transfer to the excited states of the hydrogen atom as well
as the excitation of the H, molecule becomes important in
this energy region, which is not accounted for in the
present work. Below 0.2 keV, our method may not offer
accurate cross sections in view of our neglect of other in-
elastic channels like the vibrational excitation and the
rearrangement channels, which are considered to be dom-

inant processes. Judging the approximate method em-
ployed in this work, the agreement between the present re-
sult and the measurement is considered to be satisfactory.

At least for high-energy impact, it was assumed that
the charge-transfer cross section in the H* +H, collision
is one-half that for the H* 4+ H collision, since the target
H, molecule behaves like two independent H atoms. The
validity of this assumption was tested by Tuan and Ger-
juoy,!! who concluded that although their calculated re-
sult is fortuitously in good accord with the assumption for
the collision energy up to 400 keV, this is largely due to
accidental cancellation of different effects. Their ratio of
total-charge-transfer cross section for HY+H and
H™ +H, processes as a function of energy is almost con-
stant with the value ~0.5 in the energy range below 120
keV in remarkable contrast to the one obtained by Band,'?
in which the ratio is about 0.55 at 25 keV and decreases to
~0.35 at 125 keV. Our calculated result for this ratio is
shown in Table IV. Although the qualitative shape of our
ratio below 20 keV seems to be in good accord with the
one obtained by Band'? using the perturbation method,
the discrepancy of the magnitude of the ratio at E=20
keV is approximately a factor of 3. Compared to the
charge-transfer process in the H™ +H collision which is
an exact resonant charge-transfer process, the one in the
H* +H, collision is a nonresonant process with an energy
defect of 0.105 a.u. The charge-transfer cross section of
this system shows a maximum around 4 keV and drops
off rapidly on both sides of the energy as is typically the
case for the nonresonant charge-transfer process. This
leads to the much smaller cross section in the HY +H,
collision in comparison to that of the symmetric resonant
H™ +H collision at the lower energy, say, E <4 eV. As
the energy increases, colliding particles have enough ener-
gy to surmount the energy defect between initial and final
states and therefore, the ratio of the cross section de-
creases within the energy range studied. In this energy
range of the present work, the molecular nature of the tar-
get H, molecule persists as we have seen above and corre-
spondingly the assumption that a diatomic molecule
behaves like independent constituent atoms has complete-
ly failed. In the higher-energy region E >25 keV, the re-
sult of Band!? seems to approach a certain constant value
asymptotically. Although two asymptotic values reported
by Tuan and Gerjuoy!' and by Band'? differ markedly,
apparently they showed that such an assumption could be
incorrect.

TABLE IV. Ratio o(H)*/o(H;).® o(H): H*+H(ls)
—H(1s)+H*. o(Hy): HY +Hy(X'Z,) —H(1s)+H, (1s0,).

Cross section (cm?)

E (keV) o (H) o (H,) o(H)/o(H,)
1.0 1.42-15 2.11716 6.73
2.0 1.37 3.13 4.38
4.0 1.18 3.67 3.22
6.0 0.998 3.62 2.76
10.0 0.741 3.41 2.17

20.0 0.621 2.85 2.18

2Reference 25.

®This work.
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V. CONCLUSION

The molecular-orbital—expansion method incorporating
the ETF effect has been applied to investigate the charge
transfer in H* +Hy(X ’Eg, v =0) collisions in the energy
range from 0.2 to 20 keV. The result shows that al-
though, due to the accidental near-degeneracy of the
charge-transfer probability from the different 6, the orien-
tation effect of the target H, molecule on the charge-
transfer mechanism is not so notable in the energy region
where the cross section has its maximum, this is marked
in the energy range below 0.5 keV and above 10 keV since

close collisions become important mechanisms in these en-
ergy regions. Evidently, this fact indicates that treating
the target H, molecule as a sum of two independent H
atoms in the study of the charge transfer is incorrect in
the energy range studied.
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