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Scattering of electrons by atomic hydrogen at interiiiediate energies:
Elastic scattering and n =2 excitation from 12 to 54 eV

Joseph Callaway
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Cross sections for elastic scattering and excitation of the n =2 states of atomic hydrogen by elec-
trons are computed for incident energies in the range from 12 to 54 eV. The calculations are based
primarily on an 11-state expansion including seven pseudostates. Pseudothresholds and pseudoreso-
nances are suppressed by appropriate averaging.

I. INTRODUCTION

The scattering of electrons by hydrogen atoms is one of
the most fundamental processes in atomic physics. In
spite of a long history of studies reaching back for 50
years, progress has been slow, particularly in regard to the
intermediate range of electron energies from the ioniza-
tion threshold up to (loosely defined) energies at which
high-energy approximations (Born, Glauber with variants
and combinations) become valid. In a note published in
1983, McDowell and I found large uncertainties to exist
even in the n =2 excitation cross sections, particularly in
regard to the 2s state. '

This paper reports the results of calculations of elastic
scattering and n =2 total excitation cross sections for in-
cident electron energies from 12.2 (k =0.90 a.u. ) to 54
eV. The calculations are of the close-coupling type, and
employ a basis of 11 states including the exact ls, 2s, 2p,
and 3d atomic states and seven pseudostates. (Details are
given in Sec. II.) Results are determined on a rather fine
grid of energies in this range so as to permit removal of
pseudoresonance and pseudothreshold effects. In com-
bination with results I have published previously for elas-
tic scattering and n =2 excitation between the n =2 and
n =3 thresholds, a rather complete description of these
processes is now available from the n =2 threshold up to
four times the ionization energy. This will enable reliable
calculations of rate coefficients or equivalent quantities
for astrophysical and laboratory plasmas.

There is a vast literature concerning elastic scattering
and n =2 excitation. Difficulties in interpreting the rath-
er meager experimental data are summarized in Ref. 1.
From the point of view of theory, the energy region of in-
terest here is one of exceptional difficulty: The energies
are too low for reliable application of high-energy approx-
imations. But limited-basis close-coupling calculations
also have serious problems, resulting from omission of
continuum states of the target atom from the basis.
Burke and Webb were the first to introduce pseudostates
in a close-coupling expansion for intermediate energies.
Recent close-coupling calculations in this energy range
have been described by Morgan and Edmunds,
McDowell, and Morgan. These authors report cross sec-
tions (integrated, differential, and angular correlation pa-
rameters) at 35 and 54.4 eV. Several different close-

coupling basis sets have been considered, but their calcula-
tions either do not include exchange, which is certainly
not negligible at these energies, or use a local exchange po-
tential.

I have previously reported results from pseudostate cal-
culations (including exchange) at a limited number of en-
ergies. ' However, uncertainties arose in those calcula-
tions from possible effects of pseudoresonances. Compu-
tational limitations caused inadequate convergence in
variational calculations. In addition, it was not possible
to make accurate computations for large values of the to-
tal angular momentum. As a result, differential cross sec-
tions and angular correlation parameters were not accu-
rate, particularly at 54.4 eV, and for large scattering an-
gles.

In the work reported here, I have attempted to elim-
inate pseudoresonance and pseudothreshold effects by
means of the amplitude-fitting technique introduced by
Burke et a/. This procedure will be discussed in detail in
Sec. II. Calculations have been made for a large number
of values of the incident energy (106 for the S, P, and D
partial waves and a smaller number for higher L). The
results, presented in Sec. III, give a very detailed picture
of the energy dependence of the elastic and excitation
cross sections. Some improvements have been made in
the variational programs to enable calculations for larger
L than heretofore, but the results will be adequate for the
description of angle-dependent properties only in the
lower-energy portion of the range considered. The effec-
tive collision strength (a thermal average) is discussed in
Sec. IV.

II. METHOD

In this section we will consider specifically some partic-
ular features of our calculational procedures which have
not been extensively discussed previously. A comprehen-
sive discussion of the principles and practices of variation-
al calculations is given in Ref. 6. In general, improve-
ments in the calculational facilities available have made
possible substantial improvements in numerical accuracy.
This has been accomplished quite straightforwardly by in-
creasing the size of the basis of short-range functions used
in the calculation of the scattering wave function to about
25 Slater-type orbitals (STO's) per channel and by using
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quadruple precision for certain critical parts of the calcu-
lations. Energy-dependent basis functions of the form
(1 —e ")Jsin(kr)/r" and (1—e r")Jcos(kr)/r" are also
included, for n =2, 3 and k, the wave vector for open
channels other than that associated with the atomic 1s
state.

The points I wish to discuss is more detail concern (i)
the problem of removing structure associated with pseu-
dostate thresholds from the calculated amplitudes, and (ii)
the changes that have been made in our calculational pro-
cedures to enable results to be obtained for larger values
of the total angular momentum L.

A. Pseudostates

The present calculation employs an expansion of the
wave function for the two-particle .system in a basis of
eleven states, including four exact states (Is, 2s, 2p, and
3d) and seven pseudostates. There are in all 5 s states, 4 p
states, and 2 d states in the basis. The basis is that labeled
"standard 5-4-2" in Ref. 6. Two other sets of the same
size have been considered for comparison purposes. The
radial wave function of the states can be expressed as

(2.1)

in which j is the state number and l is the angular
momentum. The parameters and energies of the state in
all the sets are listed in Table I. The discussion below
refers to the standard 5-4-2 set. It will be observed that
one of the s states has an energy which is a reasonable ap-
proximation to that of the actual 3s state, and similarly
one of the p states approximates the 3p; the other pseudo-
states have energies in the continuum. Three of the pseu-
dostates have energies quite close to the ionization thresh-
old.

In the range of energies from. k =0.90 a.u. to k =4.0
a.u. , there are five pseudothresholds, one of p symmetry at

=2.24 a.u. , another of z symmetry at k =2.70 a.u.
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plus three; one each of s, p, and d symmetry close to
k = 1.0 a.u. Structure associated with these pseu-
dothresholds was found in all the partial waves considered
with the exception of S. This structure was removed by
the amplitude- (or T-matrix) fitting technique introduced
in Ref. 8.

An example of the structure found is shown in Fig. 1,
which shows a portion of the 'D partial cross section for
the 1s~2p transition. It is seen that the most prominent
structure is that associated with the 2.24-Ry threshold,

ji

2.0 3.0 4.0

k (a.u. )

FIG. 1. Effect of pseudothreshold structure on the 'D partial
cross section for 2p excitation. Arrows indicate the position of
the two pseudothresholds. The smooth solid curve shows the re-
sult of amplitude fitting as described in the text.

TABLE I. Parameters of the pseudostate sets used in this work [refer to Eq. (2.1)). The energies of the pseudostates are also given.
Note that, the energies refer to the states rather than to the individual orbitals. Most calculations employ the standard 5-4-2 set.

l =0

Standard 5-4-2 basic set
EJ

Variant 5-4-2 basic set
EJ n;

VTPS

l =1
I =2
l =3
i =4
i=5

1.0
0.5
0.5
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0.5
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—0.25
—0.1094
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1.0
0.5
1.0
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—0.25
—0.0709
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2.6023

i=1
l =2

0.5
1

3

—0.1111
0.00065

0.8
1

3

—0.1111
0.1882

1.0
1.0

0.0397
1.1983
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while the 2.70-Ry threshold is hardly noticeable. The
broad scale and large amplitude of the structure should be
noticed. The 'D partial wave is a major contributor to 2p
excitation; and the structure would produce noticeable ir-
regularities in the total cross section.

Previous experience with pseudoresonances suggests
that if it were practical to include several more pseudo-
states in the basis, the structure associated with the pseu-
dothresholds would become narrower, and diminish in
amplitude. ' However, with a basis set of limited size,
we are forced to attempt to remove this structure, and ex-
tract a smooth background part. There are two ways in
which this can be done: It may be possible to locate a
specific pole (or poles) in K matrix and set the residue
equal to zero. "This process seems to work well in some
cases of electron-ion scattering in which pseudothreshold
structure other than a resonance is unimportant. Howev-
er, this procedure does not seem to be satisfactory in the
electron-hydrogen problem because we observe in some
partial waves ('S, for example) pseudothreshold structure
without (apparently) any indication of K-matrix poles.
Further there are five pseudothresholds in the present
problem, three of which are relatively close together. In
the illustration of Fig. 1, there is a major resonance below
the k =2.24 threshold, but the cross section does not
resume its generally decreasing trend until after the higher
threshold is passed. An alternative procedure is ampli-
tude fitting, as recommended by Burke et al.

In this method, which is employed here, least-squares
fits are made to the scattering and transition amplitudes
using low-order polynomials in the energy. If fJ is the
amplitude for the transition i ~j for fixed values of the
channel quantum numbers L, S, etc. (which are
suppressed), we have

(2.2)
k=0

in which the coefficients a,z"' are complex. If the expres-
sion is restricted to relatively small powers of the energy,
the rapid variation of the amplitudes at pseudoresonances
and pseudothresholds will not be reproduced. The un-
physical structure will be removed. In these calculations,
I have usually set %=6: a polynomial of sixth order
seems to be needed adequately to represent the general
trend of the data over the large energy range considered.
Tests in a model problem have shown that this procedure
enables the extraction of elastic and excitation cross sec-
tions within a few percent of the exact results. ' The ef-
fect of amplitude averaging on the 2p excitation cross sec-
tion in the D partial wave is shown in Fig. 1. A smooth
interpolation is achieved throughout the region of pseu-
dothreshold phenomena.

B. Higher angular momenta

In this, 'as in my previous work, ' the coupled integro-
differential equations which result when the pseudostate
expansion is substituted into the Schrodinger equation are
solved by variational methods. A major limitation of
these calculations is that they become increasingly
cumbersome and time consuming as the angular momen-

turn increases. There have also been accuracy problems
for large L.

One of the major sources of difficulty for large L has
been the proper choice of the irregular asymptotic func-
tion. It will be recalled that in the variational approach,
we require two independent functions in each channel, S~
and C~, such that for large r

rS~ —sin(kr —lm /2),

r Ci —cos(kr —lm/2),
(2.3)

but for small r, both S~ and C~ must be regular, i.e., pro-
portional to r . A very satisfactory choice for S~ is just
k '~ j~(kr); the problem is C~. Armstead proposed' to use
a combination of j~+ ~ and j~+2. k ' [j~+ &(kr)
+(1+I)/krj~+z(kr)], and this choice has been followed
by Lyons and Nesbet. ' This combination has the proper-
ty that the two leading terms in 1/r in the large-r form
agree with the corresponding terms in the irregular Bessel
function n~. My experience is that this choice is not op-
timum for large l and small-channel wave vector k, be-
cause the function is then close to zero over a large range
of values of r, and assumes the asymptotic form only very
far from the nucleus, e.g., much further than j~ itself. I
examined the choice (1 —e ~") +'n~(kr), where the factor
multiplying n~ gives regular behavior near the origin, but
found an undesirable degree of sensitivity to the parame-
ter p and an undesirable tendency for the function to peak
at small r if p were not chosen very carefully. So I re-
turned as far as the irregular function is concerned, to the
truncated irregular Bessel function discussed in Ref. 5,
which is for I & 0,

C( ——(1—e ~")'+ n((kr) (2 4)

where n~ contains only the leading (I/r) and (1/r) terms
in the full irregular function. This choice of irregular
function, in combination with the use of the complete reg-
ular function j~(kr) [in Ref. 6, a truncated form of j~ was
also employed], is the most satisfactory choice of asymp-
totic functions I have tested. The value of p is an arbi-
trary parameter subject to variation: p=1.2 works well
for small L, but needs to be smaller (0.6 or 0.8) for L =4
or 5.

It is characteristic of the variational method that a very
high degree of accuracy must be maintained in evaluation
of the so called bound-free integrals (see Ref. 6)—which
are far more critical to the success of the calculation than
the apparently more complicated free-free integrals. The
choices advocated above make possible analytic evaluation
of these integrals, but also raises the problem that in order
to maintain sufficient accuracy in the process, it is neces-
sary to employ quadruple-precision [128-bit (binary digit)]
arithmetic. This is about a factor of 10 slower than
double-precision (64-bit) arithmetic on an IBM 3081 and
has caused the present calculations to be restricted to
L &5. A smaller pseudostate basis of 3 s and 3 p func-
tions (exact ls, 2s, and 2p states plus three pseudostates)
was used for L = 4 and 5.

The integrated cross section for elastic scattering is well
converged throughout the energy range considered when
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the calculations are limited to I, uS. This- is not true for
the differential cross section, where the contributions of a
large number of partial waves is significant particularly
for large scattering angles.

The integrated cross section of 2s excitation is also
reasonably well converged when the calculations are limit-
ed to L &5. At k =1.10, I estimate that only 0.6% of
the 2s-cross-section results from partial waves of l &6;
while at k =4.0, the estimated amount is 26%. In con-
trast, only in the low-energy portion of the energy range is
the 2p cross section well converged in I. at I =5. At
k = 1.1, I estimate that 2.1% of this cross section derives
from L (6. At k =2.75, half of the total cross section
derives from L &6, and at k =4.0, the proportion is
68%.

Consequently, some method of estimating the high-L
contribution is essential. In this paper, the unitarized
Born approximation with exchange (UBX) has been em-
ployed. The accuracy of this approximation is probably
not very great, but it should be at its best for 2p excita-
tion. A contribution from this source has been included
for all the transitions studied here.

III. RESULTS AND DISCUSSION

The calculations proceeded as follows: In the S, P, and
D partial waves, 11-state calculations of scattering and
transition amplitudes were made on a grid of energies
separated by approximately 0.01 Ry from k =0.90 to
1.10, by approximately 0.03 Ry from k = l. 10 to 3.0, and
at intervals of 0.05 Ry from k =3.0 to 4.0. Somewhat
larger spacings were used for L =3, 4, and 5. In the latter
two cases (L =4,5), as mentioned previously, a smaller 3
s —3 p basis was used (which contained the exact ls, 2s,

0.20-

O. l 5-
Ai 0

CO

b

OIO-

0.05-

4020l.0

and 2p functions plus 1 s-type and 2 p-type pseudostates).
The amplitudes were stored and the amplitude fitting pro-
cedure, as discussed previously, was applied. For I. =3,
4, and 5 the amplitude fits were used to generate partial

3.0
2

(a.u.)

FIG. 3. Cross section for 2s excitation (units mao) from
k =0.75 to 4.0. The vertical line near k =0.75 represents the
shape resonance close to threshold. Resonances close to the
n =3 threshold are not shown. A dashed line indicates the reso-
nance region.
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FIG. 2. Elastic cross section (units m.ao) from k =0.75 to
4.0.

FIG. 4. Cross section for 2p excitation (units mao) from
k =0.75 to 4.0. Lines are as in Fig. 3.
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TABLE II. Calculated cross sections (mao) as functions of k (a.u.).

O2s O'is 02'

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.13
1.15
1.18
1.21
1.24
1.27
1.30
1.33
1.36
1.39
1.42
1.44
1.47
1.50
1.53
1.56
1.59
1.62
1.65
1.69
1.73
1.76
1.79
1.82
1.85
1.88
1.91
1.94
1.96
1.99
2.02

5.815
5.749
5.681
5.616
5.544
5.478
5.421
5.364
5.308
5.252
5.198
5.148
5.096
5.044
4.983
4.936
4.886
4.837
4.778
4.740
4.694
4.647
4.556
4.467
4.339
4.216
4.098
3.986
3.878
3.738
3.674
3.579
3.487
3.429
3.343
3.261
3.182
3.108
3.037
2.968
2.903
2.812
2.732
2.674
2.619
2.565
2.513
2.463
2.414
2.367
2.337
2.292
2.249

0.174
0.170
0.168
0.165
0.163
0.161
0.159
0.1S7
0.156
0.154
0.154
0.152
0.151
0.150
0.149
0.148
0.147
0.147
0.146
0.145
0.145
0.144
0.142
0.140
0.138
0.135
0.132
0.129
0.126
0.123
0.119
0.116
0.113
0.111
0.109
0.107
0.106
0.104
0.103
0.101
0.100
0.099
0.098
0.097
0.096
0.096
0.095
0.094
0.094
0.093
0.093
0.092
0.092

0.357
0.357
0.361
0.373
0.389
0.392
0.397
0.402
0.406
0.412
0.417
0.422
0.427
0.432
0.437
0.442
0.448
0.455
0.461
0.467
0.472
0.477
0.486
0.497
0.511
0.525
0.539
0.553
0.566
0.580
O.S92
0.605
0.617
0.626
0.637
0.649
0.661
0.671
0.682
0.693
0.703
0.716
0.729
0.738
0.747
0.755
0.763
0.770
0.777
0.784
0.789
0.795
0.800

2.05
2.08
2.11
2.14
2.17
2.20
2.23
2.25
2.28
2.31
2.34
2.37
2.40
2.43
2.46
2.49
2.S2
2.55
2.58
2.61
2.64
2.67
2.70
2.73
2.75
2.79
2.82
2.85
2.88
2.91
2.94
2.97
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00

2.208
2.167
2.128
2.090
2.053
2.018
1.983
1.960
1.927
1.895
1.864
1.834
1.804
1.775
1.747
1.720
1.694
1.668
1.643
1.618
1.594
1.570
1.548
1.526
1.511
1.483
1.462
1.442
1.422
1.403
1.384
1.366
1.348
1.318
1.290
1.263
1.237
1.212
1.187
1.164
1.141
1.118
1.097
1.076
1.056
1.037
1.018
1.000
0.982
0.965
0.950
0.934
0.920

0.091
0.091
0.090
0.089
0.089
0.088
0.087
0.087
0.087
0.086
0.085
0.085
0.084
0.083
0.083
0.082
0.081
0.081
0.080
0.080
0.079
0.079
0.078
0.078
0.077
0.077
0.076
0.076
0.076
0.075
0.075
0.075
0.075
0.074
0.074
0.074
0.074
0.074
0.074
0.074
0.073
0.073
0.073
0.073
0.072
0.072
0.071
0.071
0.070
0.069
0.068
0.067
0.066

0.806
0.811
0.816
0.821
0.825
0.829
0.833
0.836
0.839
0.842
0.845
0.848
0.851
0.853
0.855
0.857
0.859
0.861
0.862
0.864
0.865
0.866
0.867
0.868
0.869
0.869
0.870
0.871
0.871
0.872
0.872
0.873
0.873
0.873
0.873
0.872
0.872
0.872
0.871
0.870
0.869
0.868
0.866
0.865
0.864
0.862
0.860
0.858
0.8S6
0.854
0.853
0.851
0.849

cross sections at the same energies as used for L =0, l,
and 2. The cross sections resulting from this process were
combined. The unitarized Born approximation was used
estimate contributions from partial waves with L, )6.

The calculated cross sections for elastic scattering and

for excitation of the n =2 states are given numerically in
Table II, and are shown graphically in Figs. 2—4. These
figures include the region between the n =2 and n =3
thresholds as obtained in Ref. 2, but do not show the de-
tailed structure of Feshbach resonances under the n =3
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TABLE III. Elastic scattering amplitudes at selected energies.

1.10 1.21 1.44 2.25 4.00

's
5
1p
3p
1D
3D
1F
3F
16
36
'II
3H

0.396
0.191
0.032
0.377
0.088
0.101
0.047
0.044
0.022
0.022
0.012
0.012

0.476
0.959
0.041
0.188
0.066
0.014
0.011
0.010
0.003
0.003
0.001
0.001

0.372
0.231
0.035
0.375
0.079
0.106
0.051
0.045
0.025
0.024
0.013
0.013

0.452
0.939
0.054
0.186
0.080
0.017
0.017
0.012
0.005
0.004
0.002
0.002

0.362
0.297
0.048
0.371
0.076
0.116
0.056
0.051
0.029
0.028
0.016
0.016

0.444
0.893
0.065
0.181
0.077
0.022
0.024
0.017
0.010
0.009
0.004
0.003

0.331
0.415
0.088
0.350
0.064
0.129
0.052
0.054
0.031
0.031
0.020
0.021

0.411
0.749
0.095
0.163
0.096
0.034
0.050
0.023
0.025
0.017
0.010
0.011

0.337
0.474
0.129
0.316
0.061
0.142
0.047
0.067
0.026
0.036
0.019
0.022

0.365
0.559
0.105
0.135
0.079
0.040
0.054
0.027
0.033
0.022
0.022
0.017

threshold, which are too narrow and too irregular to be
represented on these graphs. That region is shown in de-
tail in Ref. 2. Elastic scattering and transition amplitudes
are listed at five selected energies in Tables III—V. These
supersede tables of this type that I have published previ-
ously. The amplitudes for k =1.10 and 2.25 are those
obtained from the amplitude-fitting procedure, while for
k =1.21, 1.44, and 4.0, I have given unmodified ampli-
tudes.

The elastic scattering cross section is a steadily decreas-
ing function of energy. For k & 3.0, it exhibits a
good approximation to 1/k behavior, but the magnitude
of the cross section is, in this range of energies, always
substantially larger than the high-energy Born (or
Glauber) results (oF& crG ————7/3k in the units used here).
Throughout the entire range two partial waves, S and I'
dominate the elastic scattering. The S partial cross sec-
tions depend only very weakly on the pseudostate basis
employed and do not show any obvious pseudoresonance
structure. There is a small contribution from high partial
waves, but this should be accurately determinable from
the polarizability. The principal errors in the elastic
scattering probably come from the failure of the basis set
to describe short-range correlations adequately, but this
affects principally the 'S partial wave. These considera-

tions suggest that the present elastic cross section may be
correct within 3—5%. The present results agree within
about 3% with a nine-state 8-matrix calculation of Fon
et al. '4

The 2s excitation cross section is strongly affected by
the introduction of pseudostates. The values obtained in
these calculations are about a factor of 2.4 below those
obtained in three state close-coupling computations at
k =1.44 (19.6 eV). ' Figure 3 shows a rapid decrease in
the energy range k =0.85 to 1.6, followed by a slower
fall off at higher energies. The rapid decrease above
k =1.0 is due to rapidly diminishing contributions in the
'D and 'S partial waves. Qualitatively, the present results
resemble those of the early pseudostate calculation of
Burke and Webb, in that they also reported a rapid de-
crease of cross section in the same energy range, but there
are quantitative differences: The decrease in the range up
to k = 1.6 is less rapid than given in Ref. 3, and our cross
section at higher energies is not flat but shows a continued
decrease. Presumably the differences are due to the dif-
ferent pseudostate bases employed: the present is substan-
tially larger (for I.(3) and is presumably more complete.

This cross section is sensitive to some extent to the
method of amplitude-fitting employed. From comparison
of results obtained with different orders of polynomials

TABLE IV. Amplitude for 2s excitation at selected energies.

1.10 1.21 1.44 2.25 4.00

's
S
1g
3g
1D
3g)
1F
3F
16
36
'a
H

0.100
—0.018
—0.002

0.038
0.066

—0.019
0.024
0.015
0.010
0.012
0.004
0.004

0.150
0.030

—0.067
—0.050

0.023
—0.027
—0.032

0.001
—0.019
—0.012
—0.008
—0.007

0.142
—0.008
—0.018

0.030
0.061

—0.023
0.027
0.012
0.015
0.014
0.007
0.007

0.107
0.037

—0.082
—0.060

0.015
—0.030
—0.035
—0.001
—0.022
—0.013
—0.012
—0.010

0.128
0.01'3

—0.022
0.015
0.033

—0.026
0.025

—0.004
0.020
0.016
0.011
0.010

0.056
0.040

' —0.082
—0.058

0.006
—0.031
—0.032
—0.001
—0.022
—0.011
—0.015
—0.011

0.091
0.045

—0.056
—0.010
—0.014
—0.040

0.005
—0.017

0.014
0.003
0.010
0.007

—0.070
0.007

—0.080
—0.062
—0.015
—0.032
—0.027
—0.009
—0.020
—0.010
—0.015
—0.010

0.018
0.037

—0.075
—0.029
—0.049
—0.045
—0.021
—0.032
—0.005
—0.014

0.000
—0.006

—0.094
—0.040
—0.069
—0.061
—0.026
—0.034
—0.018
—0.014
—0.012
—0.008
—0.012
—0.008
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TABLE V. Amplitude for 2p excitation at selected energies. The + or —indicates that the angular momentum of the scattered
wave is L+1.

1.10 1.21 1.44 2.25 4.00

'S
S

1p
1p
3p
3p
'D
1D

D
D+
'F
1F
3F

F+
'G
1G
3G
3G
'H
'H
H
H+

0.110
0.038
0.025

—0.070
—0.024
—0.013
—0.078

0.034
0.001

—0.023
—0.067

0.004
—0.041

0.006
—0.043

0.002
—0.039

0.005
0.023
0.001

—0.023
0.001

—0.110
0.014

—0.117
0.000

—0.007
—0.042
—0.138
—0.009
—0.037

0.004
—0.023
—0.014
—0.059

0.004
—0.009
—0.007
—0.017
—0.004
—0.004
—0.002
—0.005
—0.002

0.086
0.049

—0.003
—0.072
—0.020
—0.019
—0.115

0.041
—0.003
—0.025
—0.084

0.007
—0.047

0.005
—0.054

0.006
—0.048

0.007
—0.033

0.003
—0.032

0.004

—0.145
0.002

—0.129
0.007

—0.001
—0.044
—0.136

0.012
—0.042

0.004
—0.021
—0.012
—0.061

0.006
—0.010
—0.008
—0.019
—0.001
—0.004
—0.004
—0.006
—0.003

0.023
0.058

—0.022
—0.080
—0.006
—0.023
—0.110

0.010
—0.010
—0.022
—0.091

0.011
—0.058

0.002
—0.074

0.009
—0.065

0.006
—0.050

0.006
—0.048

0.006

—0.164
—0.022
—0.111

0.000
—0.002
—0.038
—0.113

0.021
—0.049

0.004
—0.021
—0.011
—0.061

0.011
—0.008
—0.004
—0.021

0.002
—0.005
—0.004
—0.009
—0.001

—0.045
0.042

—0.054
—0.061

0.001
—0.032
—0.119

0.007
—0.031
—0.026
—0.122

0.014
—0.074
—0.002
—0.110

0.013
—0.089

0.006
—0.085

0.010
—0.077

0.008

—0.146
—0.072
—0.069

0.004
—0.013
—0.034
—0.063

0.005
—0.051

0.005
—0.011
—0.010
—0.049

0.009
—0.008
—0.007
—0.025

0.004
—0.004
—0.003
—0.011

0.001

—0.072
—0.001
—0.047
—0.050
—0.005
—0.032
—0.092

0.000
—0.040
—0.017
—0.101

0.019
—0.067

0.000
—0.109

0.021
—0.087

0.009
—0.098

0.019
—0.086

0.013

—0.096
—0.084
—0.039
—0.007
—0.022
—0.026
—0.037

0.007
—0.042

0.001
—0.010

0.002
—0.036

0.008
—0.013

0.002
—0.023

0.007
—0.006
—0.002
—0.013

0.003

and different ranges of energies included in the fit, I esti-
mate that there is a residual uncertainty of about 10% in
the 2s-excitation cross section in the neighborhood of
k = 1.0 from this cause.

The 2p excitation cross section is reduced by a factor of
about 1.9 compared to three-state close-coupling at 20 eV;
the latter is only slightly less of an overestimate than in
the case of the 2s. The agreement between the present re-
sults and those of Burke and Webb, although not out-
standing, is better than was obtained for 2s excitation. In
the present calculation, the maximum of the 2p cross sec-
tion occurs at a somewhat higher energy (k =3.0 as com-
pared to 2.25), but is about the same size (-0.87m.a02) in
comparison with the results of Ref. 2. This cross section
is also sensitive to the amplitude-fitting technique. In this
case, I have applied the fitting procedure separately to the
low (-k = I) energy and the higher-energy (k )2) pseu-
doresonances. I estimate that the uncertainty in this cross
section due to the fitting procedure to be also about 10%
near k =1.0.

In order to investigate the extent to which the present

results might depend on the pseudostate basis employed,
I have calculated the contributions from l. & 3 to elastic
scattering and n =2 excitation for the single energy of
k =4.0 for two additional pseudostate bases. These are
the "variant 5-4-2" and the very tight pseudostates
(VTPS) sets listed in Table I. The VTPS set, in particular,
emphasizes short-range correlations and gave the best re-
sult for the 2s excitation cross section of those examined
in Ref. 9 (however, those tests involved a highly restricted
model). The incident energy of 4.0 Ry is a good one for
these tests in that none of the sets investigated have a
pseudothreshold close to that energy. Results are given in
Table VI. The differences are not large, about 4% in the
case of the 2s excitation, and less than 2% for the 2p. It
cannot be guaranteed that agreement is equally good at all
energies, but the results certainly encourage belief in a
reasonable level of adequacy of the set on which most of

TABLE VII. Fitting coefficients for the colhsion strength
[see Eq. (3.1)].

Constrained Unconstrained

Standard 5-4-2 basic set
Variant 5-4-2 basic set
VTPS

0.0459
0.0476
0.0477

0.0932
0.0923
0.0918

TABLE VI. Sum of contributions from partial waves with
L (3 for 2s and 2p excitation at k =4.0 for the three psuedo-
state sets whose parameters are listed in Table I (units ~a 0).

6
2s
0.887 89

—2.072 16
—0.561 83
11.74003

—17.630 91
8.078 49
0.0

6
2p
0.894 87

—11.943 40
23.771 62

—25.047 69
24.233 67

—12.00009
4.439 43

6
2$
0.969 99

—3.087 12
4.126 30
1.573 42

—7.205 37
4.003 58
0.0

6
2p

—21.11029
73.147 33

—177.226 2
275.520 9

—216.773 7
66.952 48
11.263 24
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Q(x) = ga;/x' '+a„+ilnx (3.1)

in which x =k /E„, E„being the excitation energy (0.75
Ry in the present case). These forms are suggested by the
Born approximation, and enable simple evaluation of con-
tributions to excitation rate coefficients. The coefficients
obtained in a least-squares fit are given in Table VII.

The fits are of two types. In the type labeled "con-
strained" the coefficients a i and a„+, have been fixed at

the values determined from the first Born approximation.
This means that the fits, if used as an extrapolation at en-

ergies higher than those for which calculations are report-
ed here, will approach the results of the first Born approx-
imation smoothly as energy increases. The accuracy of
these is better than 3% at all points for both the 2s and
the 2p states. The unconstrained fits do not have any re-
striction and are therefore slightly more accurate as fits to
the actually calculated cross sections in the range con-
sidered, but should not be used for extrapolation to higher
energies.

It is possible to compare the present result with those of
other groups at k =4.0. A particularly interesting com-
parison is with the work of Bransden, McCarthy, Mitroy,
and Stelbovics' (hereafter BMMS). These authors have
studied electron-hydrogen scattering at 54.4 and 200 eV in
several calculations, of which we are concerned with two:
a coupled-channels optical potential calculation (CCO),
and a pseudostate calculation containing the exact 1s, 2s,
and 2p states plus seven pseudostates (4 s and 3 p). Nu-
merical results are presented in Table VIII. The agree-
ment between our results and their pseudostate calculation
for elastic scattering and 2p excitation is rather good, but
we have obtained a 2s excitation cross section about 20%
larger than theirs. The agreement with their optical po-
tential calculation is not good either for elastic scattering
or for 2s excitation. Possibly, 54.4 eV may be too low an

TABLE VIII. Cross sections (units n.ao) at k =4. Refer-
ences BMS, Ref. 15; BW, Ref. 2; EMM, Ref. 4; Morgan, Ref. 3;
three-state close coupling (3CC), Ref. 14; Expt. , Ref. 16.

the present calculations are based. At the other end of the
energy range, the present results for 2s and 2p excitation
at k =0.91 agree to better than 0.5% with results based
on an 18-state expansion.

I have summarized the results for the convenience of
potential users of this data by presenting (Table VII)
least-squares fits to the collision strength, Q (0=2k o).
I write

n,

TABLE IX. Cross sections (units ~ao) at k =2.58. EMM,
Ref. 4; Morgan, Ref. 3 ~

Present (k =2.58)
EMM (LE)
Morgan

Elastic

1.643

1$—2$

0.082
0.126
0.097

0.862
1.010
0.828

IV. EFFECTIVE COLLISION STRENGTHS

energy for successful use of their CCO method.
I also quote in Table VIII results of Burke and Webb

(BW, Ref. 3), Edmonds, McDowell, and Morgan (EMM,
Ref. 5), and Morgan (Ref. 4). The calculation of Burke
and Webb has been discussed previously. Their 2s excita-
tion cross section agrees well with ours at this energy
whereas the 2p excitation seems somewhat low. The
close-coupling calculations of EMM quoted here incorpo-
rate of the n = 1, 2, 3, and 4 states with exchange inlcuded
in a local approximation only. The calculations of Mor-
gan involve a 13-state basis (6 s, 5 p, 2 d) but neglect ex-
change. At this energy, the neglect of exchange does not
lead to a large difference with respect to the present re-
sults. Three-state close-coupling (with exchange) results
according to Ref. 16 are also included.

The unsatisfactory nature of the available experimental
information at this and other energies above the n =3
threshold is discussed in Ref. 1. There is for the 2p exci-
tation an absolute measurement due to Williams. ' Al-
most all of the theoretical values presented in Table VIII
agree with this result within the estimated experimental
uncertainty (approximately 9%%uo). It is to be regretted that
there is no absolute measurement of the 2s excitation in
this energy range. A previous estimate involving renor-
malization of graphically presented experimental data of
Kauppila et al. ' and a correction for cascade from
higher p states gives 0] p 0.0607180 at k =4.0 in
moderately satisfactory agreement with the present results
and some of the other calculations quoted. But the situa-
tion is very uncertain. As for elastic scattering, only mea-
surements of differential cross sections exist at the ener-
gies of interest here. ' ' Our previous calculations are
generally in good agreement with these.

In Table IX, I compare the present values with the
pseudostate calculations of Morgan and the n =4 close-
coupling (local exchange)'calculations of Edmonds et al.
at 35 eV. Evidently neglect of continuum contributions
and inaccurate treatment or neglect of exchange have a
serious effect at this energy, particularly on the 2s excita-
tion.

Present
BMMS (CCO)
BMMS (PP)
BW
EMM (LE)
Morgan
3CC
Expt.

Elastic

0.920
1.035
0.926

1$—2$

0.066
0.080
0.053
0.065
0.094
0.063
0.101

1$—2p

0.849
0.875
0.856
0.800
0.883
0.814
0.908
0.89+0.08

The results described in the previous section can be
combined with the cross sections I have calculated previ-
ously between the n =2 and 3 thresholds to give a reason-
ably comprehensive representation of n =2 excitation
from threshold through the intermediate energy range.
These results are sufficient to enable calculation of rate
coefficients or equivalent quantities for astrophysical and
laboratory plasmas. The quantity presented here is the ef-
fective collision strength y defined by
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—E jkTy= e f Q Ef EfkT
(4.1)

kT (Ry)

TABLE X. Effective collision strengths.

f2$

+0. 13+0.89(E —0.75Ry),

o i, » /m a 0
——1.6 X 10 5(E —E„)

(4.3)

in which Ef is the energy of the incident electron mea-
sured with respect to the excited state, T is the plasma
electron temperature, and k is Boltzmann's constant.

The conventional rate coefficient q is related to y by '

—6 —E /kT

q= '
cm sec

8.63 && 10 ye (4.2)

hagi

in which E is the excitation energy, the temperature T is
in degrees, and g; is the degeneracy of the initial state.
(The convention is that g; =2 for the hydrogen ls state. )

The effective collision strength is, however, more suitable
for presentation here than q because it is dirnensionless,
and because it is a much slowly varying function of tem-
perature at low temperatures.

I have calculated y for 2s and 2p excitations using the
Born constrained fits [Eq. (3.1)] for k & 0.90 (Ef & 0.15).
Below k =0.90, I use the empirical representation given
in Ref. 1. For the cross sections from k =0.75 to 0.85
a.u. , I use

eris —2s/~&0=1. 3&&10 6(E —Es )

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00

0.252
0.265
0.274
0.281
0.287
0.292
0.297
0.301
0.306
0.310
0.318
0.326
0.334
0.342
0.350

0.400
0.462
0.562
0.673
0.787.
0.903
1.020
1.136
1.251
1.365
1.589
1.807
2.018
2.222
2.418

V. CONCLUSION

This probably results from the differences between the
present calculation and those available to Aggarwal close
to the ionization threshold. The agreement with
Aggarwal's result is much better at low temperatures
(5000 K) and at high temperatures (100000 K).

+0.16+2.0(E —0.75Ry) . (4.4)

The delta function represents the contribution of the
shape resonance close to threshold (E„=0.7512 Ry).
From k =0.85 to 0.90 a.u. , I use

o'i& 2z /7Mo =0.204, cri, » /a~ o 0 367——. (4.5)

which are averages of the (numerical) cross sections calcu-
lated in the resonance region in Ref. 2. Use of these for-
mulas enables the analytic evaluation of the integral in
Eq. (4.1).

The resulting effective collision strengths are given in
Table X. They seem to be somewhat smaller (by about
10—20%) than those deduced from the recent work of
Aggarwal in the temperature range 15000—50000 K.

I have reported here results of 11-state calculations of
integrated cross sections for elastic scattering and n =2
excitation in electron-hydrogen interactions through the
range from 12.2 to 54 eV. Pseudoresonances and pseu-
dothreshold structure produced by our basis set have been
removed by an amplitude-fitting procedure. The present
results have been compared with other recent calculations
and to the very limited extent possible, with experiment.
The greatest remaining uncertainties in the cross section
discussed in this work are probably in the range from the
n =3 threshold to about 25 eV incident energy. I hope
that the presentation of these computations will serve as a
stimulus and a challenge to experiment to tell us what is
really happening in this range.
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